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Abstract

This work proposes a new methodology for establish-
ing the tractability of a reasoning service that deals with
expressive first-order knowledge bases. It consists of
defining a logic that is weaker than classical logic and

that has two properties: first, the entailment problem
can be reduced to the model checking problem for a
small number of characteristic models; and second, the
model checking problem itself is tractable for formu-

las with a bounded number of variables. We show this
methodology in action for the reasoning service previ-

ously proposed by Liu, Lakemeyer and Levesque for
dealing with disjunctive information. They show that

their reasoning is tractable in the propositional case
and decidable in the first-order case. Here we apply
the methodology and prove that the reasoning is also
tractable in the first-order case if the knowledge base
and the query both use a bounded number of variables.

Introduction

KB, which allows a limited form of incomplete knowledge.
Since the deduction problem for proper KBs remains unde-
cidable, he defines a reasoning proceddréat is logically
sound and sometimes complete. Liu and Levesque (2003)
show that despite the incomplete knowledgecan be im-
plemented efficiently using database techniques.

However, the expressiveness of proper KBs is still quite
limited: knowledge may be incomplete, but no disjunctive
information is allowed. So Lakemeyer and Levesque (2002)
propose an extension to a proper KB calledrapert KB,
which allows simple forms of disjunctive information. They
also propose a reasoning procediiréor proper KBs that
is logically sound and agrees with on proper KBs. How-
ever, the general logical and computational properties of this
new reasoning scheme are left unanalyzed.

A popular way of specifying a limited reasoning service
is through a logic of belief. Instead of proposing a new
entailment relation, the idea is to model reasonindgas
lief implication, that is, validity of formulas of the form

In the area of Knowledge Representation and Reasoning, (BKB D Bg), whereB is a belief operator. With the goal
there is a well-known tradeoff between the expressiveness of of specifying a reasoning service for first-order KBs with
the representation language and the computational tractabil- disjunctive information in the form of properkBs, Liu,

ity of the associated reasoning task. On the one hand, it Lakemeyer and Levesque (2004) propose a logic of limited
is well accepted that a general-purpose representation lan-belief called the subjective logiSC. Reasoning based on
guage needs at least the expressiveness of first-order logic;SC is logically sound and sometimes complete. Given dis-
on the other, the logical entailment problem of first-order junctive information, it performs unit propagation, but only

logic is undecidable.

Over the past decades, two main does case analysis in a limited way. Moreover, they show

techniques have been proposed to deal with this compu- that SC-based reasoning with propeiBs is tractable in

tational intractability problem. The first imnguage re-

striction, as represented, for example, by description log-

the propositional case and decidable in the first-order case.
The main idea behind these results is tatbased reason-

ics; the idea is to restrict the expressiveness of the repre- ing with proper” KBs reduces to a certain model checking
sentation language, and especially the types of incomplete problem, which can be implemented by a slight variant of

knowledge that can be represented. The secorlanis
ited reasoning as represented, for example, by the work

on tautological entailment (Levesque 1984; Frisch 1987;

the procedurex.

In this paper, we continue this line of research and show
that SC-based reasoning with propeKBs is not only de-

Schaerf & Cadoli 1995; Patel-Schneider 1990; Lakemeyer cidable but alsdractablein the first-order case if both the
1994); the idea is to weaken the entailment relation in some KB and the query use a bounded number of variables. This
way by introducing non-traditional semantics. An emerging result is inspired by the tractability of the model checking
direction of research is to combine these two approaches so problem for bounded-variable first-order logic. In this paper,
as to obtain tractable reasoning for representation languageswe show that the model checking problemSaf is tractable
that are not overly restricted and for entailment relations that for formulas with a bounded number of variables. Combin-
are not overly weak. ing this result with the aforementioned result that reduces

This line of research is initiated by Levesque (1998). reasoning to model checking, we obtain the main result of
He proposes a generalization of a database callpdper this paper.



Bounded-Variable First-Order Logic bounded-treewidth constraint graphs is in PTIKIEolaitis

and Vardi are able to confirm this property by showing that
bounded-treewidth CSP reduces to database query evalua-
tion for FO'.

The main result of this paper is inspired by the tractability
of database query evaluation for first-order formulas with
a bounded number of variables. In this section, we briefly
review this result, and discuss its significance. L .
The complexity of query evaluation has been one of the The Subjective LogicSL
main pursuits of database theory. Vardi (1982) proposes As observed by Lakemeyer and Levesque (2002), although
two complexity measures for this: combined complexity disjunctions can be used in many ways in a common-sense
and data complexity. Combined complexity is measured KB, it has two major applications: (1) to representes
in terms of the combined size of the database and the query. Such as in Horn clauses, where the associated reasoning is
Data complexity is measured solely in terms of the size of Unit propagation; and (2) to represémtomplete knowledge
the database and the size of the query is treated as a constan@Pout individuals, where the associated reasoning is case
Vardi studies a number of logical languages and shows that analysis. They argue that requiring a reasoning service to au-
combined complexity is usually one exponential higher than tomatically deal with (2) with no further guidance is asking
data complexity. For example, the combined complexity of 00 much, since this implies the ability to solve combinato-
first-order logic is PSPACE-complete, while its data com- rial puzzles. Motivated by this observation, Liu, Lakemeyer
plexity is in PTIME. Later Vardi (1995) shows that the ex- ~and Levesque (2004) propose reasoning based on the sub-
ponential gap between combined and data complexity can bejective logic SC, which supports full unit propagation for
eliminated by restricting the queries to have a bounded num- (1), but only a controlled form of case analysis for (2). In
ber of variables. In particular, Vardi proves that the com- Particular, they introduce a family of belief operatdss,
bined complexity of bounded-variable first-order logic is in ~ B1, Bz, ..., whereB;, essentially supports case analysis of
PTIME. The basic idea of the proof is to view subformulas depth bounded b¥. To save space, later we will refer to
of the queries as subqueries. The evaluation is bottom-up (Liu, Lakemeyer, & Levesque 2004) by (LLLO4).
and all intermediate results are bounded-arity relations.

We let FO' denote the set of all first-order formulas with | "€ Syntax
at most; distinct variables. The expressiveness of R® The languag€ is a standard first-order logic with equality.
not as limited as it may initially appear because we can reuse The languageS. is a first-order logic with equality whose
variables. For example, given a binary relatirstanding atomic formulas are belief atoms of the fof8).¢ whereg

for the edges in a graph, for ary the property “there is a is a formula ofZ and By, is a modal operator for any > 0.
path of lengthk froma to b” (wherea andb are constants) is B¢ is read as ¢ is a belief at levek”.

definable by a formulay(a, b) that uses only two variables More precisely, we have the following inductive defini-
x andy. We define the formula; (u, v) for any termsu and tions. There are countably infinite sets of variables and con-
v by induction: stant symbols, which make up thtermsof the language.

The constants behave like standard names, and no other
_ . ) function symbols are allowed. Th®omsare expressions
‘b”(“’”)f éx%R(g’ x)(/\ ‘b”—l(x’“)]’gorfgll’ of the form P(ty, .. .,t,) Where P is a predicate symbol
Goit1(u,v) = FyR(u,y) A $ai(y, v)], fori > 1. _ (excluding equality) and thg’s are terms. Theliterals are
Then for anyk, ¢x(a,b) € FO?, and states that there is @ atoms or their negations. We yséo range over literals, and
path of lengthk from a to b. In contrast, the property “there e usep to denote the complement pf
is a clique of Siﬁﬁk" can 0”')’(;39 eXICIerSSGId irl’]\ PO The language is the least set of expressions such that
It turns out that F@ provides a logical characterization PP .
for the combinatorial notion of bounded treewidth as fol- 1. if pis an atom, thep € L;
lows. It is well-known that many algorithmic problems that 2. if ¢ andt’ are terms, thet¢ = t') € £;
are “hard” on arbitrary graphs become “easy” on trees. The 3. if ¢,¢) € £ andz is a variable, ther¢, (¢ V1), and
concept of bounded treewidth generalizes the conceptoftree  Jp¢ ¢ L.
while maintaining its good computational properties. Intu- : . : : '
itively, the treewidth of a graph measures its similarity with Eilt?gr?g?‘\lgvgI(;Tep:gé/uaér;i\l/g]lp(ijr;?i?]tetglaeSI?oEIr(])?NSs?mantlc defi-
a tree. This notion can be extended to the treewidth of a re- ’ y ’
lational structure. Kolaitis and Vardi (2000) show thatif afi- 1. aliteralis a clause, and is called a unit clause;
nite structure has treewidth less thathen a certain canon- 2. if ¢ and¢’ are clauses, thefa vV ¢/) is a clause.
ical formula for the structure is definable by anFformula
that can be constructed in polynomial time.

o1 (u,v) = R(u,v);

A clause is identified with the set of literals it contains. Only
Interestingly, their result also explains a well-known non-empty clauses appearn However, the empty clause,

tractability result about constraint satisfaction problems denoted by, is used inSL.

(CSP). In general, CSP is NP-complete. But Dechter 2See (Chen 2004) for a recent application of bounded-

and Pearl (1989) and Freuder (1990) show that CSP with treewidth.

- 3Unlike the other predicate symbols, equality is taken to have a
A third measure is called expression complexity, and it is fixed interpretation (the identity relation) and so behaves more like

rarely different from combined complexity. a logical symbol.



The languagéL is the least set of expressions such that 4. s = Jxa iff for some constand, s = a7;
1. if¢p € LorgisO, andk > 0, thenBy¢p € SL, and is 5. s = By¢ iff one of the following holds:

called abelief atomof level k; (a) subsumek = 0, ¢ is a clause;, andc € VP(s);

2. if t andt’ are terms oL, then(t = t') € SL; (b) reduce ¢ is not a clause and = (By¢) |;

3. if a, 3 € SC andx is a variable, thema, (o vV 3), and (c) split: £ > 0 and there is some < s such that for all
Jxa € SL. pEc sU{p}E Bi-1¢.

As usual,(a A ), (o O 3), andvza are used as abbrevi-  AS usual, a sentenae < SL is valid, written = a, if for
ations; anch? is used to denote with all free occurrences ~ €very setup, we have that = a.

of z replaced with constant As can be seen from the rules of interpretation above,
negation and disjunction have their usual meaningn
Belief reductions The rules for equality and quantification reflect our assump-

tion that there is a bijection between the domain of discourse
and the countably infinite set of constants. So all the novelty
in SC is due to the interpretation of thB;, operators. In-

necessary to decide if related subformulas are believed. ThetUitive!y’ the rules propose three different justifications for
notation(Bj.¢) | is used to denote this belief reduction. For beheymg a sentence at levelk: ) ) )

any¢ € L, theSL formula(By¢) | is defined as follows: 1. ¢ is a clausek = 0, and after doing unit propagation on
our explicit beliefs, we end up with a subclausepof

Before presenting the semantics&, we introduce some
preparatory concepts.
When deciding if a sentengeis believed, sometimesiit is

1. (Bic)| = Byc, wherec is a clause; . .
, N 2. we already have appropriate beliefs about the subformulas
2. (Bp(t=1))| = (t=1"); of ¢, for example, believing both conjuncts of a conjunc-
3. (Be=(t=1t))] = =(t=1t); tion, or some instance of an existential;
4. (By,——9¢)| = By¢; 3. there is a clause in our explicit beliefs that if we split, that
_ is, if we augment our beliefs by a literal in that clause,
S \(NB;]é(rﬁqsvod;)z/); lis}ogglﬁa\ljszw)' then in all cases we end up believingt levelk — 1.
B ’ ] All three of these deal with disjunction but in quite different
6. (Bim(oV )l = (B¢ A By=y); ways, which we now illustrate with an example.
7. (Bx3wg)| = 3w Byo; Example 1 We assume three predicat&z) saying thatr
8. (Bx—3x¢)| = VazBy—¢. is a studentG(z) saying thatr is a graduate student, and
; ; ; ; I(z) saying that is Irish. We use constant to stand for
As mentioned earlier,SC supports unit propagation,
which involves applying unit resolution to clauses until no Ann andb for Bob. Let2: be the set of sentences
new clauses are generated. kdde a set of ground clauses. {G(a), S(b),I(a) VI(b),Vz(G(z) D Sx))},

The notatiorUP(s) is used to denote the closure ofinder

' g - - L10 and lets be the setup defined as the set of instances. of
unit propagation, that is, the least sésatisfying:

1.sCs';and 2. ifp € s and{p} Uc € ¢/, thenc € s'. {G(a), b), 1(a) V1(b), =G(a) v Sa), =G(b) V S(b), - - .}-

The notatiorvP(s) is used to denote the following set: Let ¢ be3z(I(z) A Sx)). We now show that = Bj¢.

{c| cis a ground clause and thererisc UP(s) s.t.¢’ C c}. Clearly, s U {l(a)} E Byl(a) by subsumption. Also,
Finally, there is a complexity measuje || which maps sU{l(a)} E ByS(a) by subsumption, sinc&a) can be

formulas into natural numbers. It has the following prop- obtained fromG(a) and—G(a) V S(a) by unit propagation.
erty: for any¢, || Br¢ || < || Br+1¢ ||; and for any¢ that ThussU{l(a)} = By(l(a) AS(a)) by reduction, and hence
is not a clause|| (By¢) ||| <|| Br¢ ||. We omit its defi- sU{l(a)} E B¢ by reduction. Similarlys U {I(b)} &
nition here, but mention that this property ensures that the By¢. Thuss |= B; ¢ by splitting on the clausga) V I (b).
following semantics is well-defined.

SL-based Reasoning with Proper KBs

The semantics SC is intended to serve as the foundation for a semantically
Sentences oL are interpreted via aetup which is a set coherent and computationally attractive reasoning service.
of non-emptyground clausesand which specifies what sen-  The idea is to model the reasoning service as belief implica-
tences ofL are believed, and consequently what sentences tion, that is, validity of formulas of the forfiByY > By.¢),

of SC are true. Intuitively, a setup represents what is explic- whereX. is a KB, and¢ is a query. We write = ¢ if

itly believed as a possibly infinite set of ground clauses. The (B,¥ > By¢) is valid. TheSL-based reasoning problem
semantics below then specifies what are the implicit beliefs. (for a fixed valuek) is as follows: given a KB in £ and a

Let s be a setup. For any sentenees S, s | « (read formula¢ in £, decide whether or ndt =, ¢. SC-based
“s satisfiesy”) is defined inductively on|«/|| as follows: reasoning is always classically soundXifl=, ¢, thenX
1. s = (d = d') iff dandd’ are the same constant; classically entailsy (LLLO4). The converse, logical com-

. . pleteness, does not hold in general. Moreover, in general,
2. s = —alff s a; k=, is not decidable. To see whefe, becomes decidable,
3.sEaVvpiff sEaorskEpg; we first define proper KBs.



Propert KBs for a propositional properKB X and a propositional query
It is easy to show that if a KB is a simple database, then @ In N7 if X classically entailsp, then there is & such
SC-based reasoning coincides with classical logical entail- thatX =x ¢. As to the computational property, L&t al.
ment and is also decidable. However, a database does notShow that for propet KBs, SL-based reasoning reduces to
allow any form of incomplete knowledge. Levesque (1998) 2 model checking problem (for a possibly infinite model):
proposes a generalization of a database calledper KB Theorem 1 (LLLO4) LetX be proper.
equivalentto a (possibly infinite) consistent setof groundlit- - Theny =, ¢ iff gnd(X) = Bio.

erals. But while a proper KB allows atomic formulas to be ] _ ) )
unknown, it does not allow any form of disjunctive informa-  Using this theorem, they show thaf-based reasoning with
tion. For example, in a proper KB, we cannot express “Ann  Proper® KBs is tractable in the propositional case and de-
or Bob is Irish” or “Every graduate student is a student” as cidable in the first-order case.

in the example above. So Lakemeyer and Levesque (2002)

propose an extension to a proper KB called a propéB, A Tractability Result
equivale_nt toa possi_bly infinite set of ground clauses. We |, this section, we show thaSC-based reasoning with
now define these notions formally. o propert KBs is not only decidable but also tractable in the
We usec to range oveewffs that is, quantifier-free for- gt order case provided that both the KB and the query use
mulas whose only predicate is equality. We Wgeto denote a bounded number of variables.
the universal closure af. We uséf to range over substitu- The main ideas behind this result are as follows. First,
tions of all variables by constants, and wigtéas the result  ,y thegrem 1, it suffices to prove that deciding whether
of applying the substitutiofi to . gndX) E B¢ is tractable when botft and ¢ use a
Definition 1 Let e be an ewff anct a clause. Then a for-  bounded number of variables. AlthoughdX) may well
mula of the formv(e D c¢) is called av-clause A KB X is be infinite, as shown in (LLLOA4), it suffices to consider the
propert if it is a finite non-empty set of-clauses. Givena  restriction ofgndX) to a finite set of constants, which con-
proper” KB X, gndX) is defined agcf | V(e D ¢) € X sists of the constants in eith&ror ¢, and a few extra ones.
andk= ef}. AKB X is properif it is propert andgnd ) is Moreover, the fact thaE uses a bounded number of vari-
a consistent set of ground literals. ables ensures that this restriction has a polynomial size. Sec-

. . ond, as in the case of database query evaluation, instead of
Note thaignd L) is anSC setup, as in the example above. o qlaring a Boolean query, we compute the set of substi-

Despite the limitations, propz_ér K_Bs are expressive tution # such thatgnd®) = B;¢f whereg is a formula
enough for many real-world applications. To get a feel for hich may have free variables. Although this set may well
this, consider the following example from (LLLO4): be infinite, it has a finite representation, which is what we ac-
Example 2 Let X be the following KB with a single predi- tually compute. As in the tractability result of (Vardi 1995),

cateC(p1, p2) saying that the two persons are compatible: ~ we view subformulas of as subqueries, and the fact titat
uses a bounded number of variables ensures that all interme-

L. vavy Clz,y) S Cly, 2); ] diate results are bounded-arity database relations.

2. Va.C(z,ann) v C(a, bob); In the following, we useC’ to denote the set of formulas

3. =C(boh fred); from £ whose variables are froli = {z,,...,z;}, where

4. C(carl, eve Vv C(carl, fred); j > 1. We usée to range over substitutions of all variables

5. Vz.z # bobA 2 # carl > C(dan z); a:fl, e ,icj ?y c\/(\)/nstaagts.l\;vte usb to trﬁm‘gje olvetr flinite sets
_ - of constants. We use € D to mean that only takes con-

6. ~Ceveann v ~C(eve fr(_ad). stants fromD. We letgndX)|D denote the restriction of
Then we have the following: gndX) to D, that is, the set of clauses frogndX) that

1. ¥ ¢ C(fred, ann); only mention constants fromv. LetT be a set of form_u— _

2. % =, Va3yClz, y); las. We usd{ (T") to denote the set of constants appearing in

7 ', and we useH,! (T') to denote the union of the constants
3. X [F1 JeTyFe[Cla, y) A Cla, 2) A ~Cly, 2)); appearing il" andm extra ones.
4. ¥ f=9 JxIy[z # y A C(x, carl) A C(y, carl)], but

¥ p1 Jrdylx # y A Cla, carl) A C(y, carl)]. Answers to open queries

By Theorem 1 belowy: |=; ¢ iff gndX) = Byé. Thus Definition 2 Let > C £7 be propet, ¢ € £7, andk > 0.
the above can be proved by showing tgat(>) = B¢ We definedns(E. ¢. k) as the sef6 | gnd(X) = Bi¢b}.

orgnd) = By¢).
(orgnd) i~ Bi.g) However, Ans(X, ¢,k) may well be infinite.  Fortu-
Properties of SC-based reasoning nately, we can find a finite representation for it. We let

. . Ans(X, ¢, k)| D denote the restriction odns(X, ¢, k) to D,
As noted above$L-based reasoning is classically sound but that s, the seff € D | gnd =) = Byod).

incomplete. However, Liet al. present the following two

results. First,SC-based reasoning is classically complete Proposition 2 Let D be H, (X U {¢}) for somem > j.
for proper KBs and queries in a certain normal form called Then Ans(3,¢,k)|D is a finite representation for
NZF. SecondSL-based reasoning is “eventually complete”  Ans(X, ¢, k) in the following sense:



For any substitutiond, 8 € Ans(X3,¢,k) iff 8’ € 5. E(X,~,k,D) = E(X,¢,k, D).
Ans(X, ¢, k)| D, whered' is like 6 except that for all 6. If ¢is (¢ V ), but not a clause, theR (S, ¢, k, D
thosez; (i = 1,..., ) such that(z;) ¢ D, ¢' maps :%@%, k%) U E(S, 4,k D) U E(é,?z,is,b»)

them into unique representatives frd- H (XU {¢}).

Example 3 Let X be the following simple KB: 7 B, (Y Vn), kD)= E(Z, ~, kD) N E(Z, ~n, k,D).

{VaVy.C(x,y) D Cly,z), Yx.x # ann>D C(x,bob)}. 8. E(X, 3wy, k,D)=5(2, 3vv), kD) Ums (B (X, . kD).

9. E(S, ~3x1, k, D) = 6,(E(S, ~b, k, D)).
Let ¢ be C(z,y). ThenAns(S,,0) = {(c,bob) | ¢ # (%, =329, k, D) = 0,(B(E, 4, k, D))
ann} U {(boh ¢) | ¢ # ann}, which is an infinite set. Now  We now illustrate Cases 1-4 with an example.

let D = {annboh carl,dan}. ThenAns(X,,0,D) = Example 5 Let X be the following KB:

{(bob bob), (carl, bob), (dan bob), (boh carl), (bob dan)},

and it makes a finite representation fén.s(3, ¢, 0). First, {V2.C(z,ann) v C(z, bob), ~C(carl, bob),

consider(boh, eve. Sinceeve¢ D, we choosearl as its C(dan ann) > C(dan carl), C(dan bob) > C(dan carl)}.

representative; sincéboh carl) € Ans(X,¢,0,D), we

know (boh eve € Ans(%, ¢,0). Now considereve fred). Let D = {ann boh carl,dan eve. Then

Since neitheevenorfredis in D, we choosearl anddanas 1. E(, (z =y),0,D) = {(c,c) | c € D}.

(hel representatives; sindearl dan  Ans(.6.0.D). 2. p(x, ~(z=ann). 0.0)={(c.d)|c,de D, ande £ann.
e 3. E(%,C(z,y),0,D) = {(carl,ann}. We get(carl, ann)

The algorithm because&(carl, ann) can be obtained frogndX)|D by

We first define two operations to be used in the algorithm. unit propagation.

By an X -relation over domairD, we mean a set of substi- 4 E(X,C(z,y),1, D) = {(carl, ann), (dan carl)}.
tutions@ such thatd € D. We usef(z/d) to denote the We get(dan carl) because it appears in
substitution that is the same @except that: is assigned. both £(X U {C(dan ann)}, C(x,),0, D)

Definition 3 Let R be anX -relation over domai, and let andE(x U {C(danbob)}, C(x, y), 0, D).
x € X. Thedivisionof R wrt z, written §,(R), is the set Correctness proof

0ecD|Vde D,6(x/d) € R}. Theprojectionof R wrt z, _ .
évritten JI(R) is thc(exs/et){é) c l}) | 3d %Wd) c R}_x The following theorem states thatfi# contains all the con-

stants inX U {¢} and at leas}(k + 2) extra ones, then the

Note that our definition of projection (or division) is some-  5hove procedure computds:s(X, ¢, k)| D, which is a finite
what different from that in the database literature: ours is representation fordns (X, o, k) b)} P7ropos,ition 9

the Cartesian product of theirs and the domain. We use this _ ]
definition so as to simplify the presentation of the procedure Theorem 3 LetX C £7 be proper', ¢ € £/, andk > 0.

below, where every intermediate relation is¥rrelation. Let D be H (X U {¢}) for somem > j(k +2). Then
Example 4 Let X = {z,y}, D = {a,b,c}, and E(%, ¢k, D) = Ans(2, ¢, k)|D.

R = {(a,a), (b,a),(c,a),(a,b)}. Then The proof is by induction ow. Cases 1, 2, 5, 7, and 9 use
8. (R) = {(a,a), (b,a),(c,a)}, and the following properties of beliefs from (LLLO4):

WI(R) = {(aa a)v (ba a)v (Ca a)v (aa b)v (ba b)v (Ca b)}
Given a propef KB ¥ C £/, a queryy € £/, a natural
numberk, and a finite set of constanf3, the proceduré”

= Bye = e, wheree is an ewff
F Br——¢ = By¢

returns anX -relation over domaitD as follows: F Bi(¢ ANY) = Bid A By
1. E(X,(t = t'),k, D) = {# € D | tf is identical tot'0}. F BiVx¢ = VaByé
f .
Heret andt’ are variables or cons_tan?s._ The other cases use the following lemmas, which justify our
2. BE(Z,~(t =1),k,D)={6 € D| t¢ is distinct fromt’6}. treatment of subsumption, quantification, and splitting, re-
3. If ¢pis a clause an@ = 0, thenE(X, ¢, k, D) = spectively. We letw(X) denote the maximum number of
{6 € D | thereisc € UP(gndX)|D) s.t.c C ¢6}. variables in &/-clause ofx.
Thls is a subsumptlpn operation, and we will give a de- | emma 4 Let D be H}, (X) for somem > w(X). Suppose
tailed procedure for it in the proof of Lemma 8 below. thate € UP(gnd)). Thend € UP(gndL)|D), where
4. If pis aclause and > 0, thenE(XZ, ¢, k, D) = ¢’ is like c except that constants not if are replaced with
S(X, ¢, k, D), which we use as an abbreviation for unique representatives frof — H (X).
U ﬂ E(XU{p}, ¢,k —1,D). Lemma 5 Let¢ be a formula with a single free variable

cegas)|D pee Letb andd be two constants that do not appeardnor ¢.

Here S represents a splitting operation, that is, wedet Then gndx) = Bi.gj it gnd(E) = Bio;.

range over clauses gnd(X)| D and take the union of the ~ Lemma6 Let D be H. (X U {¢}) for somem > w(X).
following: the intersection ofZ (X U {p}, ¢,k — 1, D) Suppose that giil) = By¢ by splitting onc € gndX).
wherep ranges over literals in. Then gndX) = By.¢ by splitting on some’ € gndX)|D.



Complexity analysis

We begin with two lemmas about the complexity of database
operations and subsumption operations. Wg ¢note the
number of variables.

Lemma 7 Each database operation used in procedife
(selection, intersection, union, division and projection) can
be done inD(n?) time, wheren is the size oD.

Proof: Each relation is of siz&(n’), and is always kept in
sorted form. Each operation can be done in one pass of the
input relations, and the result remains sorted. [ |

Lemma 8 Let ¢ be a clause. LeD be of sizeD(n), where
n is the size of2. ThenE(X, ¢,0, D) can be computed in
O(n’*1) time.

Proof: The following procedure computds(>, ¢, 0, D):
1. ComputgndX)|D.

2. Perform unit propagation ovgnd X)|D. Let Uy be the
set of minimum clauses afP(gnd’X)| D).

For each: € Uy, check whether it can be unified with a
subset ofg; if so, mark thos@ € D such thate C ¢4.
Return the set of those markéd [ |

3.

Theorem 9 LetY C L7 be proper, ¢ € £7, andk > 0.
Then whethe® =, ¢ can be decided irD((In/*1)++1)
time, wherd is the size ob, andn is the size ok.

Proof: To decide ifSS =1 ¢, weletD = H{, ., (SU{¢}),

computeE (X%, ¢, k, D), and check whether it is empty.

Let f(k) denote the time complexity of computing
E(X,¢,k, D). Supposes > 0. For each of thé clauses
and logical operators i, we perform a database operation
and/or a splitting operation. Each database operation can be
done inO(n/) time by Lemma 7. Each splitting operation
considerg)(n’*!) clauses and takes the union of the corre-
sponding results. Thu(k) = O(In? 1 (f(k — 1) +n?)).
Supposé: = 0. For each of thé clauses and logical oper-
ators in¢, we perform a database operation or a subsump-
tion operation. Each subsumption operation can be done in
O(n*1) time by Lemma 8. Thug(0) = O(In’*1). Solv-
ing the recurrence, we hayék) = O((In+1)k+1). ]

This procedure grows exponentially, but only with(the
number of variables) ankl (the depth of case splitting).

Obviously, there are two places where we could improve
procedureE. First, it is possible to reduce the number of
clauses we need to consider during a splitting operation.
Second, it is also possible to use incremental unit propa-
gation, that is, we perform unit propagation in the very be-
ginning, and then after we add a literal by splitting, we do
further unit propagation incurred by this literal.

Conclusions

In this paper, we have showed tl&t-based reasoning with
propert KBs is tractable in the first-order case when both
the KB and the query use a bounded number of variables.

But we expect small values of these parameters to suffice
exceptwhen the KB encodes a combinatorial puzzle or some
other “mathematically interesting” problem. In this sense,
SLC provides a computationally viable reasoning service for
first-order knowledge bases with disjunctive information.

We believe that the contribution of this paper lies not only
in the technical result but also in the methodology. The con-
cept of bounded treewidth has proven valuable for obtain-
ing many tractability results. Kolaitis and Vardi are able to
explain this in terms of the tractability of the model check-
ing problem for bounded-variable first-order logic. What we
have done here is to show how this idea could be applied to
a radically different form of model checking, that is, when
the models are the setups of the belief lo§i&: In the fu-
ture, we would like to take this idea even further, and find
tractable reasoning services for more expressive representa-
tion languages, for example, for knowledge bases that in-
clude unknown individuals.
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