

CURRENT GOLOG INTERPRETERS

- Based on closed world assumption (CWA), dynamic CWA, or domain closure
- Query evaluation based on regression, with decreasing efficiency as the length of
- Online, offline or a combination
 - search operator for guarding successful execution
 - planning operator for improving efficiency

PROPER⁺ KNOWLEDGE-BASES

Definition 1 A first-order KB equivalent to a possibly infinite set of clauses [Lakemeyer and

An example is: $\forall x.x \neq y \supset \neg on(x,y) \lor \neg clear(y), \quad \forall x.\neg on(x,x)$ $\forall x, y, z. y \neq z \supset \neg on(x, y) \lor \neg on(x, z) \forall x. x \neq A \land x \neq D \supset clear(x)$

- Liu, Lakemeyer & Levesque, 04 proposed a logic of limited belief $S\mathcal{L}$ and sho with $proper^+$ KBs is decidable.
- Liu & Lakemeyer, 09 showed for local-effect actions and proper⁺ KBs, progress definable but also efficiently computable.

OUR CONTRIBUTION

An interpreter based on exact progression and limited reasoning

- Handle first-order incomplete information in the form of proper⁺ KBs
- Implemented progression and limited reasoning by grounding based on unique
- The search operator returns a conditional plan
- The planning operator calls a modern planner when local complete information

WELL-FORMED BASIC ACTION THEORIES (BAT)

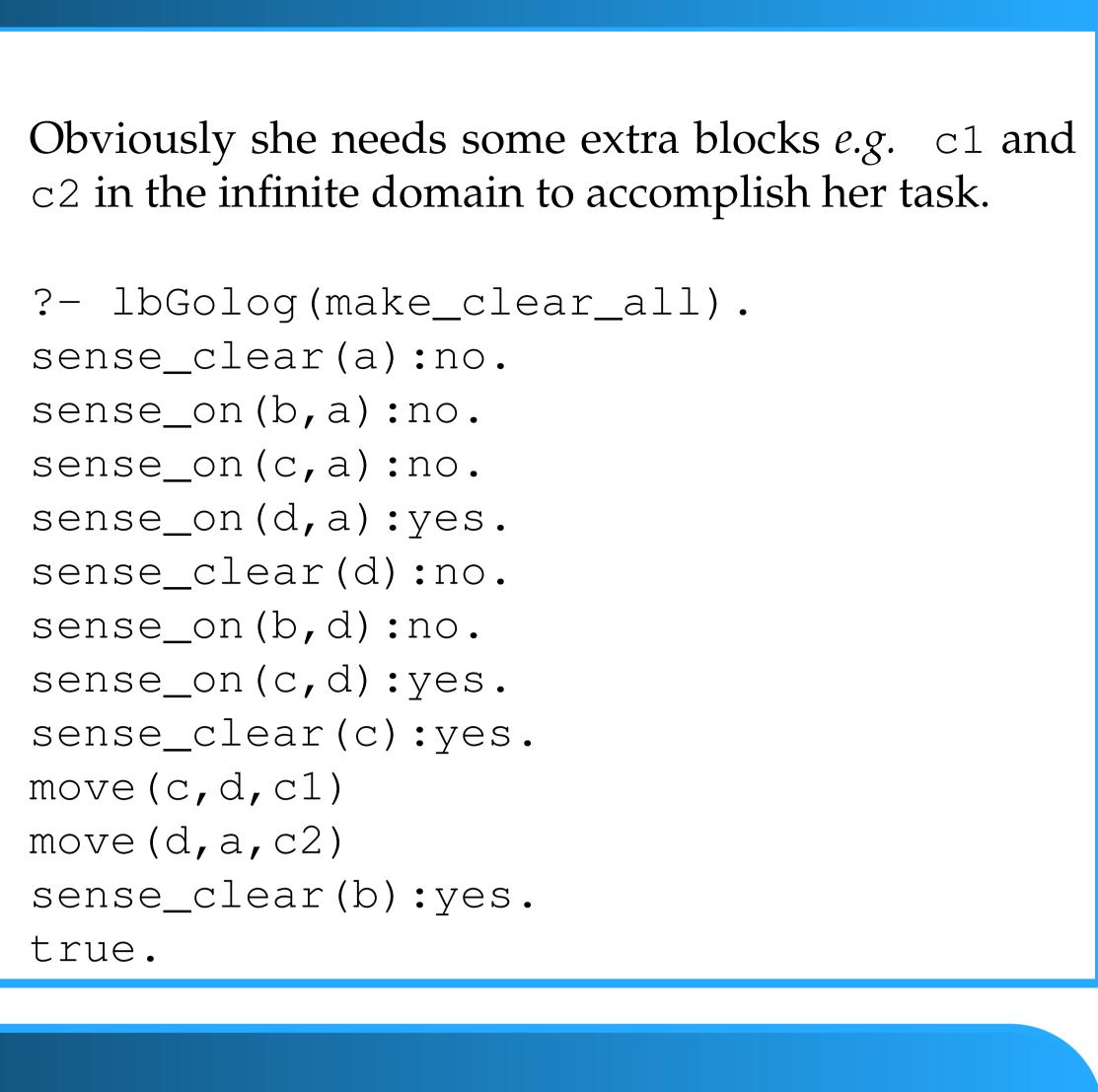
- Initial KB \mathcal{D}_{S_0} is proper⁺, Sensing result is quantifier-free,
- Physical actions are local-effect, only changing the truth value of fluent atoms w by the actions.
- Influenced atoms $\Omega(S_0)$: those fluent atoms mentioning some constants in physical set of the s
- $\mathcal{D}_{ss}[\Omega]$: the successor state axioms (SSAs) instantiated wrt $\Omega(S_0)$.

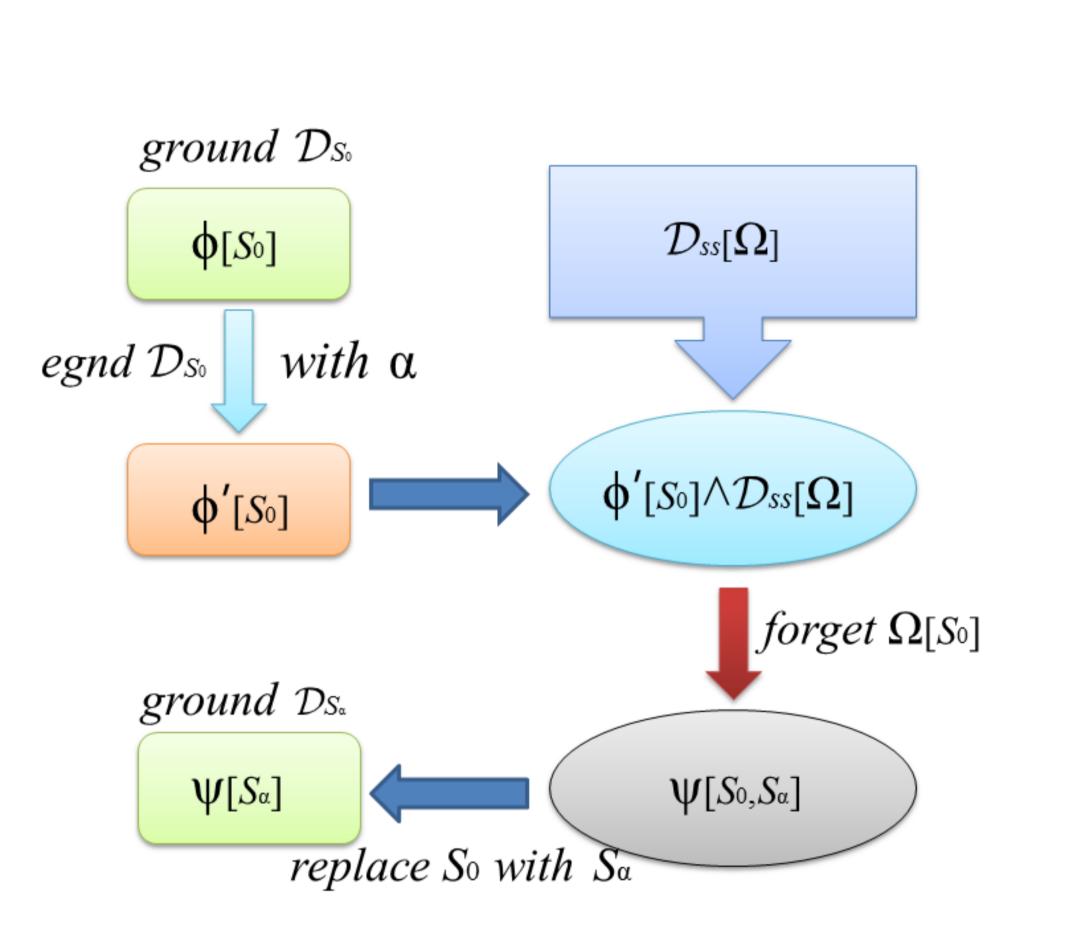
Result I

Theorem 1 Let \mathcal{D} be a well-formed BAT and $\alpha = A(\vec{c})$ a ground physical action. Let B be the in \vec{c} but not Σ_p . We define $pprog(\Sigma_p, \alpha)$ as $forget(egnd(\Sigma_p, B) \cup \mathcal{D}_{ss}[\Omega], \Omega(S_0))(S_0/S_\alpha)$. The representation of $prog(\Sigma, \alpha)$.

- Σ_p is a ground KB of Σ with some extra constants as representatives, and egnd(Σ_p with B.
- For any set Σ of clauses and any atom p, $forget(\Sigma, p)$ can be computed by additional data for Σ of clauses and any atom p, $forget(\Sigma, p)$ can be computed by additional data and Σ and Σ and Σ and Σ and Σ and Σ additional data and Σ and delete all clauses containing p.

Result II


Theorem 2 $F[UP(\Sigma_p), \varphi] = 1$ iff $bcl(B_0\Sigma) \models \varphi$.


- φ is an FO formula (subjective) whose atoms are of the form $\mathbf{B}_0 \phi$ where ϕ is an
- $bcl(\mathbf{B}_0\Sigma) \stackrel{def}{=} \mathbf{B}_0\Sigma \cup \{\neg \mathbf{B}_0\phi | \mathbf{B}_0\Sigma \not\models \mathbf{B}_0\phi\}$ (DCWA on knowledge).
- UP(s) is the closure of s under unit resolution and F is implemented trivially c
- G procedure reduced an FO query inductively to ground clause quries and subsumed.

A FIRST-ORDER INTERPRETER FOR KNOWLEDGE-BASED GOLOG BASED ON **EXACT PROGRESSION AND LIMITED REASONING**

YI FAN, MINGHUI CAI, NAIQI LI, YONGMEI LIU DEPT. OF COMPUTER SCIENCE, SUN YAT-SEN UNIVERSITY GUANGZHOU, CHINA

	MOTIVATING EXAMPLE				
e assumption (DCA) of action sequences grows	C D A				
nd Levesque, 02]	 The initial KB D_{S0} is: ∀x.x ≠ A ∧ x ≠ B ∧ x ≠ C ∧ x ≠ D ⊃ clear(x), ∀x, y.x ≠ A ∧ x ≠ B ∧ x ≠ C ∧ x ≠ D ∧ x ≠ y ⊃ ¬on(x, y), % and some do- main axioms. Actions: move(x, y, z), sense_clear(x), sense_on(x, y) Goal: make clear a list of blocks: A, B, C, D 				
	• Note that 4 blocks a, b, c and d appear in \mathcal{D}_{S_0}				
owed $S\mathcal{L}$ -based reasoning	GENERAL PICTURE				
ssion is not only first-order	On the right is the progression procedure shown in the figure.				
	Input: \mathcal{D}_{S_0} : a ground KB with reserved constants as representatives. α : a ground action that is executed.				
ue name assumption	Output: $\mathcal{D}_{S_{\alpha}}$: the current KB with reserved constants.				
on is available	 Ground the initial KB and compute unit propa- gation (UP). 				
	2. Compute extended grounding if α mentions new constants, then progress the KB.				
with arguments mentioned	 add successor state axioms wrt influenced atoms 				
ysical action $A(\vec{c})$,	• forget the influenced atoms via resolution 3. Answer any query φ in the current KB.				
the set of constants appearing	• Initial KB: $\mathcal{D}_{S_0} = \{ \forall x, y.x \neq y \supset \neg on(x, y, S_0) \lor \neg c on(A, B, S_0), clear(A, S_0), clear(C, S_0) \}.$				
Then $pprog(\Sigma_p, \alpha)$ is a finite $d(\Sigma_p, B)$ is the extension of ding resolutions wrt p into	• We are using brute-force grounding. The width of $\Sigma_p = prop(\mathcal{D}_{S_0}, N) = \{ on(A, B, S_0), clear(A, \neg on(A, B, S_0) \lor \neg clear(B, S_0), \neg on(A, C, S_0) \lor \neg clear(B, S_0), \neg on(A, C, S_0) \lor \neg clear(C, u_1, S_0) \lor \neg clear(u_1, S_0), \neg on(C, u_2, S_0) \lor \neg clear(u_1, C, S_0) \lor \neg clear(C, S_0), \neg on(u_2, C, S_0) \lor \neg clear(S_0, S_0), \neg on(u_2, C, S_0) \lor \neg clear(S_0, S_0), \neg on(u_2, C, S_0) \lor \neg clear(S_0, S_0), \neg on(S_0, S_0) \lor \neg clear(S_0, S_0) \lor clear(S_0, S_0) \lor$				
	• Influenced atoms: $\Omega(S_0) =$ $\{clear(B, S_0), clear(C, S_0), on(A, B, S_0), on(A, C, S_0)\}$				
n FO formula (objective). on <i>G</i> procedure. d check whether they are	 Instantiated SSAs: D_{ss}[Ω] = {clear(B, S_α), ¬clear(C, S_α), ¬on(A, B, S_α), on(A, A) pprog(Σ_p, α) = {clear(A, S_α), ¬on(B, A, S_α) ∨ ¬clear ¬on(B, C, S_α), ¬on(C, A, S_α) ∨ ¬clear(A, S_α), v ¬clear ¬clear(C, S_α), ¬on(A, B, S_α), on(A, C, S_α), ¬on(u₁, C, S_α), ¬on(u₂, C, S_α) }. Here the last 2 sentences are resolutions betwee ¬clear(C, S₀) and clear(C, S₀), wrt the influenced placed. 				

 $\neg clear(y, S_0)$,

f \mathcal{D}_{S_0} is 2, so we introduce u_1 and u_2 as representatives, $(A, S_0), clear(C, S_0),$ $clear(C, S_0), \ldots,$ $\neg clear(u_2, S_0)$, $\neg clear(C, S_0)$

 $S_0)\}.$

 $C, S_{\alpha})\}.$

 $clear(A, S_{\alpha}),$ $ear(B, S_{\alpha})$,

veen $\neg on(u_1, C, S_0) \lor \neg clear(C, S_0), \neg on(u_1, C, S_0) \lor$ d atom $clear(C, S_0)$, with their situation arguments re-

EVALUATION IN THE CONTEXT OF GROUNDING

- For clause evaluation
- representatives

AN INTERPRETER

The interpreter is implement ation and progression prog

The search operator $\Sigma(\delta)$:

- looking ahead to ensure choices are resolved completion of δ .
- sensing actions allow plan is returned.
- automatically branch not relying on specia ified by the program

EXPERIMENTAL RESULTS FOR WUMPUS WORLD (8×8, 3000)

	Prob	Gold	IMP	Reward	Moves	Time	Calls
Í	10%	1412	695	437	33	0.670	16
Í	15%	890	917	275	22	0.430	11
	20%	567	1171	175	14	0.254	7
Í	30%	263	1581	82	6	0.112	3
	40%	182	1924	58	3	0.064	2

FUTURE DIRECTIONS

- Implement limited reasoning at \mathbf{B}_1 level
- Support of state constraint

REFERENCES

- [Baier, Fritz, and McIlraith 2007] Baier, J. A.; Fritz, C.; and McIledge in state-of-the-art planners. In *Proc. ICAPS-07*, 26–33.
- [De Giacomo, Lespérance, and Levesque 2000] De Giacomo, G.; Artif. Intell. 121(1-2):109–169.
- De Giacomo, Levesque, and Sardiña2001] De Giacomo, G.; of guarded theories. ACM Trans. Comput. Log. 2(4):495–525.
- [Hoffmann and Nebel 2001] Hoffmann, J., and Nebel, B. 2001. tic search. J. Artif. Intell. Res. 14:253–302.

• We perform unit propagation over a ground KB

- $eval(\phi(d_1,\ldots,d_n)) \rightarrow eval(\phi(u_1,\ldots,u_n))$, for d_1,\ldots,d_n not mentioned by KB and u_1,\ldots,u_n as

– check if $\phi(u_1, \ldots, u_n)$ is subsumed by a clause in the KB

• Others are reduced to clause evaluation recursively, e.g.

- $eval(\eta \lor \psi) \longrightarrow eval(\eta)$ or $eval(\psi)$ returns true

- $eval(\exists x\psi) \longrightarrow eval(\psi(x/d))$ returns true for some d in a particular finite domain

ented in Prolog with evalu-	The planning operator $\Upsilon(au, \delta)$:		
grammed in C.	 based on the work of [Baier, Fritz & McIlraith, 07]. 		
sure that nondeterministic to guarantee the successful	• τ explicitly specifies the domain of all related individuals.		
	• local complete information: for any $P(\vec{c})$ related to δ , $P(\vec{c}) \in KB$ or $\neg P(\vec{c}) \in KB$.		
wed in δ and a conditional	• no sensing actions are allowed in δ .		
ching wrt sensing results,	 control structure is compiled into the planning problem. 		
ial branching actions spec- nmer.	 calling a modern planner to return a sequence of actions. 		

• Prob: the probability of a location containing a pit

• Gold: the number of golds the agent has picked up

• IMP: the number of maps for which it is impossible to explore

• Calls: the number of times a planner is called in a game

• Time: the time spent in one game on average in seconds

• Incorporating procedure calls in the scope of planning operators

raith, S. A. 2007. Exploiting procedural domain control knowl-

Lespérance, Y.; and Levesque, H. J. 2000. Congolog, a concurrent programming language based on the situation calculus.

Levesque, H. J.; and Sardiña, S. 2001. Incremental execution

The FF planning system: Fast plan generation through heuris-

[Lakemeyer 1999] Lakemeyer, G. 1999. On sensing and off-line interpreting in Golog. In Logical Foundations for Cognitive Agents, Contributions in Honor of Ray Reiter.

[Liu and Lakemeyer 2009] Liu, Y., and Lakemeyer, G. 2009. On first-order definability and computability of progression for local-effect actions and beyond. In *Proc. IJCAI-09*.

[Liu, Lakemeyer, and Levesque 2004] Liu, Y.; Lakemeyer, G.; and Levesque, H. J. 2004. A logic of limited belief for reasoning with disjunctive information. In *Proc. KR-04*, 587–597.

[Reiter 2001b] Reiter, R. 2001b. On knowledge-based programming with sensing in the situation calculus. ACM Trans. Comput. Log. 2(4):433–457.

[Sardina 2001] Sardina, S. 2001. Local conditional high-level robot programs. In *Proc. LPAR-01*.