
Automated Program Debugging via Multiple Predicate Switching

Yongmei Liu and Bing Li
Department of Computer Science

Sun Yat-sen University
Guangzhou 510006, China

ymliu@mail.sysu.edu.cn, libing5@mail2.sysu.edu.cn

Abstract

In a previous paper, Liu argued for the importance of estab-
lishing a precise theoretical foundation for program debug-
ging from first principles. In this paper, we present a first step
towards a theoretical exploration of program debugging algo-
rithms. The starting point of our work is the recent debugging
approach based on predicate switching. The idea is to switch
the outcome of an instance of a predicate to bring the pro-
gram execution to a successful completion and then identify
the fault by examining the switched predicate. However, no
theoretical analysis of the approach is available. In this paper,
we generalize the above idea, and propose the bounded de-
bugging via multiple predicate switching (BMPS) algorithm,
which locates faults through switching the outcomes of in-
stances of multiple predicates to get a successful execution
where each loop is executed for a bounded number of times.
Clearly, BMPS can be implemented by resorting to a SAT
solver. We focus attention on RHS faults, that is, faults that
occur in the control predicates and right-hand-sides of assign-
ment statements. We prove that for conditional programs,
BMPS is quasi-complete for RHS faults in the sense that
some part of any true diagnosis will be returned by BMPS;
and for iterative programs, when the bound is sufficiently
large, BMPS is also quasi-complete for RHS faults. Initial
experimentation with debugging small C programs showed
that BMPS can quickly and effectively locate the faults.

Introduction
Program debugging is one of the most time-consuming parts
of the software development cycle. In recent years, auto-
matic debugging has been an active research area in soft-
ware engineering. However, existing approaches are mostly
experiential, that is, they depend on expert experience and
heuristic information. In a previous paper, Liu (2008) ar-
gued for the importance of establishing a precise theoret-
ical foundation for debugging from first principles, which
would include two ingredients: a formal definition of the
debugging task, and an exploration of the associated com-
putational problem. Liu gave a formalization of the program
debugging task in the situation calculus, a logical language
suitable for describing dynamic worlds. In this paper, we
present a first step towards a theoretical exploration of de-
bugging algorithms.

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

A general approach to automated debugging is based on
modifying the program state to bring the execution to a suc-
cessful completion. However, searching for arbitrary state
changes is difficult due to the extremely large search space.
A recent solution proposed by (Zhang, Gupta, and Gupta
2006) is to only switch the outcome of an instance of a pred-
icate and then identify the fault by examining the switched
predicate, calledcritical predicate. Clearly, the search space
for predicate switching is far less than that for arbitrary
state changes. Through experimental evaluation, the authors
found their approach to be practical and effective. However,
they didn’t give any theoretical analysis of their approach,
for example, they didn’t analyze under what situations their
approach is applicable. Obviously, in some situations, a sin-
gle predicate switch is not sufficient.

In this paper, we generalize the idea behind the above
approach, and propose the bounded debugging via multi-
ple predicate switching (BMPS) algorithm, which locates
faults through switching the outcomes of instances of mul-
tiple predicates to get a successful execution where each
loop is executed for a bounded number of times. Clearly,
BMPS can be implemented by resorting to a SAT solver. As
in (Liu 2008), we restrict our attention to C-like programs
without procedures, calledwhile programs. A formal study
of program debugging has to resort to the formal semantics
of programs. As in (Liu 2008), we treat while programs
as Golog programs, and hence obtain formal semantics of
while programs in the situation calculus via the semantics of
Golog, a programming language for high-level robotic con-
trol (Levesque et al. 1997).

The key concept underlying our approach is that ofcrit-
ical predicate sets. Intuitively, a critical predicate set for a
failing test case is a set of predicates whose outcomes we
can switch at runtime to produce the correct output. In this
paper, we restrict our attention toRHS faults, that is, faults
that occur in control predicates or right-hand-sides of assign-
ment statements. By applying restrictions on theprogram
dependency graph, we identify a class of faults which we
call predicate-cut faults. Intuitively, for predicate-cut faults,
the only way errors propagate is through control predicates.
Based on a key property which relates critical predicate sets
to predicate-cut faults, we prove that for conditional pro-
grams, BMPS isquasi-completefor RHS faults in the sense
that some part of any true diagnosis will be returned by

BMPS; and for iterative programs, when the bound is suf-
ficiently large, BMPS is also quasi-complete.

We experimented with implementing BMPS by using
CBMC (Clarke, Kroening, and Lerda 2004), a bounded
model checker for C programs. Our experiments with de-
bugging a dozen of programs written forC programming ex-
ercises showed that BMPS can quickly and effectively locate
the faults. We also analyzed the TCAS task of theSiemens
Suite(Rothermel and Harrold 1999), which has been used as
a benchmark suite for debugging approaches. Among the 41
faulty versions of the TCAS program, 39 versions are RHS
faults, among which only one is non-predicate-cut fault.

Background Work
The Situation Calculus and Golog
The situation calculus (Reiter 2001) is a many-sorted first-
order language (with some second-order ingredients) suit-
able for describing dynamic worlds. There are three dis-
joint sorts:action for actions,situation for situations, and
object for everything else. A situation calculus languageL
has the following components: a constantS0 denoting the
initial situation; a binary functiondo(a, s) denoting the suc-
cessor situation tos resulting from performing actiona; a
binary predicatePoss(a, s) meaning that actiona is pos-
sible in situations; action functions,e.g., move(x, y); re-
lational fluents,i.e., predicates taking a situation term as
their last argument,e.g., ontable(x, s); functional fluents,
e.g., height(x, s); and situation-independent predicates and
functions. We useL− to denote the language obtained from
L by removing the sortsituation and removing the situa-
tion argument from every fluent. We call anL−-formula a
pseudo-fluentformula. Letφ be such a formula, ands be a
situation term. We letφ[s] denote the formula obtained from
φ by restorings as the situation arguments to all fluents.

The formal semantics of Golog is specified by an abbre-
viationDo(δ, s, s′), which is inductively defined as follows:

1. Primitive actions: For any action termα,

Do(α, s, s′)
def
= Poss(α, s) ∧ s′ = do(α, s).

2. Test actions: For any pseudo-fluent formulaφ,

Do(φ?, s, s′)
def
= φ[s] ∧ s = s′.

3. Sequence:

Do(δ1; δ2, s, s
′)

def
= (∃s′′).Do(δ1, s, s

′′)∧Do(δ2, s
′′, s′).

4. Nondeterministic choice of two actions:
Do(δ1 | δ2, s, s′)

def
= Do(δ1, s, s

′) ∨Do(δ2, s, s
′).

5. Nondeterministic iteration:
Do(δ∗, s, s′)

def
= (∀R).{(∀s1)R(s1, s1) ∧ (∀s1, s2, s3)

[R(s1, s2) ∧Do(δ, s2, s3) ⊃ R(s1, s3)]} ⊃ R(s, s′).
The definition appeals to second-order logic to say that
the relation represented byDo(δ∗, s, s′) is the transitive
closure of that byDo(δ, s, s′).

We omit the definition of other constructs such as proce-
dures. Conditionals and loops are defined as abbreviations:

if φ then δ1 else δ2 fi
def
= [φ?; δ1] | [¬φ?; δ2],

while φ do δ od
def
= [φ?; δ]∗;¬φ?.

Formalization of Program Debugging
Liu (2008) presented a formalization of the program debug-
ging task in the situation calculus. The author restricted at-
tention to the debugging ofwhile programs. We make the
same restriction in this paper. LetLP be the language of
Peano Arithmetic,i.e., LP = {0, s,+, ·,=}, where “s” de-
notes the successor function. LetL beLP extended with the
minus, division, modulo, and comparison operations,i.e.,
L = LP ∪{−, /,%, <,<=}. We call quantifier-free formu-
las ofL conditions, and formulas ofL assertions. We letW
denote the least set of programs such that

1. for every variablex and termt of L, x := t ∈ W ;
2. if δ1, δ2 ∈ W , thenδ1; δ2 ∈ W .
3. if δ1, δ2 ∈ W , then for every conditione,

if e then δ1 elseδ2 fi ∈ W ;
4. if δ ∈ W , then for every conditione,

while e do δ od∈ W .

We call the conditione in an if or while statement acon-
trol predicate. In this paper, bycomponentsof a while pro-
gramP , we mean the set of assignment statements and con-
trol predicates ofP . We distinguish between a component
and its expression: two different assignment (resp. predi-
cate) components might have the same expression.

Liu (2008) treated while programs as Golog programs and
hence obtain the formal semantics of while programs in the
situation calculus. The situation calculus language of arith-
metic programmingLap contains the following symbols:
1. An infinite set of memory location constantsL1, L2, . . .;
2. A set of operator constants such as Add and Minus;
3. A functional fluentval(x, s) which denotes the value of

memory locationx in situations;
4. Action assn(z, o, x, y), which assigns to memory loca-

tion z the result of applying operatoro to the values of
memory locationsx andy.

Clearly, each assignment statement can be represented as
a sequence ofassn actions. Hence each while program can
be expressed as a Golog program whose primitive actions
areassn actions.

The basic action theory of arithmetic programmingDap

consists of the following:
1. The foundational axioms for situations;
2. The action precondition axiom forassn;
3. The successor state axiom forassn which states that the

execution ofassn(z, o, x, y) modifies the value of mem-
ory locationz according to the argumentso, x, andy, and
leave unchanged the values of the other locations;

4. Unique names axioms forassn;
5. Initial database which includes the second-order axioma-

tization of Peano arithmetic.

Liu (2008) defined test cases as follows: Atest caseT for
a programP is a pair〈InT , OutT 〉 of assertions whereInT

specifies the exact values of the input variables, andOutT
specifies the values of the output variables.

Note that a while program is a deterministic one. Hence
a while programP passes a test caseT iff the formula
Do(InT ?;P ;OutT ?, s, s

′) is satisfiable wrt the theoryDap.

Basic Concepts
In this section, we define the basic concepts we use in this
paper and present their properties.

Execution Paths and Traces
When introducing Golog, we defined conditionals and loops
as abbreviations. Now we formally define the concept of
execution paths and traces for while programs.

Definition 1 Let P be a while program. We do the follow-
ing operations on its Golog representation:

1. replace eachδ∗ with ǫ|δ|δ2| . . . |δn| . . ., whereǫ denotes
the empty program;

2. repeatedly apply the following distribution laws until they
are not applicable:
δ; (δ1|δ2) ⇔ (δ; δ1)|(δ; δ2), (δ1|δ2); δ ⇔ (δ1; δ)|(δ2; δ).

The result is a nondeterministic choice of (possibly infinitely
many) sequential programs consisting of assignments and
tests. We call each of them anexecution pathfor P , and we
denote by EP(P) the set of all execution paths forP . We
call the sequence of assignments contained in an execution
pathβ theexecution tracefor β.

An execution pathβ carries with it the conditions for its
trace to be executed. For each testt onβ, it is either a pos-
itive teste? or a negative test¬e? of some predicatee of
P ; after the sequence of assignments that occur beforet has
been executed, the truth value ofe must be the same as the
polarity of the test.

For example, below is a program POWER which intends
to compute thenth power of 2 and its two execution paths:

p = 1; i = 1;
while (i < n)
{ p = p * 2; i = i + 1; }

β1 : p = 1; i = 1;¬(i < n)?.
β2 : p = 1; i = 1; (i < n)?; p = p ∗ 2; i = i+1;¬(i < n)?.

Proposition 1

1. EP(δ) = {δ}, whereδ is an assignment or a test;
2. EP(δ1; δ2) = EP (δ1);EP (δ2), which denotes the set

{β1;β2 | β1 ∈ EP (δ1), β2 ∈ EP (δ2)};
3. EP(δ1|δ2) = EP(δ1) ∪ EP(δ2).

Data Dependency Graphs
The dependency graph for a program describes the data de-
pendency and control dependency among statements of the
program. In this paper, we only need to use data depen-
dency. We now formally define the concept of data depen-
dency graph for a program.

Definition 2 Let P be a while program. Thedata depen-
dency graph(DDG) for P is a directed graph. The vertices
are components ofP together with a special output vertex
vout which uses all the output variables. There is an edge
from v1 to v2 iff there is an execution pathβ for P such that
v1 occurs beforev2, v2 uses a variable assigned byv1, and
there is no re-assignment of the variable betweenv1 andv2.

The following figure shows the DDG for POWER.

p=1

i<n

i=1

p=p*2 i=i+1

vout

An important concept we use in our algorithm is that of
backward data slice.

Definition 3 LetG be the DDG of a program, and letv be a
node. Thebackward data sliceof v, denoted BDS(v), is the
set of nodes from whichv is reachable. The backward data
slice of a setV of nodes is the union of the backward data
slices of nodes inV .

Note the difference between backward data slice and the
concept ofbackward slicein the literature. The backward
slice of a nodev consists of nodes from whichv is reach-
able through a path of both data and control dependency.
An experimental study by (Zhang, Gupta, and Gupta 2006)
showed that the backward data slice of a node is much
smaller than the backward slice.

In the above example, the backward data slice of the pred-
icatei < n is {i = 1, i = i+ 1, i < n}.

Diagnoses
A commonly used evaluation measure for debugging ap-
proaches is the scoring function proposed by Renieris and
Reiss (2003). This measure assumes the existence of a cor-
rect program; the differences between the correct program
and its faulty version point to where the fault is. In this pa-
per, we make a similar assumption: there are possibly mul-
tiple correct programs obtained by replacing one or more
assignments and/or predicates in the faulty program.

Definition 4 A substitution functionθ for a programP is a
mapping from the components ofP to assignment and pred-
icate expressions. We useθ(P) to denote the program ob-
tained fromP by applyingθ. To overload the notation, for a
componentv of P , we also useθ(v) to represent the corre-
sponding component of the programθ(P).

Definition 5 LetP be a faulty program, andθ a substitution
function forP such thatθ(P) is a correct version ofP . We
call θ a repairing functionfor P . We call the set of compo-
nents ofP whose expressions are modified byθ a diagnosis
for P , and we say components in∆ are faulty wrtθ.

Definition 6 Let P be a faulty program,θ a repairing func-
tion forP and∆ its associated diagnosis. We call∆ anRHS
diagnosisor anRHS faultif for each assignmentα of P , α
andθ(α) only differ on the right-hand-side (RHS). We call
∆ apredicate-cut diagnosisor apredicate-cut faultif it is an
RHS diagnosis and in the DDG ofP , there is no path from
a node in∆ to the output node.

For example, there are two diagnoses{i = 1} and{i <
n} for POWER, since we can either replacei = 1 with i = 0
or replacei < n with i ≤ n, and get a correct program.
From the DDG, it is easy to see that both are predicate-cut

diagnoses. In contrast, for the following program POWER′,
there is one diagnosis{p = p+2}, which is a non-predicate-
cut RHS diagnosis.

p = 1; i = 0;
while (i < n)
{ p = p + 2; i = i + 1; }

RHS diagnoses have the following property:

Proposition 2 Let P be a program,∆ an RHS diagnosis
andθ its repairing function. Letv 6∈ ∆. Then there is a path
from∆ to v iff there is a path fromθ(∆) to θ(v).

The intuitive idea behind predicate-cut faults is that the
only way errors propagate is through control predicates. By
the above proposition, we have:

Proposition 3 LetP be a program,∆ a non-predicate-cut
RHS diagnosis. Then∆ ∩ BDS(vout) 6= ∅.

Thus any non-predicate-cut RHS fault is captured by
BDS(vout).

Critical Predicate Sets
Recall the definition of test cases from the section on back-
ground work. For example, POWER has a correct test case
〈n = 0, p = 1〉, and two failing test cases〈n = 1, p = 2〉
and〈n = 5, p = 32〉.

Definition 7 Let τ be a sequence of assignments. We call
τ a correct execution tracefor a test caseT if the execution
of τ produces the correct output forT , more formally, if
Do(InT ?; τ ;OutT ?, s, s

′) is satisfiable wrtDap.

Definition 8 Let P be a while program, andT a failing test
case forP . Let β be a correct execution path ofP for T ,
that is, its trace is a correct trace forT . Let C be the set
of predicatese for which there exists a positive/negative test
t of e on β such that the polarity oft is different from the
truth value ofe after the trace segment beforet has been
executed forT . We callC acritical predicate set(CPS) wrt
T induced byβ. If each loop is executed at mostk times on
β, we callC a depthk CPS.

Intuitively, a CPS wrtT induced byβ is the set of predi-
catese such that we have to switch the outcome of some in-
stance ofe in order for the execution ofT to take the pathβ.
Of course, for a test caseT , there might be multiple correct
execution paths for it; hence there might be multiple CPSes
wrt T , and we can define the concept of minimal CPS.

We now prove an important property of critical predicate
sets, which essentially says that any predicate-cut fault is
captured by the BDS of any predicate in some CPS. We need
the proposition below, which follows from Proposition 1.

Proposition 4 Let P be a program, andθ a substitution
function forP . Then EP(θ(P)) = θ(EP(P)).

Proposition 5 LetP be a while program,∆ a predicate-cut
diagnosis forP , andT a failing test case forP . Then there
exists a CPSC such that for eache ∈ C, ∆ ∩ BDS(e) 6= ∅.

Proof: Let θ be the repairing function associated with∆.
By Proposition 4, EP(θ(P)) = θ(EP(P)). Let β be an ex-
ecution path forP such thatθ(β) is the execution path of

θ(P) for test caseT . Let τ andτ ′ be the traces ofβ and
θ(β), respectively. We claim that they have the same effect
on the output variables. It suffices to prove that there is no
path from∆ to the output node, and in the DDG ofθ(P),
there is no path fromθ(∆) to the output node either. This
holds by Proposition 2, since∆ is a predicate-cut diagnosis.
Henceτ is a correct execution trace forT .

Now letC be the CPS induced byβ. Lete ∈ C. If e ∈ ∆,
we have that∆ ∩ BDS(e) 6= ∅. So assume thate 6∈ ∆. By
the definition of CPS, there exists a testt of e onβ such that
the polarity oft is different from the truth value ofe after
the trace segment beforet, which we denote byγ, has been
executed forT . Sinceθ(β) is the execution path ofθ(P) for
T , the polarity oft is the same as the truth value ofe after
θ(γ) has been executed forT . So the truth value ofe afterγ
is executed forT is different from that afterθ(γ) is executed
for T . Thus either there is a path from∆ to e, or there is a
path fromθ(∆) to e. Since∆ is a predicate-cut diagnosis,
by Proposition 2, in either case, there is a path from∆ to e.
Hence,∆ ∩ BDS(e) 6= ∅.

The Bounded Debugging via Multiple
Predicate Switching Algorithm

In this section, we first consider debugging of conditional
programs, and then debugging of iterative programs. Fi-
nally, we discuss an extension of the algorithm.

Conditional Programs
Since there are no loops in conditional programs, critical
predicate sets are computable.

Proposition 6 Let P be a conditional program, andT a
failing test case forP . We can construct a Boolean formula
A such that its models correspond to the CPSes ofP wrt T .
The size ofA is linear in the size ofP .

Proof: We obtain a programP ′ fromP as follows: for each
predicatee in P , we introduce a Boolean variableswe, and
replacee with swe?¬e : e, which abbreviates the formula
¬swe ∧ e∨ swe ∧¬e. We then construct a Boolean formula
A encoding the executions of the programInT ?;P

′;OutT ?,
say using the encoding method of CBMC (see the section on
experimentation and evaluation). Then for any truth assign-
mentσ of swe’s, σ satisfiesA iff the set{e | σ(swe) = 1}
is a CPS.

Thus we can use a SAT solver to compute all the minimal
critical predicate sets. We get the following debugging via
multiple predicate switching (MPS) algorithm and theorem.

MPS(P ,T)
Input : a conditional programP , and a failing test caseT
Output : a collection of sets of components ofP

1. Output BDS(vout);

2. Compute all the minimal critical predicate sets;

3. For each minimal CPSC, output BDS(C).

Theorem 7 LetP be a conditional program, andT a failing
test case forP . For any RHS diagnosis∆ of P , there exists
a setS returned by MPS such thatS ∩∆ 6= ∅.

Proof: If ∆ is not a predicate-cut diagnosis, by Proposition
3, ∆ ∩ BDS(vout) 6= ∅. Otherwise, by Proposition 5, there
is a CPSC s.t. for eache ∈ C, ∆ ∩ BDS(e) 6= ∅. LetC′ be
a minimal CPS contained inC. Then∆∩BDS(C′) 6= ∅.

Liu (2008) defined the concept of completeness for a de-
bugging algorithm: it is complete if any diagnosis is a subset
of some set returned by it. Thus essentially, the above theo-
rem means that MPS isquasi-completefor RHS diagnoses.
In fact, if we do not want a debugging algorithm to return
many false diagnoses, the goal of completeness as defined
by Liu (2008) is difficult to achieve.

Iterative Programs
For iterative programs, critical predicate sets should be un-
computable. To address this problem, like bounded model
checking, we consider depthk critical predicate sets. Re-
call that a depthk CPS is one induced by an execution path
where each loop is executed at mostk times.
Definition 9 Let P be an iterative program, and letk ∈ N.
The unwinding ofP to depthk, denotedP k, is obtained
fromP as follows: replace eachδ∗ with ǫ|δ|δ2| . . . |δk.
Proposition 8 Let P be an iterative program,T a failing
test case forP , andk ∈ N. We can construct a Boolean
formulaA such that its models correspond to the depthk
CPSes ofP wrt T . The size ofA is linear in the size ofP k.
Proof: We obtain a programP ′ from P k as follows: for
each predicatee in P , introduce a Boolean variableswe; for
each instanceei of e in P k, introduce a Boolean variable
swei and replaceei with swei?¬e : e. We then construct
a Boolean formulaB encoding the executions of the pro-
gramInT ?;P

′;OutT ?. TakeA as the conjunction ofB and
the constraintsswe ≡

∨
swei, where the disjunction ranges

over all instances ofe, ande ranges over all predicates.

Thus we obtain the following bounded debugging via multi-
ple predicate switching (BMPS) algorithm and theorem.

BMPSk(P , T), wherek ∈ N

Input : an iterative programP , a failing test caseT
Output : a collection of sets of components ofP

1. Output BDS(vout);

2. Compute all the minimal depthk critical predicate sets;

3. For each minimal depthk CPSC, output BDS(C).
Theorem 9 LetP be an iterative program, andT a failing
test case forP . Then there exists ak such that for any RHS
diagnosis∆ of P , there exists a setS returned by BMPSk
such that∆ ∩ S 6= ∅.

Thus when the bound is sufficiently large, MBPS is quasi-
complete for RHS diagnoses.

An Extension of the Algorithm
Clearly, we can extend the BMPS algorithm to also altering
the outcome of assignment statements where the assigned
variable is of an enumeration type with a small range of pos-
sible values. We call a predicate or such an assignment a
small-range-component(SRC). We can generalize the con-
cept of critical predicate set to that ofcritical SRC set. Also,
we say that∆ is aSRC-cut diagnosisif there is an SRC on
each path from a node in∆ to the output node.

Experimentation and Evaluation
The key part of the BMPS algorithm is to compute depthk
critical predicate sets. We experimented with implement-
ing this part by using CBMC, a bounded model checker
for ANSI C programs (Clarke, Kroening, and Lerda 2004).
CBMC supports assume and assert statements which can
be used to give program specification. Given an ANSI C
programP and an unwinding depthk, CBMC produces a
Boolean formula that is satisfiable iff there is an execution
of P where each loop is executed at mostk times and which
satisfies all assume statements and violates an assert state-
ment. The formula is then checked by using a SAT solver.
If the formula is satisfiable, a counter-example is extracted
from the output of the SAT solver.

Given a while programP , a failing test caseT , andm ∈
N, we produce a programΠ(P, T,m) as follows. Herem is
a bound on the size of critical predicate sets.

• Let e0, e1, . . . , en−1 be all the predicates inP . We de-
clare a Boolean arraysw[n], and replace eachei with
sw[i]?nondet bool() : ei, wherenondet bool() returns
a non-deterministic Boolean value.

• We set the values of the input variables according toT .

• We addassume(OutT); assume(Σisw[i] ≤ m);
assert(false) at the end of the program.

Then we call CBMC onΠ(P, T,m) with boundk. When a
counter-example is generated, we get a depthk CPS of size
≤ m. With some additional manipulation, we can compute
all minimal depthk critical predicate sets of a bounded size.

For example, letP be POWER, andT be the test case
〈n = 5, p = 32〉. Then below is the programΠ(P, T, 1):

void main() {
int n,p,i; _Bool sw;
n = 5; p = 1; i = 1;
while (sw?nondet_bool():i<n)
{ p = p*2; i = i+1; }
assume(p==32); assert(0); }

When we call CBMC with bound 6 on the above program,
we obtaini < n as a switched predicate. The running time
is less than 0.1 second. The backward data slice of the pred-
icate contains both true diagnoses{i = 1} and{i < n}.

We experimented with debugging a dozen of while pro-
grams written for C programming exercises, such as com-
puting the greatest common divisor or least common mul-
tiple of two numbers, computing the number of primes or
Armstrong numbers within a certain range, etc. The results
showed that BMPS can quickly and effectively locate the
faults. In each case, the running time is less than 1 second.
For example, the following is a program SORT for selection
sort, where there are two faults.

void sort(int a[], int N) {
int i,j,k,temp;
for (i=0; i<N; i++)
{ k = i;

for (j=i+1; j<N; j++)
if (a[j]>a[k]) k=j;
// (correct version: a[j]<a[k])

if (k<i) // (correct version: k!=i)
{ temp = a[i]; a[i] = a[k];

a[k] = temp; }}}

When we call CBMC onΠ(Sort, T, 2) with bound 6, where
T is a test case of array of size 6, we get a CPS{a[j] >
a[k], k < i}, which is exactly the true diagnosis.

An evaluation benchmark suite for debugging approaches
is theSiemens Suite(Rothermel and Harrold 1999), which
consists of 7 base programs, and for each of them, a
number of faulty variations and a large number of test
cases. Each variation is obtained by manually seeding
the base program with faults, usually by modifying a sin-
gle line of code. The TCAS program of the suite is
used for aircraft conflict detection and resolution. It has
173 lines of code, no loops, and there are 41 faulty ver-
sions for it. The major part of the program consists of
3 functions: altseptest, NonCrossingBiasedClimb, and
Non CrossingBiasedDescend. Among the 41 versions,
only two of them are not RHS faults: one is obtained from
the correct version by deletion of an else branch, the other
is obtained by modifying the declaration of an array vari-
able. In the two NonCrossing functions, all variables are
Boolean, thus all assignments can be treated as predicates.
In the alt septest function, there are 4 predicates. By an
manual examination, we identified among the 39 RHS faulty
versions, only one is not predicate-cut: here the value for a
constant is modified, and this constant is used in deciding
the return value. We have run CBMC on many faulty ver-
sions of TCAS and their failing test cases, in each case, we
get a CPS of size 1 in less than 0.01 second.

Related Work
In this paper, we resort to a SAT solver for program de-
bugging. Two other approaches along this line are those of
(Groce 2004) and (Griesmayer, Staber, and Bloem 2006).
The first approach consists of the steps: call CBMC to get
a failing run, use a pseudo-Boolean solver to get a clos-
est correct run, and then compute the differences between
the two runs. Given a failing run, the second approach re-
ports program components that may be changed to avoid the
failure. It first constructs a modified program that allows a
given number of expressions (i.e., control predicates and the
right-hand-sides of assignments) to be changed arbitrarily
and contains the negated specification from the original pro-
gram. Then it calls CBMC to find a failing run for the new
program. To construct the new program, for each expression
ei, introduce a Boolean variableabi which represents thatei
is abnormal, and replaceei with abi?nondet() : ei. Unfor-
tunately, this approach suffers from two problems. First, it
allows modifying any expression, which results in extremely
large search space. Secondly, it would return many absurd
false diagnoses. For example, suppose that there is a loop,
the loop body contains an assignment to the output variable,
and there is no assignment to the output variable after the
loop. Then this assignment would be returned as a diagnosis.
A concrete example is the POWER program where the as-
signmentp = p∗ 2 would be returned as a diagnosis. This is
becausep = p∗2 is replaced withp = abi?nondet() : p∗2,
and in the last execution of the loop, we can always assign

to p the correct value. By only allowing predicate switching,
these two problems are avoided in our approach.

Conclusions
In this paper, based on Zhanget al.’s work on debugging
via predicate switching, we proposed the bounded debug-
ging via multiple predicate switching algorithm, which can
be implemented by resorting to a SAT solver. We formal-
ized the concepts of critical predicate sets and predicate-cut
diagnoses. We proved that for conditional programs, BMPS
is quasi-complete for RHS diagnoses; and for iterative pro-
grams, when the bound is sufficiently large, BMPS is also
quasi-complete for RHS diagnoses. We analyzed the TCAS
task of the Siemens Suite, and identified that 38 of the 41
faulty versions are predicate-cut faults. Initial experimenta-
tion with debugging small C programs showed that our ap-
proach is promising.

What distinguishes our work from existing ones is that it
comes with a theoretical analysis. Secondly, inheriting from
Zhanget al.’s approach, the search space for our approach
is much reduced compared to those approaches based on ar-
bitrary state changes. Thirdly, by only allowing predicate
switching, our approach can avoid false diagnoses suffered
by some existing ones.

For the future, we would like to extend the BMPS algo-
rithm to accommodate procedures. Moreover, we would like
to develop a full implementation of our algorithm and do a
thorough experimentation and evaluation with it. The re-
search methodology we used in this paper is to do theoreti-
cal abstraction of a practical debugging approach. We would
like to continue with this methodology and perform theoret-
ical analysis of other practical debugging approaches.

References
Clarke, E. M.; Kroening, D.; and Lerda, F. 2004. A tool for check-
ing ANSI-C programs. InTools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS).
Griesmayer, A.; Staber, S.; and Bloem, R. 2006. Automated fault
localization for C programs. InProc. First Workshop on Debugging
and Verification.

Groce, A. 2004. Error explanation with distance metrics. InProc.
10th Int. Conf. on Tools and Algorithms for the Constructionand
Analysis of Systems, 108–122.
Levesque, H. J.; Reiter, R.; Lespérance, Y.; Lin, F.; and Scherl,
R. B. 1997. Golog: A logic programming language for dynamic
domains.J. Logic Programming31(1-3).

Liu, Y. 2008. A formalization of program debugging in the situa-
tion calculus. InProc. AAAI-08.

Reiter, R. 2001.Knowledge in Action: Logical Foundations for
Specifying and Implementing Dynamical Systems. MIT Press.
Renieris, M., and Reiss, S. P. 2003. Fault localization withnear-
est neighbor queries. InProc. 18th IEEE Int. Conf. on Automated
Software Engineering, 30–39.

Rothermel, G., and Harrold, M. J. 1999. Empirical studies of
a safe regression test selection technique.Software Engineering
24(6):401–419.
Zhang, X.; Gupta, N.; and Gupta, R. 2006. Locating faults through
automated predicate switching. InProc. 28th Int. Conf. on Software
Engineering, 272–281.

