
A First-Order Interpreter for
Knowledge-based Golog based on

Exact Progression and Limited Reasoning

Yi Fan Minghui Cai Naiqi Li Yongmei Liu

Dept. of Computer Science
Sun Yat-sen University
Guangzhou, China

July 24, 2012

AAAI-12, Toronto

Y. Fan et al. A Golog Interpreter 1 / 14

Current Golog Interpreters

Based on closed world assumption (CWA), dynamic CWA, or
domain closure assumption (DCA)

Query evaluation based on regression, with decreasing
efficiency as the length of action sequences grows

Online, offline or a combination

search operator for guarding successful execution

planning operator for improving efficiency

Y. Fan et al. A Golog Interpreter 2 / 14

Proper+ Knowledge Bases [Lakemeyer and Levesque, 02]

Definition

A first-order KB equivalent to a possibly infinite set of clauses

Example

∀x.x 6= y ⊃ ¬on(x, y) ∨ ¬clear(y), ∀x.¬on(x, x)
∀x, y, z.y 6= z ⊃ ¬on(x, y) ∨ ¬on(x, z)
∀x.x 6= A ∧ x 6= D ⊃ clear(x)

[Liu, Lakemeyer & Levesque, 04]

proposed a logic of limited belief SL and showed SL-based
reasoning with proper+ KBs is decidable.

[Liu & Lakemeyer, 09]

showed for local-effect actions and proper+ KBs, progression is not
only first-order definable but also efficiently computable.

Y. Fan et al. A Golog Interpreter 3 / 14

Our Contribution

An interpreter based on exact progression and limited reasoning

Handle first-order incomplete information in the form of
proper+ KBs

Implemented progression and limited reasoning by grounding
based on unique name assumption

The search operator returns a conditional plan

The planning operator calls a modern planner when local
complete information is available

Y. Fan et al. A Golog Interpreter 4 / 14

Implementing Progression and Evaluation by Grounding

We first implemented algorithms by Liu, Lakemeyer and
Levesque, but the implementations were not efficient

We considered implementation via grounding, but there are
infinitely many individuals

The trick is to use an appropriate number of them as
representatives of those not mentioned by the KB

2

p

upprog

prop

0

0

p

UP

upprog

upprog

upprog

upprog

… 1

p
n

p
1n

p


2

n

1

Progression and Evaluation on Proper+ KBs

via Grounding

Y. Fan et al. A Golog Interpreter 5 / 14

Initial Grounding

� It should be a finite representation of infinitely many clauses.

Proper+ Blocks World

∀x.x 6= y ⊃ ¬on(x, y) ∨ ¬clear(y), ∀x.x 6= A ∧ x 6= B ⊃ clear(x)

� The width of the proper+KB above is 2, so we intrduce 2
representatives, u1 and u2.

Grounding (brute-force)

¬on(A,B) ∨ ¬clear(B), ¬on(A, u1) ∨ ¬clear(u1),
¬on(A, u2) ∨ ¬clear(u2),¬on(B,A) ∨ ¬clear(A),
¬on(B, u1) ∨ ¬clear(u1),¬on(B, u2) ∨ ¬clear(u2) . . .
clear(u1), clear(u2)

Y. Fan et al. A Golog Interpreter 6 / 14

Extended Grounding

� It should be extended to describe new individuals explicitly too.

Original KB with u1 and u2 as representatives

¬on(u1, u2), ¬on(u1, A),¬on(u1, B),
¬on(A, u1),¬on(B, u1),
clear(u1),¬on(u1, u1), . . .

� When an action mentions a new individual c1, we add the
following to the original KB:

Extension with new individual c1

¬on(c1, u2),¬on(u1, c1), ¬on(c1, A),¬on(c1, B),
¬on(A, c1),¬on(B, c1),
clear(c1),¬on(c1, c1), . . .

Y. Fan et al. A Golog Interpreter 7 / 14

Progression wrt Local-Effect Actions

Local-Effect Actions

only change the truth value of fluent atoms with arguments
mentioned by the actions

Influenced Atoms of α = move(B,A, c1)

on(B,A, s), on(A, c1, s), clear(A, s), clear(c1, s)

Progression of a ground KB

1 extend the ground KB if needed

2 add successor state axioms instantiated wrt influenced atoms

3 forget the influenced atoms via resolution

Theorem

Progression here is equivalent to that in [Liu & Lakemeyer, 09].

Y. Fan et al. A Golog Interpreter 8 / 14

Query Evaluation

We perform unit propagation over a ground KB

For clause evaluation

eval(φ(d1, . . . , dn))→ eval(φ(u1, . . . , un)), for d1, . . . , dn
not mentioned by KB and u1, . . . , un as representatives

check if φ(u1, . . . , un) is subsumed by a clause in the KB

Others are reduced to clause evaluation recursively, e.g.

eval(η ∨ ψ)−→ eval(η) or eval(ψ) returns true

eval(∃xψ) −→ eval(ψ(x/d)) returns true for some d in
a particular finite domain

Theorem

Evaluation here is equivalent to that in [Liu et al., 04] at B0 level.

Y. Fan et al. A Golog Interpreter 9 / 14

An Interpreter

Implemented in Prolog

with evaluation and progression implemented in C

Search Operator Σ(δ)

Looking ahead to ensure that nondeterministic choices are
resolved to guarantee the successful completion of δ

Sensing actions allowed in δ and a conditional plan is returned

Automatically branching wrt sensing results, not relying on
special branching actions specified by the programmer

Y. Fan et al. A Golog Interpreter 10 / 14

Planning Operator Υ(τ, δ)

Based on the work of [Baier, Fritz & McIlraith, 07]

τ explicitly specifies the domain of all related individuals

Local complete information: for any P (~c) related to δ,
P (~c) ∈ KB or ¬P (~c) ∈ KB

No sensing actions are allowed in δ

Calling a modern planner to return a sequence of actions,
improving efficiency and ensuring soundness and completeness

A planner can be called multiple times efficiently because
progression maintains the current KB

Y. Fan et al. A Golog Interpreter 11 / 14

Experimental Results for Wumpus World (8×8, 3000)

Prob Gold IMP Reward Moves Time Calls

10% 1412 695 437 33 0.670 16

15% 890 917 275 22 0.430 11

20% 567 1171 175 14 0.254 7

30% 263 1581 82 6 0.112 3

40% 182 1924 58 3 0.064 2

Y. Fan et al. A Golog Interpreter 12 / 14

An Example Program Execution in the Blocks World

Proper+ Initial KB

∀x.x 6= A ∧ x 6= B ∧ x 6= C ∧ x 6= D ⊃ clear(x),
∀x, y.x 6= y ⊃ ¬on(x, y) ∨ ¬clear(y), ∀x.¬on(x, x),
∀x, y.x 6= y ⊃ ¬on(x, y) ∨ ¬on(y, x), . . .

very little knowledge about the exact configuration

Actions: move(x, y, z), sense clear(x), sense on(x, y)

Goal: make clear a list of blocks: A, B, C, D

Y. Fan et al. A Golog Interpreter 13 / 14

Conclusions

Implemented a Golog interpreter based on exact progression
of first-order incomplete information

Implemented limited reasoning, no CWA, DCWA or DCA, but
only unique name assumption and DCWA on knowledge

Implemented progression and evaluation via grounding with
theoretical foundation

A planning problem is generated dynamically each time the
planner is called during a single execution task

Search operator returns a conditional plan not relying on
special branching actions

Future Work

Implement limited reasoning at the B1 level

Y. Fan et al. A Golog Interpreter 14 / 14

