
A FIRST-ORDER INTERPRETER FOR KNOWLEDGE-BASED GOLOG BASED ON
EXACT PROGRESSION AND LIMITED REASONING

YI FAN, MINGHUI CAI, NAIQI LI, YONGMEI LIU

DEPT. OF COMPUTER SCIENCE, SUN YAT-SEN UNIVERSITY
GUANGZHOU, CHINA

CURRENT GOLOG INTERPRETERS
• Based on closed world assumption (CWA), dynamic CWA, or domain closure assumption (DCA)

• Query evaluation based on regression, with decreasing efficiency as the length of action sequences grows

• Online, offline or a combination

– search operator for guarding successful execution

– planning operator for improving efficiency

MOTIVATING EXAMPLE

• The initial KB DS0
is: ∀x.x 6= A ∧ x 6= B ∧ x 6=

C∧x 6= D ⊃ clear(x), ∀x, y.x 6= A∧x 6= B∧x 6=
C ∧x 6= D∧x 6= y ⊃ ¬on(x, y), % and some do-
main axioms.

• Actions:
move(x, y, z), sense_clear(x), sense_on(x, y)

• Goal: make clear a list of blocks: A, B, C, D

• Note that 4 blocks a, b, c and d appear in DS0

Obviously she needs some extra blocks e.g. c1 and
c2 in the infinite domain to accomplish her task.

?- lbGolog(make_clear_all).
sense_clear(a):no.
sense_on(b,a):no.
sense_on(c,a):no.
sense_on(d,a):yes.
sense_clear(d):no.
sense_on(b,d):no.
sense_on(c,d):yes.
sense_clear(c):yes.
move(c,d,c1)
move(d,a,c2)
sense_clear(b):yes.
true.

PROPER+ KNOWLEDGE-BASES
Definition 1 A first-order KB equivalent to a possibly infinite set of clauses [Lakemeyer and Levesque, 02]

An example is:
∀x.x 6= y ⊃ ¬on(x, y) ∨ ¬clear(y), ∀x.¬on(x, x)
∀x, y, z.y 6= z ⊃ ¬on(x, y) ∨ ¬on(x, z) ∀x.x 6= A ∧ x 6= D ⊃ clear(x)

• Liu, Lakemeyer & Levesque, 04 proposed a logic of limited belief SL and showed SL-based reasoning
with proper+ KBs is decidable.

• Liu & Lakemeyer, 09 showed for local-effect actions and proper+ KBs, progression is not only first-order
definable but also efficiently computable.

GENERAL PICTURE

On the right is the progression procedure shown in
the figure.

Input:
DS0

: a ground KB with reserved constants as repre-
sentatives.
α : a ground action that is executed.

Output:
DSα

: the current KB with reserved constants.

1. Ground the initial KB and compute unit propa-
gation (UP).

2. Compute extended grounding if α mentions
new constants, then progress the KB.

• add successor state axioms wrt influenced
atoms

• forget the influenced atoms via resolution

3. Answer any query ϕ in the current KB.

OUR CONTRIBUTION
An interpreter based on exact progression and limited reasoning

• Handle first-order incomplete information in the form of proper+ KBs

• Implemented progression and limited reasoning by grounding based on unique name assumption

• The search operator returns a conditional plan

• The planning operator calls a modern planner when local complete information is available

PROGRESSION WRT α = move(A,B,C)
• Initial KB: DS0 = {∀x, y.x 6= y ⊃ ¬on(x, y, S0) ∨ ¬clear(y, S0),
on(A,B, S0), clear(A,S0), clear(C, S0)}.

• We are using brute-force grounding. The width ofDS0
is 2, so we introduce u1 and u2 as representatives,

then Σp = prop(DS0
, N) = { on(A,B, S0), clear(A,S0), clear(C, S0),

¬on(A,B, S0) ∨ ¬clear(B,S0),¬on(A,C, S0) ∨ ¬clear(C, S0), . . .,
¬on(C, u1, S0) ∨ ¬clear(u1, S0),¬on(C, u2, S0) ∨ ¬clear(u2, S0),
¬on(u1, C, S0) ∨ ¬clear(C, S0),¬on(u2, C, S0) ∨ ¬clear(C, S0)
% similar sentences for A and B . . . }.

• Influenced atoms: Ω(S0) =
{clear(B,S0), clear(C, S0), on(A,B, S0), on(A,C, S0)}.

• Instantiated SSAs: Dss[Ω] =
{clear(B,Sα),¬clear(C, Sα),¬on(A,B, Sα), on(A,C, Sα)}.

• pprog(Σp, α) = {clear(A,Sα),¬on(B,A, Sα) ∨ ¬clear(A,Sα),
¬on(B,C, Sα),¬on(C,A, Sα) ∨ ¬clear(A,Sα), clear(B,Sα),
¬clear(C, Sα), ¬on(A,B, Sα), on(A, C, Sα),
¬on(u1, C, Sα),¬on(u2, C, Sα) }.
Here the last 2 sentences are resolutions between ¬on(u1, C, S0) ∨ ¬clear(C, S0), ¬on(u1, C, S0) ∨
¬clear(C, S0) and clear(C, S0), wrt the influenced atom clear(C, S0), with their situation arguments re-
placed.

EVALUATION IN THE CONTEXT OF GROUNDING
• We perform unit propagation over a ground KB

• For clause evaluation

– eval(φ(d1, . . . , dn)) → eval(φ(u1, . . . , un)), for d1, . . . , dn not mentioned by KB and u1, . . . , un as
representatives

– check if φ(u1, . . . , un) is subsumed by a clause in the KB

• Others are reduced to clause evaluation recursively, e.g.

– eval(η ∨ ψ)−→ eval(η) or eval(ψ) returns true

– eval(∃xψ) −→ eval(ψ(x/d)) returns true for some d in a particular finite domain

AN INTERPRETER

The interpreter is implemented in Prolog with evalu-
ation and progression programmed in C.

The search operator Σ(δ):

• looking ahead to ensure that nondeterministic
choices are resolved to guarantee the successful
completion of δ.

• sensing actions allowed in δ and a conditional
plan is returned.

• automatically branching wrt sensing results,
not relying on special branching actions spec-
ified by the programmer.

The planning operator Υ(τ, δ):

• based on the work of [Baier, Fritz & McIlraith,
07].

• τ explicitly specifies the domain of all related
individuals.

• local complete information: for any P (~c) re-
lated to δ, P (~c) ∈ KB or ¬P (~c) ∈ KB.

• no sensing actions are allowed in δ.

• control structure is compiled into the planning
problem.

• calling a modern planner to return a sequence
of actions.

WELL-FORMED BASIC ACTION THEORIES (BAT)
• Initial KB DS0

is proper+, Sensing result is quantifier-free,

• Physical actions are local-effect, only changing the truth value of fluent atoms with arguments mentioned
by the actions.

• Influenced atoms Ω(S0): those fluent atoms mentioning some constants in physical action A(~c),

• Dss[Ω]: the successor state axioms (SSAs) instantiated wrt Ω(S0).

EXPERIMENTAL RESULTS FOR WUMPUS WORLD (8×8, 3000)
• Prob: the probability of a location containing a pit

• Gold: the number of golds the agent has picked up

• IMP: the number of maps for which it is impossible to explore

• Calls: the number of times a planner is called in a game

• Time: the time spent in one game on average in seconds

Prob Gold IMP Reward Moves Time Calls
10% 1412 695 437 33 0.670 16
15% 890 917 275 22 0.430 11
20% 567 1171 175 14 0.254 7
30% 263 1581 82 6 0.112 3
40% 182 1924 58 3 0.064 2

RESULT I
Theorem 1 LetD be a well-formed BAT and α = A(~c) a ground physical action. LetB be the set of constants appearing
in ~c but not Σp. We define pprog(Σp, α) as forget(egnd(Σp, B)∪Dss[Ω],Ω(S0))(S0/Sα). Then pprog(Σp, α) is a finite
representation of prog(Σ, α).

• Σp is a ground KB of Σ with some extra constants as representatives, and egnd(Σp, B) is the extension of
Σp with B.

• For any set Σ of clauses and any atom p, forget(Σ, p) can be computed by adding resolutions wrt p into
Σ and delete all clauses containing p.

RESULT II
Theorem 2 F [UP(Σp), ϕ] = 1 iff bcl(B0Σ) |= ϕ.

• ϕ is an FO formula (subjective) whose atoms are of the form B0φ where φ is an FO formula (objective).

• bcl(B0Σ)
def
= B0Σ ∪ {¬B0φ|B0Σ 6|= B0φ} (DCWA on knowledge).

• UP(s) is the closure of s under unit resolution and F is implemented trivially on G procedure.

• G procedure reduced an FO query inductively to ground clause quries and check whether they are
subsumed.

FUTURE DIRECTIONS
• Implement limited reasoning at B1 level

• Support of state constraint

• Incorporating procedure calls in the scope of planning operators

ACKNOWLEDGEMENTS
This work was supported in part by the Natural Science Foundation of China under Grant No. 61073053.

REFERENCES

[Baier, Fritz, and McIlraith 2007] Baier, J. A.; Fritz, C.; and McIl-
raith, S. A. 2007. Exploiting procedural domain control knowl-
edge in state-of-the-art planners. In Proc. ICAPS-07, 26–33.

[De Giacomo, Lespérance, and Levesque 2000] De Giacomo, G.;
Lespérance, Y.; and Levesque, H. J. 2000. Congolog, a concur-
rent programming language based on the situation calculus.
Artif. Intell. 121(1-2):109–169.

[De Giacomo, Levesque, and Sardiña2001] De Giacomo, G.;
Levesque, H. J.; and Sardiña, S. 2001. Incremental execution
of guarded theories. ACM Trans. Comput. Log. 2(4):495–525.

[Hoffmann and Nebel 2001] Hoffmann, J., and Nebel, B. 2001.
The FF planning system: Fast plan generation through heuris-
tic search. J. Artif. Intell. Res. 14:253–302.

[Lakemeyer 1999] Lakemeyer, G. 1999. On sensing and off-line in-
terpreting in Golog. In Logical Foundations for Cognitive Agents,
Contributions in Honor of Ray Reiter.

[Liu and Lakemeyer 2009] Liu, Y., and Lakemeyer, G. 2009. On
first-order definability and computability of progression for
local-effect actions and beyond. In Proc. IJCAI-09.

[Liu, Lakemeyer, and Levesque 2004] Liu, Y.; Lakemeyer, G.; and
Levesque, H. J. 2004. A logic of limited belief for reasoning
with disjunctive information. In Proc. KR-04, 587–597.

[Reiter 2001b] Reiter, R. 2001b. On knowledge-based program-
ming with sensing in the situation calculus. ACM Trans. Com-
put. Log. 2(4):433–457.

[Sardina 2001] Sardina, S. 2001. Local conditional high-level robot
programs. In Proc. LPAR-01.

