A First-Order Interpreter for

Knowledge-based Golog based on
Exact Progression and Limited Reasoning

Yi Fan Minghui Cai Naigi Li Yongmei Liu

Dept. of Computer Science
Sun Yat-sen University
Guangzhou, China

July 24, 2012

AAAI-12, Toronto

Y. Fan et al. A Golog Interpreter

Current Golog Interpreters

@ Based on closed world assumption (CWA), dynamic CWA, or
domain closure assumption (DCA)

@ Query evaluation based on regression, with decreasing
efficiency as the length of action sequences grows
@ Online, offline or a combination
e search operator for guarding successful execution

e planning operator for improving efficiency

Y. Fan et al. A Golog Interpreter 2/14

Proper™ Knowledge Bases [Lakemeyer and Levesque, 02]

A first-order KB equivalent to a possibly infinite set of clauses

Ve.x #y D —on(x,y) V —clear(y), Vz.—on(z,z)
Vz,y,z.y # z D —on(x,y) V —on(z, z)
Ve.x # ANz # D D clear(x)

[Liu, Lakemeyer & Levesque, 04]

proposed a logic of limited belief SL£ and showed S/L-based
reasoning with proper™ KBs is decidable.

[Liu & Lakemeyer, 09]

showed for local-effect actions and proper™ KBs, progression is not ’@3
only first-order definable but also efficiently computable.

Y. Fan et al. A Golog Interpreter 3/14

Our Contribution

An interpreter based on exact progression and limited reasoning

o Handle first-order incomplete information in the form of
proper™ KBs

@ Implemented progression and limited reasoning by grounding
based on unique name assumption

@ The search operator returns a conditional plan

@ The planning operator calls a modern planner when local
complete information is available

Y. Fan et al. A Golog Interpreter 4/14

Implementing Progression and Evaluation by Grounding

@ We first implemented algorithms by Liu, Lakemeyer and
Levesque, but the implementations were not efficient

@ We considered implementation via grounding, but there are
infinitely many individuals

@ The trick is to use an appropriate number of them as
representatives of those not mentioned by the KB

20
Progression and Evaluation on Proper KBs
prop| up
via Grounding
Yo Upprog = ., upprog _ ., upprog _ = upprog
= > N ¥ > >

o, 2

Y. Fan et al. A Golog Interpreter

Initial Grounding

IZ” |t should be a finite representation of infinitely many clauses.

Proper™ Blocks World

Vae.x #y D —on(z,y) V —clear(y), Ve.x # ANz # B D clear(x)

IE" The width of the proper™KB above is 2, so we intrduce 2
representatives, u; and us.

Grounding (brute-force)

—on(A, B) V ~clear(B), —on(A,u1) V —clear(uy),
—on(A,uz) V —clear(ug), ~on(B, A) V —clear(A),
—on(B,u1) V —clear(uy), ﬂon(B u2) V —clear(ug) . . .
clear(uy), clear(usg)

Y. Fan et al. A Golog Interpreter 6/14

Extended Grounding

BZ” |t should be extended to describe new individuals explicitly too.

Original KB with u; and ugy as representatives

—on(uy,us), mon(uy, A), —~on(ui, B),
—on(A,uy), —on(B,uy),
clear(uy), ~on(uy,uy), ...

IZ" When an action mentions a new individual c;, we add the
following to the original KB:

Extension with new individual ¢;

—on(cy,uz), mon(uy, c1), "on(cy, A), mon(cy, B),
—on(A,cy1),-on(B,c1),

clear(cy),—on(ci,c1),. ..

Y. Fan et al. A Golog Interpreter 7/14

Progression wrt Local-Effect Actions

Local-Effect Actions

only change the truth value of fluent atoms with arguments
mentioned by the actions

Influenced Atoms of av = move(B, A, ¢1)

on(B, A, s),on(A,ci,s),clear(A,s), clear(ci, s)
Progression of a ground KB
@ extend the ground KB if needed
@ add successor state axioms instantiated wrt influenced atoms

© forget the influenced atoms via resolution

Theorem

Progression here is equivalent to that in [Liu & Lakemeyer, 09].

Y. Fan et al. A Golog Interpreter 8/14

Query Evaluation

@ We perform unit propagation over a ground KB

@ For clause evaluation

o eval(p(dy,...,dn)) = eval(éd(uy,...,uy)), fordy,...,dy
not mentioned by KB and uq, ..., u, as representatives

o check if ¢(uy,...,uy,) is subsumed by a clause in the KB
@ Others are reduced to clause evaluation recursively, e.g.
e eval(nVy)— eval(n) or eval(t)) returns true

o eval(Jxy)) — eval(y(x/d)) returns true for some d in
a particular finite domain

Evaluation here is equivalent to that in [Liu et al., 04] at By level.

Y. Fan et al. A Golog Interpreter 9/14

An Interpreter

Implemented in Prolog

@ with evaluation and progression implemented in C

Search Operator X(9)

@ Looking ahead to ensure that nondeterministic choices are
resolved to guarantee the successful completion of §

@ Sensing actions allowed in ¢ and a conditional plan is returned

@ Automatically branching wrt sensing results, not relying on
special branching actions specified by the programmer

Y. Fan et al. A Golog Interpreter 10/ 14

Planning Operator Y (7, d)

Based on the work of [Baier, Fritz & Mcllraith, 07]
7 explicitly specifies the domain of all related individuals

Local complete information: for any P(¢) related to ¢,
P(¢) € KB or -P(¢) € KB

No sensing actions are allowed in ¢

Calling a modern planner to return a sequence of actions,
improving efficiency and ensuring soundness and completeness

A planner can be called multiple times efficiently because
progression maintains the current KB

Y. Fan et al. A Golog Interpreter

11/14

Experimental Results for Wumpus World (8x8, 3000)

Prob | Gold | IMP | Reward | Moves | Time | Calls
10% | 1412 | 695 437 33 0.670 | 16
15% | 890 | 917 275 22 0.430 | 11
20% | 567 | 1171 175 14 0.254 7
30% | 263 | 1581 82 6 0.112 3
40% | 182 | 1924 58 3 0.064 2

Y. Fan et al.

A Golog Interpreter

12/14

An Example Program Execution in the Blocks World

Proper™ Initial KB

Ve.x # ANx # BAx#C ANz # D D clear(x),
Ve, y.x #y D —on(z,y) V ~clear(y), Vz.—on(z,z),
Va,y.x #y D —on(z,y) V —-on(y,x),...

very little knowledge about the exact configuration

Actions: move(z,y, z), sense_clear(z), sense_on(z,y)

Goal: make clear a list of blocks: A, B, C, D

C

D

Y. Fan et al. A Golog Interpreter 13 /14

Conclusions

@ Implemented a Golog interpreter based on exact progression
of first-order incomplete information

@ Implemented limited reasoning, no CWA, DCWA or DCA, but
only unique name assumption and DCWA on knowledge

@ Implemented progression and evaluation via grounding with
theoretical foundation

@ A planning problem is generated dynamically each time the
planner is called during a single execution task

@ Search operator returns a conditional plan not relying on
special branching actions

Future Work

o Implement limited reasoning at the B level

Y. Fan et al. A Golog Interpreter 14 /14

