
Tractable Reasoning in First-Order Knowledge Bases
with Disjunctive Information

Yongmei Liu and Hector J. Levesque
Department of Computer Science

University of Toronto
Toronto, ON, Canada M5S 3G4
{yliu, hector}@cs.toronto.edu

Abstract

This work proposes a new methodology for establish-
ing the tractability of a reasoning service that deals with
expressive first-order knowledge bases. It consists of
defining a logic that is weaker than classical logic and
that has two properties: first, the entailment problem
can be reduced to the model checking problem for a
small number of characteristic models; and second, the
model checking problem itself is tractable for formu-
las with a bounded number of variables. We show this
methodology in action for the reasoning service previ-
ously proposed by Liu, Lakemeyer and Levesque for
dealing with disjunctive information. They show that
their reasoning is tractable in the propositional case
and decidable in the first-order case. Here we apply
the methodology and prove that the reasoning is also
tractable in the first-order case if the knowledge base
and the query both use a bounded number of variables.

Introduction
In the area of Knowledge Representation and Reasoning,
there is a well-known tradeoff between the expressiveness of
the representation language and the computational tractabil-
ity of the associated reasoning task. On the one hand, it
is well accepted that a general-purpose representation lan-
guage needs at least the expressiveness of first-order logic;
on the other, the logical entailment problem of first-order
logic is undecidable. Over the past decades, two main
techniques have been proposed to deal with this compu-
tational intractability problem. The first islanguage re-
striction, as represented, for example, by description log-
ics; the idea is to restrict the expressiveness of the repre-
sentation language, and especially the types of incomplete
knowledge that can be represented. The second islim-
ited reasoning, as represented, for example, by the work
on tautological entailment (Levesque 1984; Frisch 1987;
Schaerf & Cadoli 1995; Patel-Schneider 1990; Lakemeyer
1994); the idea is to weaken the entailment relation in some
way by introducing non-traditional semantics. An emerging
direction of research is to combine these two approaches so
as to obtain tractable reasoning for representation languages
that are not overly restricted and for entailment relations that
are not overly weak.

This line of research is initiated by Levesque (1998).
He proposes a generalization of a database called aproper

KB, which allows a limited form of incomplete knowledge.
Since the deduction problem for proper KBs remains unde-
cidable, he defines a reasoning procedureV that is logically
sound and sometimes complete. Liu and Levesque (2003)
show that despite the incomplete knowledge,V can be im-
plemented efficiently using database techniques.

However, the expressiveness of proper KBs is still quite
limited: knowledge may be incomplete, but no disjunctive
information is allowed. So Lakemeyer and Levesque (2002)
propose an extension to a proper KB called aproper+ KB,
which allows simple forms of disjunctive information. They
also propose a reasoning procedureX for proper+ KBs that
is logically sound and agrees withV on proper KBs. How-
ever, the general logical and computational properties of this
new reasoning scheme are left unanalyzed.

A popular way of specifying a limited reasoning service
is through a logic of belief. Instead of proposing a new
entailment relation, the idea is to model reasoning asbe-
lief implication, that is, validity of formulas of the form
(BKB ⊃ Bφ), whereB is a belief operator. With the goal
of specifying a reasoning service for first-order KBs with
disjunctive information in the form of proper+ KBs, Liu,
Lakemeyer and Levesque (2004) propose a logic of limited
belief called the subjective logicSL. Reasoning based on
SL is logically sound and sometimes complete. Given dis-
junctive information, it performs unit propagation, but only
does case analysis in a limited way. Moreover, they show
that SL-based reasoning with proper+ KBs is tractable in
the propositional case and decidable in the first-order case.
The main idea behind these results is thatSL-based reason-
ing with proper+ KBs reduces to a certain model checking
problem, which can be implemented by a slight variant of
the procedureX .

In this paper, we continue this line of research and show
thatSL-based reasoning with proper+ KBs is not only de-
cidable but alsotractable in the first-order case if both the
KB and the query use a bounded number of variables. This
result is inspired by the tractability of the model checking
problem for bounded-variablefirst-order logic. In this paper,
we show that the model checking problem ofSL is tractable
for formulas with a bounded number of variables. Combin-
ing this result with the aforementioned result that reduces
reasoning to model checking, we obtain the main result of
this paper.

Bounded-Variable First-Order Logic
The main result of this paper is inspired by the tractability
of database query evaluation for first-order formulas with
a bounded number of variables. In this section, we briefly
review this result, and discuss its significance.

The complexity of query evaluation has been one of the
main pursuits of database theory. Vardi (1982) proposes
two complexity measures for this: combined complexity
and data complexity.1 Combined complexity is measured
in terms of the combined size of the database and the query.
Data complexity is measured solely in terms of the size of
the database and the size of the query is treated as a constant.
Vardi studies a number of logical languages and shows that
combined complexity is usually one exponential higher than
data complexity. For example, the combined complexity of
first-order logic is PSPACE-complete, while its data com-
plexity is in PTIME. Later Vardi (1995) shows that the ex-
ponential gap between combined and data complexity can be
eliminated by restricting the queries to have a bounded num-
ber of variables. In particular, Vardi proves that the com-
bined complexity of bounded-variable first-order logic is in
PTIME. The basic idea of the proof is to view subformulas
of the queries as subqueries. The evaluation is bottom-up
and all intermediate results are bounded-arity relations.

We let FOj denote the set of all first-order formulas with
at mostj distinct variables. The expressiveness of FOj is
not as limited as it may initially appear because we can reuse
variables. For example, given a binary relationR standing
for the edges in a graph, for anyk, the property “there is a
path of lengthk froma to b” (wherea andb are constants) is
definable by a formulaφk(a, b) that uses only two variables
x andy. We define the formulaφi(u, v) for any termsu and
v by induction:

φ1(u, v) = R(u, v);
φ2i(u, v) = ∃x[R(u, x) ∧ φ2i−1(x, v)], for i ≥ 1;
φ2i+1(u, v) = ∃y[R(u, y) ∧ φ2i(y, v)], for i ≥ 1.

Then for anyk, φk(a, b) ∈ FO2, and states that there is a
path of lengthk from a to b. In contrast, the property “there
is a clique of sizek” can only be expressed in FOk.

It turns out that FOj provides a logical characterization
for the combinatorial notion of bounded treewidth as fol-
lows. It is well-known that many algorithmic problems that
are “hard” on arbitrary graphs become “easy” on trees. The
concept of bounded treewidth generalizes the concept of tree
while maintaining its good computational properties. Intu-
itively, the treewidth of a graph measures its similarity with
a tree. This notion can be extended to the treewidth of a re-
lational structure. Kolaitis and Vardi (2000) show that if a fi-
nite structure has treewidth less thanj, then a certain canon-
ical formula for the structure is definable by an FOj-formula
that can be constructed in polynomial time.

Interestingly, their result also explains a well-known
tractability result about constraint satisfaction problems
(CSP). In general, CSP is NP-complete. But Dechter
and Pearl (1989) and Freuder (1990) show that CSP with

1A third measure is called expression complexity, and it is
rarely different from combined complexity.

bounded-treewidth constraint graphs is in PTIME.2 Kolaitis
and Vardi are able to confirm this property by showing that
bounded-treewidth CSP reduces to database query evalua-
tion for FOj .

The Subjective LogicSL
As observed by Lakemeyer and Levesque (2002), although
disjunctions can be used in many ways in a common-sense
KB, it has two major applications: (1) to representrules
such as in Horn clauses, where the associated reasoning is
unit propagation; and (2) to representincomplete knowledge
about individuals, where the associated reasoning is case
analysis. They argue that requiring a reasoning service to au-
tomatically deal with (2) with no further guidance is asking
too much, since this implies the ability to solve combinato-
rial puzzles. Motivated by this observation, Liu, Lakemeyer
and Levesque (2004) propose reasoning based on the sub-
jective logicSL, which supports full unit propagation for
(1), but only a controlled form of case analysis for (2). In
particular, they introduce a family of belief operatorsB0,
B1, B2, . . ., whereBk essentially supports case analysis of
depth bounded byk. To save space, later we will refer to
(Liu, Lakemeyer, & Levesque 2004) by (LLL04).

The syntax
The languageL is a standard first-order logic with equality.
The languageSL is a first-order logic with equality whose
atomic formulas are belief atoms of the formBkφ whereφ
is a formula ofL andBk is a modal operator for anyk ≥ 0.
Bkφ is read as “φ is a belief at levelk”.

More precisely, we have the following inductive defini-
tions. There are countably infinite sets of variables and con-
stant symbols, which make up thetermsof the language.
The constants behave like standard names, and no other
function symbols are allowed. Theatomsare expressions
of the formP (t1, . . . , tm) whereP is a predicate symbol
(excluding equality) and theti’s are terms.3 The literals are
atoms or their negations. We useρ to range over literals, and
we useρ to denote the complement ofρ.

The languageL is the least set of expressions such that

1. if ρ is an atom, thenρ ∈ L;

2. if t andt′ are terms, then(t = t′) ∈ L;

3. if φ, ψ ∈ L andx is a variable, then¬φ, (φ ∨ ψ), and
∃xφ ∈ L.

Clauses, which play an important role in the semantic defi-
nition of SL, are inductively defined as follows:

1. a literal is a clause, and is called a unit clause;

2. if c andc′ are clauses, then(c ∨ c′) is a clause.

A clause is identified with the set of literals it contains. Only
non-empty clauses appear inL. However, the empty clause,
denoted by2, is used inSL.

2See (Chen 2004) for a recent application of bounded-
treewidth.

3Unlike the other predicate symbols, equality is taken to have a
fixed interpretation (the identity relation) and so behaves more like
a logical symbol.

The languageSL is the least set of expressions such that

1. if φ ∈ L or φ is 2, andk ≥ 0, thenBkφ ∈ SL, and is
called abelief atomof levelk;

2. if t andt′ are terms ofL, then(t = t′) ∈ SL;

3. if α, β ∈ SL andx is a variable, then¬α, (α ∨ β), and
∃xα ∈ SL.

As usual,(α ∧ β), (α ⊃ β), and∀xα are used as abbrevi-
ations; andαx

d is used to denoteα with all free occurrences
of x replaced with constantd.

Belief reductions
Before presenting the semantics ofSL, we introduce some
preparatory concepts.

When deciding if a sentenceφ is believed, sometimes it is
necessary to decide if related subformulas are believed. The
notation(Bkφ)↓ is used to denote this belief reduction. For
anyφ ∈ L, theSL formula(Bkφ)↓ is defined as follows:

1. (Bkc)↓ = Bkc, wherec is a clause;

2. (Bk(t = t′))↓ = (t = t′);
3. (Bk¬(t = t′))↓ = ¬(t = t′);
4. (Bk¬¬φ)↓ = Bkφ;

5. (Bk(φ ∨ ψ))↓ = (Bkφ ∨ Bkψ),
whereφ orψ is not a clause;

6. (Bk¬(φ ∨ ψ))↓ = (Bk¬φ ∧ Bk¬ψ);
7. (Bk∃xφ)↓ = ∃xBkφ;

8. (Bk¬∃xφ)↓ = ∀xBk¬φ.

As mentioned earlier,SL supports unit propagation,
which involves applying unit resolution to clauses until no
new clauses are generated. Lets be a set of ground clauses.
The notationUP(s) is used to denote the closure ofs under
unit propagation, that is, the least sets′ satisfying:
1. s ⊆ s′; and 2. ifρ ∈ s′ and{ρ} ∪ c ∈ s′, thenc ∈ s′.
The notationVP(s) is used to denote the following set:
{c | c is a ground clause and there isc′ ∈ UP(s) s.t. c′ ⊆ c}.

Finally, there is a complexity measure‖ · ‖ which maps
formulas into natural numbers. It has the following prop-
erty: for anyφ, ‖ Bkφ ‖< ‖ Bk+1φ ‖; and for anyφ that
is not a clause,‖ (Bkφ) ↓‖< ‖ Bkφ ‖. We omit its defi-
nition here, but mention that this property ensures that the
following semantics is well-defined.

The semantics
Sentences ofSL are interpreted via asetup, which is a set
of non-emptyground clauses, and which specifies what sen-
tences ofL are believed, and consequently what sentences
of SL are true. Intuitively, a setup represents what is explic-
itly believed as a possibly infinite set of ground clauses. The
semantics below then specifies what are the implicit beliefs.

Let s be a setup. For any sentenceα ∈ SL, s |= α (read
“s satisfiesα”) is defined inductively on‖α‖ as follows:

1. s |= (d = d′) iff d andd′ are the same constant;

2. s |= ¬α iff s |6=α;

3. s |= α ∨ β iff s |= α or s |= β;

4. s |= ∃xα iff for some constantd, s |= αx
d ;

5. s |= Bkφ iff one of the following holds:

(a) subsume: k = 0, φ is a clausec, andc ∈ VP(s);
(b) reduce: φ is not a clause ands |= (Bkφ)↓;
(c) split: k > 0 and there is somec ∈ s such that for all

ρ ∈ c, s ∪ {ρ} |= Bk−1φ.

As usual, a sentenceα ∈ SL is valid, written |= α, if for
every setups, we have thats |= α.

As can be seen from the rules of interpretation above,
negation and disjunction have their usual meaning inSL.
The rules for equality and quantification reflect our assump-
tion that there is a bijection between the domain of discourse
and the countably infinite set of constants. So all the novelty
in SL is due to the interpretation of theBk operators. In-
tuitively, the rules propose three different justifications for
believing a sentenceφ at levelk:
1. φ is a clause,k = 0, and after doing unit propagation on

our explicit beliefs, we end up with a subclause ofφ;

2. we already have appropriate beliefs about the subformulas
of φ, for example, believing both conjuncts of a conjunc-
tion, or some instance of an existential;

3. there is a clause in our explicit beliefs that if we split, that
is, if we augment our beliefs by a literal in that clause,
then in all cases we end up believingφ at levelk − 1.

All three of these deal with disjunction but in quite different
ways, which we now illustrate with an example.

Example 1 We assume three predicates:S(x) saying thatx
is a student,G(x) saying thatx is a graduate student, and
I(x) saying thatx is Irish. We use constanta to stand for
Ann andb for Bob. LetΣ be the set of sentences

{G(a),S(b), I(a) ∨ I(b), ∀x(G(x) ⊃ S(x))},
and lets be the setup defined as the set of instances ofΣ:

{G(a),S(b), I(a) ∨ I(b),¬G(a) ∨ S(a),¬G(b) ∨ S(b), . . .}.
Let φ be∃x(I(x) ∧ S(x)). We now show thats |= B1φ.

Clearly, s ∪ {I(a)} |= B0I(a) by subsumption. Also,
s ∪ {I(a)} |= B0S(a) by subsumption, sinceS(a) can be
obtained fromG(a) and¬G(a) ∨ S(a) by unit propagation.
Thuss∪{I(a)} |= B0(I(a)∧S(a)) by reduction, and hence
s ∪ {I(a)} |= B0φ by reduction. Similarly,s ∪ {I(b)} |=
B0φ. Thuss |= B1φ by splitting on the clauseI(a) ∨ I(b).

SL-based Reasoning with Proper+ KBs
SL is intended to serve as the foundation for a semantically
coherent and computationally attractive reasoning service.
The idea is to model the reasoning service as belief implica-
tion, that is, validity of formulas of the form(B0Σ ⊃ Bkφ),
whereΣ is a KB, andφ is a query. We writeΣ |=k φ if
(B0Σ ⊃ Bkφ) is valid. TheSL-based reasoning problem
(for a fixed valuek) is as follows: given a KBΣ in L and a
formulaφ in L, decide whether or notΣ |=k φ. SL-based
reasoning is always classically sound: ifΣ |=k φ, thenΣ
classically entailsφ (LLL04). The converse, logical com-
pleteness, does not hold in general. Moreover, in general,
|=k is not decidable. To see where|=k becomes decidable,
we first define proper+ KBs.

Proper+ KBs
It is easy to show that if a KB is a simple database, then
SL-based reasoning coincides with classical logical entail-
ment and is also decidable. However, a database does not
allow any form of incomplete knowledge. Levesque (1998)
proposes a generalization of a database called aproper KB,
equivalent to a (possibly infinite) consistent set of ground lit-
erals. But while a proper KB allows atomic formulas to be
unknown, it does not allow any form of disjunctive informa-
tion. For example, in a proper KB, we cannot express “Ann
or Bob is Irish” or “Every graduate student is a student” as
in the example above. So Lakemeyer and Levesque (2002)
propose an extension to a proper KB called a proper+ KB,
equivalent to a possibly infinite set of ground clauses. We
now define these notions formally.

We usee to range overewffs, that is, quantifier-free for-
mulas whose only predicate is equality. We use∀φ to denote
the universal closure ofφ. We useθ to range over substitu-
tions of all variables by constants, and writeφθ as the result
of applying the substitutionθ to φ.

Definition 1 Let e be an ewff andc a clause. Then a for-
mula of the form∀(e ⊃ c) is called a∀-clause. A KB Σ is
proper+ if it is a finite non-empty set of∀-clauses. Given a
proper+ KB Σ, gnd(Σ) is defined as{cθ | ∀(e ⊃ c) ∈ Σ
and|= eθ}. A KB Σ is properif it is proper+ andgnd(Σ) is
a consistent set of ground literals.

Note thatgnd(Σ) is anSL setup, as in the example above.
Despite the limitations, proper+ KBs are expressive

enough for many real-world applications. To get a feel for
this, consider the following example from (LLL04):

Example 2 Let Σ be the following KB with a single predi-
cateC(p1, p2) saying that the two persons are compatible:

1. ∀x∀y.C(x, y) ⊃ C(y, x);
2. ∀x.C(x,ann) ∨ C(x,bob);
3. ¬C(bob, fred);
4. C(carl, eve) ∨ C(carl, fred);
5. ∀x.x 6= bob∧ x 6= carl ⊃ C(dan, x);
6. ¬C(eve, ann) ∨ ¬C(eve, fred).

Then we have the following:

1. Σ |=0 C(fred, ann);
2. Σ |=1 ∀x∃yC(x, y);
3. Σ |=1 ∃x∃y∃z[C(x, y) ∧ C(x, z) ∧ ¬C(y, z)];
4. Σ |=2 ∃x∃y[x 6= y ∧ C(x, carl) ∧ C(y, carl)], but

Σ 6|=1 ∃x∃y[x 6= y ∧ C(x, carl) ∧ C(y, carl)].

By Theorem 1 below,Σ |=k φ iff gnd(Σ) |= Bkφ. Thus
the above can be proved by showing thatgnd(Σ) |= Bkφ
(or gnd(Σ) 6|= Bkφ).

Properties ofSL-based reasoning
As noted above,SL-based reasoning is classically sound but
incomplete. However, Liuet al. present the following two
results. First,SL-based reasoning is classically complete
for proper KBs and queries in a certain normal form called
NF . Second,SL-based reasoning is “eventually complete”

for a propositional proper+ KB Σ and a propositional query
φ in NF : if Σ classically entailsφ, then there is ak such
thatΣ |=k φ. As to the computational property, Liuet al.
show that for proper+ KBs, SL-based reasoning reduces to
a model checking problem (for a possibly infinite model):

Theorem 1 (LLL04) LetΣ be proper+.
ThenΣ |=k φ iff gnd(Σ) |= Bkφ.

Using this theorem, they show thatSL-based reasoning with
proper+ KBs is tractable in the propositional case and de-
cidable in the first-order case.

A Tractability Result
In this section, we show thatSL-based reasoning with
proper+ KBs is not only decidable but also tractable in the
first-order case provided that both the KB and the query use
a bounded number of variables.

The main ideas behind this result are as follows. First,
by Theorem 1, it suffices to prove that deciding whether
gnd(Σ) |= Bkφ is tractable when bothΣ and φ use a
bounded number of variables. Althoughgnd(Σ) may well
be infinite, as shown in (LLL04), it suffices to consider the
restriction ofgnd(Σ) to a finite set of constants, which con-
sists of the constants in eitherΣ or φ, and a few extra ones.
Moreover, the fact thatΣ uses a bounded number of vari-
ables ensures that this restriction has a polynomial size. Sec-
ond, as in the case of database query evaluation, instead of
answering a Boolean query, we compute the set of substi-
tution θ such thatgnd(Σ) |= Bkφθ whereφ is a formula
which may have free variables. Although this set may well
be infinite, it has a finite representation, which is what we ac-
tually compute. As in the tractability result of (Vardi 1995),
we view subformulas ofφ as subqueries, and the fact thatφ
uses a bounded number of variables ensures that all interme-
diate results are bounded-arity database relations.

In the following, we useLj to denote the set of formulas
fromL whose variables are fromX = {x1, . . . , xj}, where
j ≥ 1. We useθ to range over substitutions of all variables
x1, . . . , xj by constants. We useD to range over finite sets
of constants. We useθ ∈ D to mean thatθ only takes con-
stants fromD. We let gnd(Σ)|D denote the restriction of
gnd(Σ) to D, that is, the set of clauses fromgnd(Σ) that
only mention constants fromD. Let Γ be a set of formu-
las. We useH(Γ) to denote the set of constants appearing in
Γ, and we useH+

m(Γ) to denote the union of the constants
appearing inΓ andm extra ones.

Answers to open queries
Definition 2 Let Σ ⊆ Lj be proper+, φ ∈ Lj , andk ≥ 0.
We defineAns(Σ, φ, k) as the set{θ | gnd(Σ) |= Bkφθ}.

However, Ans(Σ, φ, k) may well be infinite. Fortu-
nately, we can find a finite representation for it. We let
Ans(Σ, φ, k)|D denote the restriction ofAns(Σ, φ, k) toD,
that is, the set{θ ∈ D | gnd(Σ) |= Bkφθ}.

Proposition 2 LetD beH+
m(Σ ∪ {φ}) for somem ≥ j.

Then Ans(Σ, φ, k)|D is a finite representation for
Ans(Σ, φ, k) in the following sense:

For any substitutionθ, θ ∈ Ans(Σ, φ, k) iff θ′ ∈
Ans(Σ, φ, k)|D, whereθ′ is like θ except that for all
thosexi (i = 1, . . . , j) such thatθ(xi) 6∈ D, θ′ maps
them into unique representatives fromD−H(Σ∪{φ}).

Example 3 Let Σ be the following simple KB:

{∀x∀y.C(x, y) ⊃ C(y, x), ∀x.x 6= ann⊃ C(x,bob)}.
Let φ be C(x, y). ThenAns(Σ, φ, 0) = {(c, bob) | c 6=
ann} ∪ {(bob, c) | c 6= ann}, which is an infinite set. Now
let D = {ann, bob, carl, dan}. ThenAns(Σ, φ, 0, D) =
{(bob, bob), (carl, bob), (dan, bob), (bob, carl), (bob, dan)},
and it makes a finite representation forAns(Σ, φ, 0). First,
consider(bob, eve). Sinceeve 6∈ D, we choosecarl as its
representative; since(bob, carl) ∈ Ans(Σ, φ, 0, D), we
know (bob, eve) ∈ Ans(Σ, φ, 0). Now consider(eve, fred).
Since neitherevenor fred is inD, we choosecarl anddanas
their representatives; since(carl, dan) 6∈ Ans(Σ, φ, 0, D),
we know(eve, fred) 6∈ Ans(Σ, φ, 0).

The algorithm
We first define two operations to be used in the algorithm.
By anX-relation over domainD, we mean a set of substi-
tutionsθ such thatθ ∈ D. We useθ(x/d) to denote the
substitution that is the same asθ except thatx is assignedd.

Definition 3 LetR be anX-relation over domainD, and let
x ∈ X . Thedivision of R wrt x, written δx(R), is the set
{θ ∈ D | ∀d ∈ D, θ(x/d) ∈ R}. TheprojectionofR wrt x,
writtenπx(R), is the set{θ ∈ D | ∃d ∈ D, θ(x/d) ∈ R}.

Note that our definition of projection (or division) is some-
what different from that in the database literature: ours is
the Cartesian product of theirs and the domain. We use this
definition so as to simplify the presentation of the procedure
below, where every intermediate relation is anX-relation.

Example 4 LetX = {x, y},D = {a, b, c}, and
R = {(a, a), (b, a), (c, a), (a, b)}. Then
δx(R) = {(a, a), (b, a), (c, a)}, and
πx(R) = {(a, a), (b, a), (c, a), (a, b), (b, b), (c, b)}.

Given a proper+ KB Σ ⊆ Lj , a queryφ ∈ Lj , a natural
numberk, and a finite set of constantsD, the procedureE
returns anX-relation over domainD as follows:

1. E(Σ, (t = t′), k,D) = {θ ∈ D | tθ is identical tot′θ}.
Heret andt′ are variables or constants.

2. E(Σ,¬(t = t′), k,D)={θ ∈D | tθ is distinct fromt′θ}.

3. If φ is a clause andk = 0, thenE(Σ, φ, k,D) =
{θ ∈ D | there isc ∈ UP(gnd(Σ)|D) s.t. c ⊆ φθ}.
This is a subsumption operation, and we will give a de-
tailed procedure for it in the proof of Lemma 8 below.

4. If φ is a clause andk > 0, thenE(Σ, φ, k,D) =
S(Σ, φ, k,D), which we use as an abbreviation for

⋃

c∈gnd(Σ)|D

⋂

ρ∈c

E(Σ ∪ {ρ}, φ, k − 1, D).

HereS represents a splitting operation, that is, we letc
range over clauses ingnd(Σ)|D and take the union of the
following: the intersection ofE(Σ ∪ {ρ}, φ, k − 1, D)
whereρ ranges over literals inc.

5. E(Σ,¬¬ψ, k,D) = E(Σ, ψ, k,D).

6. If φ is (ψ ∨ η), but not a clause, thenE(Σ, φ, k,D)
= S(Σ, φ, k,D) ∪ E(Σ, ψ, k,D) ∪ E(Σ, η, k,D).

7. E(Σ,¬(ψ∨η), k,D)=E(Σ,¬ψ, k,D)∩E(Σ,¬η, k,D).

8. E(Σ, ∃xψ, k,D)=S(Σ, ∃xψ, k,D)∪ πx(E(Σ, ψ, k,D)).

9. E(Σ,¬∃xψ, k,D) = δx(E(Σ,¬ψ, k,D)).

We now illustrate Cases 1-4 with an example.

Example 5 Let Σ be the following KB:

{ ∀x.C(x,ann) ∨ C(x,bob),¬C(carl, bob),
C(dan, ann)⊃C(dan, carl),C(dan, bob)⊃C(dan, carl)}.

LetD = {ann, bob, carl, dan, eve}. Then

1. E(Σ, (x = y), 0, D) = {(c, c) | c ∈ D}.
2. E(Σ,¬(x=ann), 0,D)={(c, d) |c, d∈D, andc 6=ann}.
3. E(Σ,C(x, y), 0, D) = {(carl, ann)}. We get(carl, ann)

becauseC(carl, ann) can be obtained fromgnd(Σ)|D by
unit propagation.

4. E(Σ,C(x, y), 1, D) = {(carl, ann), (dan, carl)}.
We get(dan, carl) because it appears in
bothE(Σ ∪ {C(dan, ann)},C(x, y), 0, D)
andE(Σ ∪ {C(dan, bob)},C(x, y), 0, D).

Correctness proof
The following theorem states that ifD contains all the con-
stants inΣ ∪ {φ} and at leastj(k + 2) extra ones, then the
above procedure computesAns(Σ, φ, k)|D, which is a finite
representation forAns(Σ, φ, k) by Proposition 2.

Theorem 3 Let Σ ⊆ Lj be proper+, φ ∈ Lj , andk ≥ 0.
Let D beH+

m(Σ ∪ {φ}) for somem ≥ j(k + 2). Then
E(Σ, φ, k,D) = Ans(Σ, φ, k)|D.

The proof is by induction onφ. Cases 1, 2, 5, 7, and 9 use
the following properties of beliefs from (LLL04):

|= Bke ≡ e, wheree is an ewff

|= Bk¬¬φ ≡ Bkφ

|= Bk(φ ∧ ψ) ≡ Bkφ ∧ Bkψ

|= Bk∀xφ ≡ ∀xBkφ

The other cases use the following lemmas, which justify our
treatment of subsumption, quantification, and splitting, re-
spectively. We letw(Σ) denote the maximum number of
variables in a∀-clause ofΣ.

Lemma 4 LetD beH+
m(Σ) for somem ≥ w(Σ). Suppose

that c ∈ UP(gnd(Σ)). Thenc′ ∈ UP(gnd(Σ)|D), where
c′ is like c except that constants not inD are replaced with
unique representatives fromD −H(Σ).

Lemma 5 Letφ be a formula with a single free variablex.
Let b andd be two constants that do not appear inΣ or φ.
Then gnd(Σ) |= Bkφ

x
b iff gnd(Σ) |= Bkφ

x
d .

Lemma 6 Let D beH+
m(Σ ∪ {φ}) for somem ≥ w(Σ).

Suppose that gnd(Σ) |= Bkφ by splitting onc ∈ gnd(Σ).
Then gnd(Σ) |= Bkφ by splitting on somec′ ∈ gnd(Σ)|D.

Complexity analysis
We begin with two lemmas about the complexity of database
operations and subsumption operations. We letj denote the
number of variables.

Lemma 7 Each database operation used in procedureE
(selection, intersection, union, division and projection) can
be done inO(nj) time, wheren is the size ofD.

Proof: Each relation is of sizeO(nj), and is always kept in
sorted form. Each operation can be done in one pass of the
input relations, and the result remains sorted.

Lemma 8 Letφ be a clause. LetD be of sizeO(n), where
n is the size ofΣ. ThenE(Σ, φ, 0, D) can be computed in
O(nj+1) time.

Proof: The following procedure computesE(Σ, φ, 0, D):
1. Computegnd(Σ)|D.

2. Perform unit propagation overgnd(Σ)|D. Let U0 be the
set of minimum clauses ofUP(gnd(Σ)|D).

3. For eachc ∈ U0, check whether it can be unified with a
subset ofφ; if so, mark thoseθ ∈ D such thatc ⊆ φθ.
Return the set of those markedθ.

Theorem 9 Let Σ ⊆ Lj be proper+, φ ∈ Lj , andk ≥ 0.
Then whetherΣ |=k φ can be decided inO((lnj+1)k+1)
time, wherel is the size ofφ, andn is the size ofΣ.

Proof: To decide ifΣ |=k φ, we letD = H+
j(k+2)(Σ∪{φ}),

computeE(Σ, φ, k,D), and check whether it is empty.
Let f(k) denote the time complexity of computing

E(Σ, φ, k,D). Supposek > 0. For each of thel clauses
and logical operators inφ, we perform a database operation
and/or a splitting operation. Each database operation can be
done inO(nj) time by Lemma 7. Each splitting operation
considersO(nj+1) clauses and takes the union of the corre-
sponding results. Thusf(k) = O(lnj+1 · (f(k− 1) + nj)).
Supposek = 0. For each of thel clauses and logical oper-
ators inφ, we perform a database operation or a subsump-
tion operation. Each subsumption operation can be done in
O(nj+1) time by Lemma 8. Thusf(0) = O(lnj+1). Solv-
ing the recurrence, we havef(k) = O((lnj+1)k+1).

This procedure grows exponentially, but only withj (the
number of variables) andk (the depth of case splitting).

Obviously, there are two places where we could improve
procedureE. First, it is possible to reduce the number of
clauses we need to consider during a splitting operation.
Second, it is also possible to use incremental unit propa-
gation, that is, we perform unit propagation in the very be-
ginning, and then after we add a literal by splitting, we do
further unit propagation incurred by this literal.

Conclusions
In this paper, we have showed thatSL-based reasoning with
proper+ KBs is tractable in the first-order case when both
the KB and the query use a bounded number of variables.
The procedure we propose nonetheless scales exponentially
with the number of variables and the depth of case analysis.

But we expect small values of these parameters to suffice
except when the KB encodes a combinatorial puzzle or some
other “mathematically interesting” problem. In this sense,
SL provides a computationally viable reasoning service for
first-order knowledge bases with disjunctive information.

We believe that the contribution of this paper lies not only
in the technical result but also in the methodology. The con-
cept of bounded treewidth has proven valuable for obtain-
ing many tractability results. Kolaitis and Vardi are able to
explain this in terms of the tractability of the model check-
ing problem for bounded-variable first-order logic. What we
have done here is to show how this idea could be applied to
a radically different form of model checking, that is, when
the models are the setups of the belief logicSL. In the fu-
ture, we would like to take this idea even further, and find
tractable reasoning services for more expressive representa-
tion languages, for example, for knowledge bases that in-
clude unknown individuals.

References
Chen, H. 2004. Quantified constraint satisfaction and bounded
treewidth. InProc. of ECAI-04, 161–165.

Dechter, R., and Pearl, J. 1989. Tree clustering for constraint
networks.Artificial Intelligence38(3):353–366.

Freuder, E. C. 1990. Complexity ofK-tree structured constraint
satisfaction problems. InProc. AAAI-90, 4–9.

Frisch, A. M. 1987. Inference without chaining. InProc. IJCAI-
87, 515–519.

Kolaitis, P. G., and Vardi, M. Y. 2000. Conjunctive-query con-
tainment and constraint satisfaction.Journal of Computer and
System Sciences61(2):14–23.

Lakemeyer, G., and Levesque, H. J. 2002. Evaluation-based
reasoning with disjunctive information in first-order knowledge
bases. InProc. KR-02, 73–81.

Lakemeyer, G. 1994. Limited reasoning in first-order knowledge
bases.Artificial Intelligence71(2):213–255.

Levesque, H. J. 1984. A logic of implicit and explicit belief. In
Proc. of AAAI-84, 198–202.

Levesque, H. J. 1998. A completeness result for reasoning with
incomplete first-order knowledge bases. InProc. KR-98, 302–
332.

Liu, Y., and Levesque, H. J. 2003. A tractability result for reason-
ing with incomplete first-order knowledge bases. InProc. IJCAI-
03, 83–88.

Liu, Y.; Lakemeyer, G.; and Levesque, H. J. 2004. A logic of
limited belief for reasoning with disjunctive information. InProc.
KR-04, 587–597.

Patel-Schneider, P. F. 1990. A decidable first-order logic for
knowledge representation.Journal of Automated Reasoning
6:361–388.

Schaerf, M., and Cadoli, M. 1995. Tractable reasoning via ap-
proximation.Artificial Intelligence74:249–310.

Vardi, M. Y. 1982. The complexity of relational query languages
(extended abstract). InProc. 14th Annual ACM Symposium on
Theory of Computing, 137–146.

Vardi, M. Y. 1995. On the complexity of bounded-variable
queries. InProc. 14th ACM Symposium on Principles of Database
Systems (PODS ’95), 266–276.

