
A Formalization of Program Debugging in the Situation Calculus

Yongmei Liu
Department of Computer Science

Sun Yat-sen University
Guangzhou 510275, China
ymliu@mail.sysu.edu.cn

Abstract

Program debugging is one of the most time-consuming parts
of the software development cycle. In recent years, automatic
debugging has been an active research area in software engi-
neering; it has also attracted attention from the AI commu-
nity. However, existing approaches are mostly experiential;
moreover, those model-based approaches are based on ab-
stract models of programs, which lends an experiential fla-
vor to the approaches, due to the heuristic nature of choosing
an abstract model. We believe that it is necessary to estab-
lish a precise theoretical foundation for debugging from first
principles. In this paper, we present a first step towards this
foundation: using Reiter’s theoretical framework of model-
based diagnosis, we give a clean formalization of the program
debugging task in the situation calculus, a logical language
suitable for describing dynamic worlds. Examples are given
to illustrate our formalization.

Introduction
Program debugging is one of the most time-consuming parts
of the software development cycle. It generally refers to
the task of locating and correcting faults in a program af-
ter they are detected by testing or model checking. In re-
cent years, automatic debugging has been an active research
area in software engineering (Renieris and Reiss 2003;
Ball, Naik, and Rajamani 2003; Groce 2004; Jones 2004;
Cleve and Zeller 2005; Zhang, Gupta, and Gupta 2006). Ex-
isting approaches are mostly experiential,i.e., they depend
on expert experience and heuristic information. For exam-
ple, a common aspect of many approaches is to compare the
statements occurring in correct runs and those occurring in
failing runs. However, there is no guarantee for correctness
or minimality of the diagnosis. How good the approaches
are can only be evaluated empirically.

On the other hand, model-based diagnosis is a well-
known AI technique for identifying faults in physical sys-
tems. There is an elegant theoretical foundation established
by Reiter (1987). His theory requires only that the system
can be described in a suitable logic, and the notion of di-
agnosis is defined through satisfiability in the logic. In the
past decade, researchers have applied model-based diagno-
sis to program debugging (Wieland 2001; Wotawa 2002;

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Mayer and Stumptner 2007). They make use of abstract
models of programs, due to the computational infeasibility
of employing complete models. However, the choice of ab-
stract models is of heuristic nature, which lends an experi-
ential flavor to the approaches.

Despite the importance of experiential approaches, we be-
lieve that it is necessary to establish a precise theoretical
foundation for debugging from first principles. The first in-
gredient of such a foundation would be a formal definition
of the debugging task; the second ingredient would be an ex-
ploration of the associated computational problem including
approximation techniques when necessary. In this paper, we
present a first step towards this foundation: using Reiter’s
theoretical framework of model-based diagnosis, we give a
formalization of program debugging in the situation calculus
(Reiter 2001), a logical language suitable for describing dy-
namic worlds, and hence the dynamics of programs. In fact,
a programming language Golog (Levesque et al. 1997) has
been designed for the purpose of high-level robotic control
and its formal semantics is defined in the situation calculus.
The basic statements of Golog are primitive actions an agent
can perform in the world. Algol-like programs can be treated
as Golog programs, and hence we can obtain semantic defi-
nition of Algol-like languages in the situation calculus.

Intuitively, given a programP , a set of test cases includ-
ing some failing ones, a diagnosis ofP is a minimal setC of
components ofP such that a modification ofP where com-
ponents inC are replaced by possible substitutes, behaves
correctly on all the test cases. Such a modification ofP is
called a repair ofP . The debugging task is to return the
set of all diagnoses. In this paper, we restrict our attention
to Algol-like programs without procedures, which we call
while programs. To formalize the above intuitive definition
of debugging, we have to settle on two issues: (1) what are
the program components to consider; and (2) what are the
allowed substitutes for these components.

In this paper, we make the reasonable assumption that the
control structure of the program is correct but errors may
occur in assignments and control conditions ofif andwhile
statements. Note that eachwhileprogram can be written into
an equivalent one such that the control condition of each
if and while statement is a uniquely named Boolean vari-
able, by adding assignments to these variables. Also, note
that each assignment can be rewritten into a finite sequence

of assignments whose right hand sides involve at most one
arithmetic, relational, or logical operator; we call such an
assignment basic. Thus, eachwhile program can be put into
a normal form such that each control condition is a uniquely
named Boolean variable and each assignment is basic. Now
to answer (1), for normal form programs, it suffices to con-
sider those components that are basic assignments. To an-
swer (2), there are two possibilities: (a) the model of basic
repair where a basic assignment is replaced by another ba-
sic assignment; and (b) the model of general repair where
a basic assignment is replaced by a finite sequence of basic
assignments. The model of general repair subsumes repair
by deletion or addition of statements.

In the next section, we review the background work of
this paper, that is, Reiter’s theory of model-based diagnosis,
existing research on program debugging, the situation calcu-
lus and Golog. Then we present our formalization of basic
repair and extend it to a formalization of general repair. Fi-
nally, we conclude the paper.

Background Work
Reiter’s Theory of Model-Based Diagnosis
Reiter (1987) distinguished between two kinds of ap-
proaches for identifying faults in physical systems:expe-
riential ones which depend on expert experience and heuris-
tic information, andmodel-basedones which are also called
diagnosis from first principles. Roughly, the task of model-
based diagnosis is this: given a model,i.e., a description
of the correct behavior of a system, and an observation of
the system’s behavior, determine those components which,
when assumed to be functioning abnormally, will explain
the discrepancy between the observed and correct behavior.
Reiter (1987) developed a general theory of model-based di-
agnosis. Here we briefly review the basics of his theory.

A system to be diagnosed is given by a triple
(SD, COMP, OBS) where SD, the system description, is a
set of logical sentences; COMP, the system components, is
a finite set of constants; and OBS, an observation, is a finite
set of logical sentences. There is a special predicate AB(c)
which says that componentc is abnormal.

Definition 1 A diagnosisfor (SD, COMP, OBS) is a mini-
mal set∆ ⊆ COMP s.t. the following is consistent:
SD∪OBS∪{AB(c) | c ∈ ∆}∪{¬AB(c) | c ∈ COMP−∆}.

The computational problem is then to determine the set
of all diagnoses. There is a direct generate-and-test method,
which, however, is too inefficient. Reiter proposed an algo-
rithm, based on the following characterization of diagnoses
through the concepts of conflict sets and hitting sets.

Definition 2 A conflict setfor (SD, COMP, OBS) is a set
∆⊆COMP s.t. SD∪OBS∪{¬AB(c) |c∈∆} is inconsistent.

Definition 3 Let C be a collection of sets. Ahitting setfor
C is a setH ⊆

⋃
S∈C S such thatH ∩ S is non-empty for

eachS ∈ C. A hitting set isminimal if no proper subset of
it is also a hitting set.

Theorem 1 ∆ is a diagnosis for(SD, COMP, OBS) iff ∆ is
a minimal hitting set for the collection of its conflict sets.

Reiter’s algorithm computes all minimal hitting sets by
constructing a hitting set tree (HS-tree) for all conflict sets,
which are not explicitly given but are calculated as needed
by an underlying theorem prover.

Program Debugging

Unlike the case for hardware diagnosis, existing approaches
for program debugging are mostly experiential. There is
no guarantee for correctness or minimality of the diagno-
sis. How good the debugging approaches are can only
be evaluated empirically. A commonly used evaluation
measure is the scoring function proposed by Renieris and
Reiss (2003), based on the concept ofprogram dependency
graph. An evaluation benchmark suite is theSiemens Suite
(Rothermel and Harrold 1999), which consists of 7 base
programs, and for each of them, a number of faulty vari-
ations and a large number of test cases. A well-known
technique that has been used for debugging isprogram
slicing (Weiser 1984), which is to extract statements rel-
evant to the values of a given set of variables at some
point of interest in the program. A large class of experien-
tial debugging approaches are based on comparing correct
and failing runs of the programs (Renieris and Reiss 2003;
Ball, Naik, and Rajamani 2003; Groce 2004; Jones 2004;
Cleve and Zeller 2005; Zhang, Gupta, and Gupta 2006).

In the past decade, researchers have applied model-based
diagnosis to program debugging. The idea is to exchange the
roles of the model and observation: the model now describes
the behavior of the faulty program, while the observation
specifies the behavior of the correct program. Mayer and
Stumptner (2006) gave a survey of model-based debugging.
They presented a general model of debugging as follows:

Definition 4 Let P be a program andT a set of test cases.
Let COMP be the set of all the expressions inP , i.e., the
right hand sides of assignments, and the conditions inif and
while statements. Let∆ ⊆ COMP, and letP (∆) denote
the program obtained fromP by replacing eache ∈ ∆ with
nondet(), which returns a non-deterministic value.∆ is a
diagnosis if for each test caset, there exists an execution of
P (∆) which satisfiest.

Obviously, this model is not computable in general. As a
result, when model-based diagnosis techniques are applied
to program debugging, various abstract models of programs
are used. Mayer and Stumptner (2006) reviewed a dozen of
abstract models, including models based on the control and
data dependency between statements in a program (Wotawa
2002), and models based on abstract interpretation of pro-
grams, which concerns sound approximations of semantics
of programs (Mayer and Stumptner 2007). However, how
to choose an appropriate abstract model depends on expert
experience and heuristic information, which lends an expe-
riential flavor to the approaches. In fact, one of the two fu-
ture challenges they identified for model-based debugging is
how to select appropriate abstract models. Recently, Gries-
mayeret al.(2006) tackled the computational problem of the
above general model from another perspective: they consid-
ered bounded-depth unfolding of while loops.

Apart from being informal, three drawbacks of the above
general model (and also the work of Griesmayeret al.) are
as follows. First, it does not capture our intuitive understand-
ing of program debugging as presented in the introduction.
Secondly, it only handles one fault type,i.e., errors in ex-
pressions of programs; it cannot handle other fault types, for
example, errors in left hand sides of assignments, and pro-
gram repair by addition of statements. Thirdly, this model
would result in manyfalse diagnoses. For example, any
function would get an absurd false diagnosis which consists
only of the return statement, since for any test caset, there
exists an execution ofreturn nondet() which satisfies
t. In fact, the other future challenge identified by Mayer and
Stumptner is how to avoid false diagnoses.

The Situation Calculus and Golog
The situation calculus (Reiter 2001) is a many-sorted first-
order language (with some second-order ingredients) suit-
able for describing dynamic worlds. There are three dis-
joint sorts:action for actions,situation for situations, and
object for everything else. A situation calculus languageL
has the following components: a constantS0 denoting the
initial situation; a binary functiondo(a, s) denoting the suc-
cessor situation tos resulting from performing actiona; a
binary predicatePoss(a, s) meaning that actiona is pos-
sible in situations; action functions,e.g., move(x, y); re-
lational fluents,i.e., predicates taking a situation term as
their last argument,e.g., ontable(x, s); functional fluents,
e.g., height(x, s); and situation-independent predicates and
functions. We useL− to denote the language obtained from
L by removing the sortsituation and removing the situa-
tion argument from every fluent. We call anL−-formula a
pseudo-fluentformula. Letφ be such a formula, ands be a
situation term. We useφ[s] to denote the formula obtained
fromφ by restorings as the situation arguments to all fluents
mentioned byφ.

Any domain of application is axiomatized by a basic ac-
tion theoryD with the following components:

1. The foundational axioms for situations;

2. Action precondition axioms;

3. Successor state axioms, one for each fluent;

4. Unique names axioms for the primitive actions;

5. An initial database, namely a set of axioms describingS0.

The formal semantics of Golog is specified by an abbre-
viationDo(δ, s, s′), which is inductively defined as follows:

1. Primitive actions: For any action termα,

Do(α, s, s′)
def
= Poss(α, s) ∧ s′ = do(α, s).

2. Test actions: For any pseudo-fluent formulaφ,

Do(φ?, s, s′)
def
= φ[s] ∧ s = s′.

3. Sequence:

Do(δ1; δ2, s, s
′)

def
= (∃s′′).Do(δ1, s, s

′′)∧Do(δ2, s
′′, s′).

4. Nondeterministic choice of two actions:
Do(δ1 | δ2, s, s

′)
def
= Do(δ1, s, s

′) ∨ Do(δ2, s, s
′).

5. Nondeterministic iteration:
Do(δ∗, s, s′)

def
= (∀R).{(∀s1)R(s1, s1)∧

(∀s1, s2, s3)[R(s1, s2) ∧ Do(δ, s2, s3) ⊃ R(s1, s3)]}
⊃ R(s, s′).

The above definition appeals to second-order logic to say
that the relation represented byDo(δ∗, s, s′) is the transi-
tive closure of that byDo(δ, s, s′).

We omit the definition of other constructs such as proce-
dures. Conditionals and loops are defined as abbreviations:

if φ then δ1 else δ2 fi
def
= [φ?; δ1] | [¬φ?; δ2],

while φ do δ od
def
= [φ?; δ]∗;¬φ?.

A Formalization of Basic Repair
In this section, we present a formalization of basic repair in
the situation calculus. We begin with the formal definition of
whileprograms and a normal form forwhileprograms. Then
we present the situation calculus language of arithmetic pro-
gramming. Next, we use Reiter’s framework of model-based
diagnosis to define the concepts of diagnosis and debugging.
Finally, we give two examples to illustrate our formalization.

While Programs
In this paper, we restrict our attention to the debugging of
while programs. LetLP be the language of Peano Arith-
metic, i.e., LP = {0, s, +, ·, =}, where “s” denotes the
successor function. LetL be LP extended with the mi-
nus, division, modulo, and comparison operations,i.e., L =
LP ∪ {−, /, %, <, <=}. For each natural numbern > 0,
we simply usen to denote the termsn0. We call terms ofL
expressions, quantifier-free formulas (i.e., Boolean expres-
sions) ofL conditions, and formulas ofL assertions. We let
W denote the least set of programs such that

1. for every variablex and expressiont, x := t ∈ W ;

2. if δ1, δ2 ∈ W , thenδ1; δ2 ∈ W ;

3. if δ1, δ2 ∈ W , then for every conditione,
if e then δ1 elseδ2 fi ∈ W ;

4. if δ ∈ W , then for every conditione,
while e do δ od∈ W .

Normal Form Programs
We now define a normal form forwhile programs. Here we
adopt the following convention of the C programming lan-
guage: an assignment can be of the formx := e wheree
is a condition, andx gets the value of 1 (resp. 0) whene is
evaluated to be true (resp. false); a variablex can be used as
a condition which is evaluated to be true (resp. false) when
the value ofx is non-zero (resp. zero). An assignment is ba-
sic if the right hand side (RHS) of it isn for somen ≥ 0, or
if its RHS involves only variables and at most one operator.
We say thatS ∈ W is in normal form if the following two
conditions hold: 1. each assignment is basic; 2. each control
condition is a uniquely named variable.

As mentioned in the introduction, in this paper, we make
the reasonable assumption that the control structure of pro-
grams is correct. Thus when we debug normal form pro-
grams, it suffices to consider the repair of basic assignments.

Everywhile program can be converted into an equivalent
program in normal form as follows. First, for eachwhile
statementwhile e do δ od, introduce a new variablex and
convert the statement intox := e; while x do δ; x := e; od;
and do similarly for eachif statement. Then rewrite each
assignment into a sequence of basic assignments by intro-
ducing new variables.

Example 1 Consider the following program PRIME which
checks if the inputn is a prime number:

prime := true; i := 2;
while (prime and i < n/2) do
if (n%i = 0) then prime := false; fi
i := i + 1; od

It can be converted into PRIME′ in normal form:

prime := 1; i := 2; n1 := n / 2;
x1 := i < n1; x2 := prime and x1;
while x2 do
n2 := n % i; x3 := n2 = 0;
if x3 then prime := 0; fi
i := i + 1;
x1 := i < n1; x2 := prime and x1; od

The Situation Calculus Language
of Arithmetic Programming
We now present the situation calculus language of arithmetic
programmingLap, which we will use to formalize the pro-
gram debugging task.Lap contains the following symbols:

• An infinite set of memory location constantsL1, L2, . . .

• An infinite set of test case constantsT1, T2, . . .

• An infinite set of component constantsO1, O2, . . .

• Operator constants OP= {Val, Id, Succ, Add, Minus,
Multi, Div, Mod, Less, Equal, LessOrEq, Not, And, Or}

• A functional fluentval(x, s) which denotes the value of
memory locationx in situations

• Functionsinit(t) andfinal(t) which map test cases to
their initial and final situations, respectively

• A predicate AB(c) which means componentc is abnormal

• Action assn(z, o, x, y),
which assigns to memory locationz valuex if o is Val, or
otherwise, the result of applying operatoro ∈ OP to the
values of memory locationsx andy.

Clearly, each normal form program can be expressed as a
Golog program whose primitive actions areassn(z, o, x, y).

The basic action theory of arithmetic programmingDap

consists of the following:

1. The foundational axioms for situations.

2. Action precondition axioms:
Poss(assn(z, o, x, y), s) ≡

[o = Minus⊃ val(x, s) ≥ val(y, s)] ∧
[o = Div ∨ o = Mod ⊃ val(y, s) 6= 0].

3. Successor state axioms:
val(z, do(a, s)) = v ≡

val(z, s) = v ∧ ¬(∃oxy)a = assn(z, o, x, y) ∨

(∃oxy)[a = assn(z, o, x, y) ∧ φ],
whereφ is a disjunctive formula, with one disjunct for
each operator. Here we only present the disjuncts for
some operators; the others are similar.
φ = {o = Val ∧ v = x ∨

o = Id ∧ v = val(x, s) ∨
o = Succ∧ v = val(x, s) + 1 ∨
o = Add∧ v = val(x, s) + val(y, s) ∨
o = Less∧ [v = 1 ∧ val(x, s) < val(y, s) ∨

v = 0 ∧ val(x, s) ≥ val(y, s)] ∨
o = And∧ [v = 1 ∧ val(x, s) · val(y, s) > 0 ∨

v = 0 ∧ val(x, s) · val(y, s) = 0] ∨
. . .}

This axiom says that the execution ofassn(z, o, x, y)
modifies the value of memory locationz according to the
argumentso, x, andy, and leave unchanged the values of
the other memory locations.

4. Unique names axioms forassn:
∀~x~y.assn(~x) = assn(~y) ⊃ ~x = ~y.

5. Initial database:
(a) Unique name axioms for the constants,i.e.,

d1 6= d2, for any two distinct constantsd1 andd2

(b) Domain closure axiom for actions,i.e.,
∀a∃~x.a = assn(~x)

(c) The second-order axiomatization of Peano arithmetic
(d) Definition of the symbols in{−, /, %, <, <=}, e.g.,

∀xy[x < y ≡ ∃z(z 6= 0 ∧ x + z = y)]
∀xyz{y > 0 ⊃ [x%y = z ≡ z ≥ 0 ∧ z < y ∧

∃u(x = y · u + z)]}
We do not have any constraints on the values of the
memory locations in the initial situationS0, and hence
these values are left undetermined.

Diagnosis and Debugging
As mentioned in the introduction, for normal form pro-
grams, it suffices to consider the repair of basic assignments,
and the model of basic repair is to replace a basic assignment
with another one. We now formalize the notion of diagno-
sis via basic repair using Reiter’s framework of model-based
diagnosis. We begin with a formal definition of test cases.

Definition 5 A test caseT for a programP is a pair
〈InT , OutT 〉 of assertions whereInT specifies the exact
values of the input variables, andOutT specifies the values
of the output variables.

For example,〈n = 10, prime = 0〉 is a test case for the
program PRIME′.

A debugging problem is given by a tuple
(P, COMP, CT, FT) where P is a normal form pro-
gram written in Golog, COMP= {O1, . . . , On} where
eachOi is the identifier for anassn actionαi in P , CT is
a set of test cases whereP behaves correctly, andFT is a
non-empty set of failing test cases forP . To use Reiter’s
framework of model-based diagnosis, we first define the
system description SD and the observation OBS as follows.

We introducen action variablesa1, . . . , an, and letP ′

denoteP with eachαi replaced byai. We let SD(P, COMP)

denote the sentence
∃~a{(∀t)Do(P ′, init(t), f inal(t))∧

∧n

i=1
[¬AB(Oi) ⊃ ai = αi]},

which says that there exists a substitution of the abnormal
componentsαi’s by ai’s such that the execution of the re-
sulting program makes the situation transfer frominit(t) to
final(t), for each test caset.

Let φ be an assertion. We useφ@s to denote the situation
calculus formula obtained fromφ by replacing each variable
x with val(x, s), e.g., (n = 10)@s is val(n, s) = 10. Given
a setΓ of test cases, we let OBS(Γ) denote the sentence

∧
T∈Γ

[InT @init(T) ⊃ OutT @final(T)],

which says that for each test caseT , if InT holds ininit(T),
thenOutT holds infinal(T).

Now adapting Definition 1, we have

Definition 6 A diagnosisfor (P, COMP, CT, FT) is a min-
imal set∆ ⊆ COMP s.t. the following is consistent wrtDap:

SD(P, COMP) ∪ OBS(CT ∪ FT)∪

{AB(c) | c ∈ ∆} ∪ {¬AB(c) | c ∈ COMP− ∆}.

Similarly, we can adapt Definition 2, and define the con-
cept ofconflict set. As a result, Theorem 1 also holds here,
i.e., ∆ is a diagnosis iff∆ is a minimal hitting set for the col-
lection of conflict sets. Therefore, under the assumption that
whether a set is a conflict set is decidable, Reiter’s hittingset
algorithm could be used to compute the set of all diagnoses.

Of course, sinceDap involves arithmetic, whether a set
is a diagnosis or conflict set is undecidable in general, and
hence it is necessary to explore approximation algorithms,
for which we define the concepts of soundness and com-
pleteness as follows.

Definition 7 A collectionC of nonempty subsets of a setA
is called anantichain in A if no set inC is properly con-
tained in another set fromC.

For example, letA = {1, 2, 3, 4}, andC = {{1, 2}, {2, 3},
{1, 3, 4}}. ThenC is an antichain inA. Clearly, the set of
all diagnoses is an antichain. Our basic requirement for an
approximate debugging algorithm is to return an antichain.

Definition 8 Let C andC′ be two antichains inA. We say
that C subsumesC′, written C ≤ C′, if for any S ∈ C,
there existsS′ ∈ C′ such thatS ⊆ S′.

It is easy to show that≤ is a partial order.

Definition 9 Given(P, COMP, CT, FT), we say that a de-
bugging algorithm issound(resp.complete) if it returns an
antichain in COMP which subsumes (resp. is subsumed by)
the set of all diagnoses.

The intuition here is that any diagnosis returned by a
sound debugging algorithm should be a subset of a real di-
agnosis, and a complete debugging algorithm should have
the property that any real diagnosis is a subset of a diag-
nosis returned by the algorithm. A trivial sound debugging
algorithm is to return the empty set, and a trivial complete
debugging algorithm is to return the singleton of COMP.

We now give two examples to illustrate the above formal-
ization.

Example 2 We have a very simple program:

1. S := A and B;
2. D := not S;
3. E := S or C;

There is a correct test case
T1 = 〈A = 1 ∧ B = 0 ∧ C = 0, D = 1 ∧ E = 0〉,
and a failing test case
T2 = 〈A = 1 ∧ B = 1 ∧ C = 0, D = 0 ∧ E = 0〉.

Then our SD is:

(∃a1, a2, a3){(∀t)Do(a1; a2; a3, init(t), f inal(t))∧

[¬AB(O1) ⊃ a1 = assn(S, And, A, B)]∧

[¬AB(O2) ⊃ a2 = assn(D, Not, S,)]∧

[¬AB(O3) ⊃ a3 = assn(E, Or, S, C)]},

and our OBS is:

[val(A, init(T1)) = 1 ∧ val(B, init(T1)) = 0∧

val(C, init(T1)) = 0 ⊃

val(D, final(T1)) = 1 ∧ val(E, final(T1)) = 0]∧

[val(A, init(T2)) = 1 ∧ val(B, init(T2)) = 1∧

val(C, init(T2)) = 0 ⊃

val(D, final(T2)) = 0 ∧ val(E, final(T2)) = 0]

We have two conflict sets:{O1, O3} and{O2, O3}. To
see why{O1, O3} is a conflict set, assume thatO1 andO3

are normal. For the program to behave correctly onT2, since
the output value ofD is 0, the second statement must be an
assignment toD. Then whenO3 is executed,S has the value
1, and hence the output value ofE is 1, a contradiction. By
Theorem 1, we have two diagnoses:{O1, O2} and{O3}.

Example 3 Consider the following program FACTORIAL
which intends to compute the factorial of the inputn:

1. fac := 1; 2. i := 1; 3. b := i < n;
4. while b do
5. fac := fac * i; 6. i := i + 1;
7. b := i < n; od

Suppose it has two failing test cases〈n = 2, fac = 1〉 and
〈n = 6, fac = 120〉. Then{O7} is a diagnosis, since we
can replace it withb:=i<=n and get the correct behavior.

A Formalization of General Repair
In this section, we extend the formalization of basic repair
to a formalization of general repair.

General Repair
The model of basic repair has its limitations, for example, it
cannot handle repair by addition of statements. The model
of general repair is to replace a basic assignment with a finite
sequence of basic assignments. To formalize this model, we
note the relationship between situations and finite sequences
of actions: a situation is resulted from executing a finite se-
quence of actions in the initial situation. Lets be a situation.
We introduce the notationseq(s) to denote the sequence of
actions contained ins, and we define its semantics through
an abbreviationDo(seq(s), s1, s2), which intuitively means
that the execution of the actions contained ins makes the

situation transfer froms1 to s2. To give the formal defini-
tion, we have to resort to second-order logic. We add the
following sentence to the basic action theoryDap:

Do(seq(s), s1, s2)
def
= (∀R).{(∀s)R(S0, s, s)∧

(∀a, s, s1, s2)[R(s, s1, s2) ⊃ R(do(a, s), s1, do(a, s2))]}
⊃ R(s, s1, s2).

We introducen situation variabless1, . . . , sn, and useP ∗

to denote programP with eachαi replaced byseq(si). Now
our SD is as follows:

∃~s{(∀t)Do(P ∗, init(t), f inal(t))∧
∧n

i=1
[¬AB(Oi) ⊃ si = do(αi, S0)]},

Intuitively, if Oi is abnormal, we replaceαi with the se-
quence of actions contained insi.

Bounded-Length Repair
In practice, a model of repair that lies between basic re-
pair and general repair would suffice. This is the model of
bounded-length repair where a basic assignment can be re-
placed by a bounded-length sequence of basic assignments.
Its formalization can be easily obtained from the formaliza-
tion of general repair by adding constraints. Letk ≥ 0. We
introduce an abbreviationlength(s) ≤ k as follows. Intu-
itively, it means thats contains at mostk actions.

1. length(s) ≤ 0
def
= s = S0;

2. length(s) ≤ k + 1
def
= length(s) ≤ k ∨

(∃a, s′)[lenghth(s′) ≤ k ∧ s = do(a, s′)].

Now our SD is this:

∃~s{(∀t)Do(P ∗, init(t), f inal(t))∧
∧n

i=1
length(si) ≤ k ∧ [¬AB(Oi) ⊃ si = do(αi, S0)]}.

Example 4 Consider the following program which intends
to compute thenth Fibonacci number:

1. x := 1; 2. y := 1;
3. i := 2; 4. b := i < n;
5. while b do
6. x := y; 7. y := x + y;
8. i := i + 1; 9. b := i < n; od

We have a correct test caseT1 = 〈n = 3, y = 2〉 and two
failing test casesT2 = 〈n = 4, y = 4〉 andT3 = 〈n =
5, y = 8〉. If we consider the model of bounded-length re-
pair where the bound is 2, then neither{O6} nor {O7} is a
diagnosis, but{O6, O7} is a diagnosis, since we can get the
correct behavior by replacingO6 with t:=x; x:=y; and
replacingO7 with y:=x+t;.

Conclusions
Program debugging is one of the most time-consuming parts
of the software development cycle. Existing approaches
are mostly experiential; those model-based approaches are
based on abstract models of programs, which adds an expe-
riential flavor to the approaches. We believe that it is neces-
sary to establish a precise theoretical foundation for debug-
ging from first principles. To the best of our knowledge, this
paper presented the first clean logical description of the pro-
gram debugging task. We focused our attention on programs

without procedures, considered both the basic and general
models of repair, and defined the concepts of soundness and
completeness for approximate debugging methods. Our for-
malization has the advantages of being conceptually simple,
handling multiple test cases, supporting general fault types,
and avoiding false diagnoses suffered by existing models.
Such a formalization can serve as the basis for further re-
search on debugging from first principles. In the future,
we would like to extend our formalization to include pro-
cedures. Most importantly, based on our formalization, we
would like to explore the computational problem including
approximation techniques that are sound or complete.

Acknowledgments
I am grateful to Fangzhen Lin for many helpful discussions
about this work. I thank Yilan Gu and Ron Petrick for their
help with this paper. Thanks also to the anonymous review-
ers for useful comments.

References
Ball, T.; Naik, M.; and Rajamani, S. K. 2003. From symptom to
cause: localizing errors in counterexample traces. InProc. 30th
Symp. Principles of Programming Languages.
Cleve, H., and Zeller, A. 2005. Locating causes of program fail-
ures. InProc. 27th Int. Conf. on Software Engineering, 342–351.
Griesmayer, A.; Staber, S.; and Bloem, R. 2006. Automated
fault localization for C programs. InProc. First Workshop on
Debugging and Verification.
Groce, A. 2004. Error explanation with distance metrics. InProc.
10th Int. Conf. on Tools and Algorithms for the Constructionand
Analysis of Systems, 108–122.
Jones, J. A. 2004. Fault localization using visualization of test
information. InProc. 26th Int. Conf. on Software Engineering.
Levesque, H. J.; Reiter, R.; Lespérance, Y.; Lin, F.; and Scherl,
R. B. 1997. Golog: A logic programming language for dynamic
domains.J. Logic Programming31(1-3).
Mayer, W., and Stumptner, M. 2006. Model-based debugging -
state of the art and future challenges. InProc. First Workshop on
Debugging and Verification.
Mayer, W., and Stumptner, M. 2007. Abstract interpretationof
programs for model-based debugging. InProc. IJCAI-07.
Reiter, R. 1987. A theory of diagnosis from first principles.Arti-
ficial Intelligence32(1):57–95.
Reiter, R. 2001.Knowledge in Action: Logical Foundations for
Specifying and Implementing Dynamical Systems. MIT Press.
Renieris, M., and Reiss, S. P. 2003. Fault localization withnearest
neighbor queries. InProc. 18th IEEE Int. Conf. on Automated
Software Engineering, 30–39.
Rothermel, G., and Harrold, M. J. 1999. Empirical studies of
a safe regression test selection technique.Software Engineering
24(6):401–419.
Weiser, M. 1984. Program slicing.IEEE Trans. Software Eng.
10(4):352–357.
Wieland, D. 2001.Model-Based Debugging of Java Programs
Using Dependencies. Ph.D. Dissertation, TU Wien.
Wotawa, F. 2002. On the relationship between model-based de-
bugging and program slicing.Artificial Intelligence135:124–143.
Zhang, X.; Gupta, N.; and Gupta, R. 2006. Locating faults
through automated predicate switching. InProc. 28th Int. Conf.
on Software Engineering, 272–281.

