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Abstract

Strategy synthesis for multi-agent systems has proved to be a
hard task, even when limited to two-player games with safety
objectives. Generalized strategy synthesis, an extension
of generalized planning which aims to produce a single
solution for multiple (possibly infinitely many) planning
instances, is a promising direction to deal with the state-space
explosion problem. In this paper, we formalize the problem
of generalized strategy synthesis in the situation calculus.
The synthesis task involves second-order theorem proving
generally. Thus we consider strategies aiming to maintain
invariants; such strategies can be verified with first-order the-
orem proving. We propose a sound but incomplete approach
to synthesize invariant strategies by adapting the framework
of counterexample-guided refinement. The key idea for
refinement is to generate a strategy using a model checker
for a game constructed from the counterexample, and use
it to refine the candidate general strategy. We implemented
our method and did experiments with a number of game
problems. Our system can successfully synthesize solutions
for most of the domains within a reasonable amount of time.

Introduction
Two player games with reachability or safety objectives
require a player to reach or avoid a designated set of target
configurations. They are closely related to the synthesis of
reactive systems [Pnueli and Rosner 1989], and logical tasks
such as first-order model checking [Gradel et al. 2007].

While multi-agent systems have received much attention,
verifying strategic abilities and synthesizing strategies for
them have proved to be hard tasks. In Strategy Logic,
the model checking problem is non-elementarily de-
cidable [Chatterjee, Henzinger, and Piterman 2010]. In
Alternating-time Temporal Logic, the model checking
problem is P-complete wrt the state space, even considering
memoryless strategies [Alur, Henzinger, and Kupferman
2002; Bulling, Dix, and Jamroga 2010]; it encounters the
state-space explosion problem with the increasing number
of propositions. For games with reachability or safety
objectives, the problem of computing winning regions for
winning strategies, is P-complete [Greenlaw, Hoover, and
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Ruzzo 1995]; the computation approaches suffer from
performance issues [Eén et al. 2015].

For domains with similar structures, generalized strategy
synthesis is a promising direction to deal with the state-
space explosion problem. Generalized strategy synthesis
can be viewed as a multi-agent extension of generalized
planning, which aims to generate one solution that works
for multiple (possibly infinitely many) planning problems
[Srivastava, Immerman, and Zilberstein 2011; Hu and De
Giacomo 2011]. Different from the objective to design
on-line systems to play arbitrary games in general game
playing [Genesereth, Love, and Pell 2005], generalized
strategy synthesis focuses on off-line strategy synthesis
for multiple game instances sharing similar structures. If
a generalized solution is generated, for any game instance
with similar structures, we could efficiently produce a
concrete solution from the generalized one.

A typical example is the n-Nim game, played with n
heaps of pebbles. Two players take turns removing pebbles
from a heap. On each turn, a player must remove at least one
pebble, and may remove any number of pebbles provided
that they all come from the same heap. The player to remove
the last pebble wins. The safety objective is to win the game
whenever it ends. The task is to synthesize a strategy that
works for all instances of the n-Nim game.

Wu et al. [2020] consider the automated synthesis of
generalized winning strategies for impartial combinatorial
games. They first generate a winning formula using given
templates by trying to include or exclude states correspond-
ing to counterexamples generated during the verification
process. They then partition the winning formula into sev-
eral sub-formulas, and attempt to find an action to take under
the condition of each sub-formula via heuristic methods.
While obtaining good performance, their framework has
some limitations. It only considers numerical variables and
the linear relations among them; thus domains and strategies
which involve more expressive formalizations can not be
handled. It requires providing state constraints to denote
legal states, which is not an easy task for some domains.

In this paper, we consider a more general form of syn-
thesis, namely generalized strategy synthesis for finite-state
turn-based two-player games with perfect information and
safety objectives. We formalize the problem of generalized
strategy synthesis as a theorem-proving task in the situation



calculus. We use a basic action theory to represent a class
of game instances with similar structures. We focus on
postdiction strategies of the form ϕ?;πa.a;ψ?, where ϕ and
ψ are first-order formulas, which intuitively means: when ϕ
holds, do any action to make ψ true.

We propose an automated method, sound but incom-
plete, to synthesize postdiction strategies called invariant
strategies, by adapting the idea of counterexample-guided
inductive synthesis [Solar-Lezama et al. 2006] in Formal
Methods. Intuitively, a postdiction strategy ϕ?;πa.a;ψ? for
a player p is an invariant strategy if we have: whenever it’s
p’s turn to move and ϕ holds, p can execute an action to
enforce ψ; whenever it’s the opponent’s turn to move and
ψ holds, any action the opponent can execute makes ϕ true.
Invariant strategies can be verified with first-order theorem
proving. To synthesize an invariant strategy, we first propose
a rough postdiction strategy and verify if it is an invariant
strategy; if not, we use a counterexample to refine the
strategy and continue the process. The counterexample
is used to induce a finite set of game instances, each of
which is solved via the existing model-checking methods
to obtain a winning strategy. Depending on whether the
counterexample is reachable via a winning strategy, we
refine the postdiction strategy accordingly.

We implemented our method and experimented with a
number of combinatorial games, grid games and a game
variant of a protocol for leader election. Our system can
successfully synthesize solutions for most of the domains
within a reasonable amount of time.

Preliminaries
The situation calculus is a many-sorted first-order (FO) lan-
guage with limited second-order features for representing
dynamically changing worlds [McCarthy and Hayes 1969;
Reiter 2001]. In a situation calculus language, there are three
disjoint sorts: action for actions, situation for situations
and object for everything else. Constant S0 denotes the only
initial situation. Binary function do(a, s) represents the sit-
uation resulting from performing action a in situation s. Bi-
nary relation Poss(a, s) denotes that action a is executable
in situation s. Binary relation s v s′ means that s′ can be
obtained via a sequence of actions from s. Notation exec(s)
means that situation s is reachable from the initial situation
S0 via a sequence of executable actions. Dynamic properties
are captured by predicates and functions called fluents
whose values vary from situation to situation. If a formula
only refers to a particular situation τ , we call it uniform in
τ . Let ϕ be a uniform formula. We use ϕ↓ to denote ϕ with
all situation arguments removed, and we call it a situation-
suppressed formula. For a situation-suppressed formula
φ, we use φ[s] to denote the formula obtained from φ by
restoring s as the situation arguments to all fluents.

A dynamic domain is specified by a basic action theory
(BAT) of the form:

D = Σ ∪ Dap ∪ Dss ∪ Duna ∪ DS0 ,where

1. Σ is the set of the foundational axioms for situations;
2. Duna is a set of unique name axioms for actions;

3. Dap is a set of precondition axioms (PAs) of the form
Poss(A(~x), s) ≡ ΠA(~x, s), where ΠA(~x, s) is uniform
in s, denoting the executability condition for actionA(~x);

4. Dss is a set of successor state axioms (SSAs) of the
form F (~x, do(a, s)) ≡ ΦF (~x, a, s) for relational fluents
and f(~x, do(a, s)) = y ≡ Φf (~x, y, a, s) for functional
fluents, where ΦF (~x, a, s) and Φf (~x, y, a, s) are uniform
in s, denoting how the values of fluents will be changed
or maintained via actions;

5. DS0
, the initial database, is a set of sentences uniform in

S0.
The PAs and SSAs for the 2-Nim game are presented:

Example 1. Let fluent n(s) (resp. m(s)) denote the num-
ber of pebbles in the first (resp. second) heap; let action
rn(x) (resp. rm(x)) represent that a player removes x peb-
bles from the first (resp. second) heap. Then the PAs and
SSAs are as follows:
• Poss(rn(x), s) ≡ n(s) ≥ x ∧ x > 0
• Poss(rm(x), s) ≡ m(s) ≥ x ∧ x > 0
• n(do(a, s)) = y ≡ ∃x.a = rn(x) ∧ n(s) = x + y ∨

n(s) = y ∧ ∃x.a = rm(x)
• m(do(a, s)) = y ≡ ∃x.a = rm(x) ∧m(s) = x + y ∨

m(s) = y ∧ ∃x.a = rn(x)

To represent and reason about complex actions, Levesque
et al. [1997] introduced a high-level programming language
called Golog, whose syntax is as follows:

δ ::= α | ϕ? | (δ1; δ2) | (δ1|δ2) | πx.δ | δ∗,
where α is an action term; ϕ? is an action, testing whether a
situation-suppressed formula ϕ holds; program δ1; δ2 repre-
sents the sequential execution of δ1 and δ2; program δ1|δ2
denotes the non-deterministic choice between δ1 and δ2;
program πx.δ denotes the non-deterministic choice of a
value for parameter x in δ; program δ∗ means executing
program δ for a non-deterministic number of times. The se-
mantics of Golog is specified by Do(δ, s, s′), which macro-
expands into a situation calculus formula, saying that it is
possible to reach situation s′ from situation s by executing a
sequence of actions specified by program δ.

Formally, Do(δ, s, s′) is inductively defined as follows:
1. Do(α, s, s′) .

= Poss(α, s) ∧ s′ = do(α, s).
2. Do(φ?, s, s′)

.
= φ[s] ∧ s = s′.

3. Do(δ1; δ2, s, s
′)
.
= ∃s′′.Do(δ1, s, s′′) ∧Do(δ2, s′′, s′).

4. Do(δ1|δ2, s, s′)
.
= Do(δ1, s, s

′) ∨Do(δ2, s, s′).
5. Do((πx)δ(x), s, s′)

.
= (∃x)Do(δ(x), s, s′).

6. Do(δ∗, s, s′) .
= (∀P ).{(∀s1)P (s1, s1) ∧ (∀s1, s2, s3)

[P (s1, s2) ∧Do(δ, s2, s3) ⊃ P (s1, s3)]} ⊃ P (s, s′).
Besides the evaluation semantics above, Giacomo et

al. [2000] defined the transition semantics. In transition
semantics, a configuration is a pair (δ, s), where δ is a pro-
gram remaining to be executed and s is a situation. A spe-
cial program nil represents the fact that nothing remains to
be performed. Predicate Trans(δ, s, δ, s′) intuitively means
a transition from configuration (δ, s) to (δ′, s′) in one
step. Predicate Final(δ, s) denotes whether program δ can
legally terminate in situation s. Their formal definitions can



be referred in [Giacomo, Lespérance, and Levesque 2000].
With Trans and Final, Do can be defined as follows:
Do(δ, s, s′) ≡ ∃δ′.T rans∗(δ, s, δ′, s′) ∧ Final(δ′, s′),

where Trans∗ denotes the reflexive transitive closure of
Trans.

Regression is an important computational mechanism for
reasoning about actions, to reduce the evaluation of a sen-
tence to a FO theorem-proving task in the initial database.
For our purpose, we present the one-step regression here.
Definition 1. Given a BAT D, we use R[ϕ] to denote the
formula obtained from ϕ by the following steps:
1. For each functional fluent term f(~t, do(α, σ)), re-

place the current formula ψ with (∃y).Φf (~t, y, α, σ) ∧
ψ[f(~t, do(α, σ))/y], where ψ[t/y] denotes the result of
replacing all occurrences of t in ψ by y;

2. Replace each fluent atom F (~t, do(α, σ)) with
ΦF (~t, α, σ);

3. Replace each atom Poss(α, σ) with Πα(σ);
4. Further simplify the result by using Duna.
Example 2. If ϕ is n(do(rn(3), s)) = 5, then R[ϕ] is
∃y.n(s) = 3 + y ∧ y = 5, which is equivalent to n(s) = 8.
Proposition 1. D |= ϕ ≡ R[ϕ].

In this paper, we consider finite-state turn-based two-
player games. We assume that players have perfect
information, i.e., players know all the information of the
state. We call them FTTP games for short. Formally,
Definition 2. A FTTP game G is a tuple
(Q1, Q2, q0,A1,A2, δ1, δ2,∆, l), where, for i = 1, 2,
• Qi is a finite set of states for player i;
• q0 ∈ Q1 is the starting state;
• Ai is a set of actions for player i;
• δi : Qi ×Ai → Q3−i is a transition function;
• ∆ is a set of atomic propositions;
• l : Q1 ∪Q2 → 2∆ is a labelling function.
A play for game G is an infinite sequence of states,

starting from q0 and following the transition functions. A
history is a finite prefix of a play. We denote H as the set
of all histories of a game.

A strategy σi : H → Ai for player i (i = 1, 2) is
a function that maps a history to an action. A strategy is
memoryless if the selection of actions only depends on the
last state of any history. For games with safety objectives,
a player has a strategy to win iff she has a memoryless
strategy to do so [Apt and Grädel 2011].

A memoryless strategy σi induces a structure called a
play region which represents all the states resulting from
all the possible plays, when player i adopts the strategy.
Formally, G|σi = (Q′1, Q

′
2), where Q′1 and Q′2 are defined

inductively:
1. q0 ∈ Q′1;
2. If q ∈ Q′i, σi(q) = a, and δi(q, a) = q′, then q′ ∈ Q′3−i;
3. If q ∈ Q′3−i and δ3−i(q, a) = q′ for some a, then q′ ∈
Q′i.

Given safety condition φ for player i, we say that a strat-
egy σi is a safe strategy if any state in the induced player
region G|σi

satisfies φ. We call such G|σi
a safe region.

Our Representation Framework
In this section, we introduce our framework to represent the
problem of synthesizing a postdiction strategy for a finite-
state safety game BAT, which represents a set of (possibly
infinitely many) FTTP games with safety goals.

We first show how to extend the situation calculus and a
basic action theory D to define a finite-state game BAT that
represents a set of (possibly infinitely many) FTTP games.
As in [Luo and Liu 2019], we add a new sort player and
two constants P1 and P2; we add a new fluent turn(p, s)
to specify the turn for players in situation s; we add the
following axioms:
• ∀p.(p = P1 ∨ p = P2) ∧ (P1 6= P2), saying that there

are only two players;
• turn(P1, S0) ∧ ¬turn(P2, S0);
• turn(p, do(a, s)) ≡ ¬turn(p, s), saying that two play-

ers move alternately.
To represent domains involving arithmetic, we introduce

a new sort nat for natural numbers, and we add to D the
second-order axiomatization of Peano arithmetic. Without
loss of generalization and to simplify the presentation, we
assume all objects are of sort nat, since we can use natural
numbers as IDs for objects.

We introduce a finite-state axiom for a game BAT. Let ~x
be a tuple of variables. We use ~x > k to denote the formula
x1 > k ∨ . . . ∨ xi > k.
Definition 3. Given a game BAT D, we define the finite-
state axiom Dfs as the formula ∃k∀s.exec(s) ⊃ B(k, s),
where B(k, s) is the conjunction of the following formulas:
1. ∀~x.~x > k ⊃ ¬F (~x, s), for each relational fluent F ;
2. ∀~x.~x > k ⊃ f(~x, s) = 0, for each non-unary functional

fluent f ;
3. ∀~x.f(~x, s) ≤ k, for each functional fluent f ;
4. ∀~x.~x > k ⊃ ¬Poss(A(~x), s), for each action A.

The finite-state axiom means that there is a number k such
that all larger numbers are inactive throughout the game.
We call k the game active number. Thus each model of
the finite-state axiom corresponds to a model with finite
domain, hence the model represents a finite-state game.
Definition 4. A game BAT D is finite-state if D |= Dfs.

We then define our generalized game problems.
Definition 5. A generalized finite-state safety (GFSS) game
problem is a tuple P = 〈D, p, φ〉, where D is a finite-state
game BAT, p is a player, and φ is a situation-suppressed
formula denoting a safety goal for player p to enforce.

A general solution for a set of FFTP games is not always
first-order definable, as winning regions for safety games are
not always first-order definable [Apt and Grädel 2011]. In
this paper, we focus on a special kind of strategies which we
call postdiction strategies: such a strategy does any action
to enforce a first-order definable condition; it has a simple
structure and is closely related to memoryless strategies.

As in [Luo and Liu 2019], we use πa.a to mean doing any
executable action. Its formal semantics is defined as follows:

Do(πa.a, s, s′)
.
= ∃a.Poss(a, s) ∧ s′ = do(a, s).



Definition 6. A postdiction strategy is a Golog program of
the form ϕ?;πa.a;ψ?.

Intuitively, the strategy means whenever ϕ holds, perform
any action to make ψ hold.

Example 3. For the 2-Nim game, n%2 = 0?;πa.a;n%2 =
1? is a postdiction strategy, which means that whenever the
number of pebbles in the first heap is even, take any action
to make it odd.

We show the relation between memoryless strategies and
postdiction strategies. In fact, a postdiction strategy provides
a compacted representation of memoryless strategies.

Proposition 2. Given a FTTP game with a safety objective,
a player has a memoryless strategy to win iff she has a post-
diction strategy to do so.

Proof. Given a memoryless strategy ensuring a safe
region (Q′1, Q

′
2), one can obtain a postdiction strategy∨

q∈Q′
1

∧
l(q)?;πa.a;

∨
q∈Q′

2

∧
l(q)? whose play region

is also (Q′1, Q
′
2), which make it safe. Given a postdiction

strategy ϕ?;πa.a;ψ? being a safe strategy, one can obtain a
safe memoryless strategy σ as follows. Let σ(h) = a, if the
last state s of history h satisfies ϕ, where a is such an action
that via action a the next state of state s satisfies ψ.

Note that we can convert a postdiction strategy to an
equivalent but more specific one by eliminating the use of
πa.a. The idea is to consider each possible action Ai(~c),
i = 1, . . . , N , and perform regression on ψ over Ai(~c).

Definition 7. Given a postdiction strategy ϕ?;πa.a;ψ?,
we define its normalization as the non-deterministic
composition of the following programs: for i = 1, . . . , N ,

ϕ?;π~x.R[ψ(do(Ai(~x), s))]↓?;Ai(~x).

Example 4. n%2 = 0?;πa.a;n%2 = 1? is normalized as

n%2 = 0?;πx.(n+ x)%2 = 1?; rn(x).

We now define the concept of solutions to GFSS game
problems. Given a postdiction strategy S for player p, we
use δS to denote the composite strategy where the opponent
adopts the null strategy, i.e., δS is defined as turn(p)?;S |
¬turn(p)?;πa.a. Then we have:

Definition 8. Given a GFSS game problem P = 〈D, p, φ〉
and a postdiction strategy S for player p, we say that S is a
solution to P or S is a safe strategy for P if

D |= ∀s∀δ.T rans∗(δ∗S , S0, δ, s) ⊃
φ[s] ∧ ∃s′.T rans(δS , s, nil, s′).

Intuitively, S is a solution to P if when p adopts S and
the opponent adopts the null strategy to play, any reachable
situation satisfies φ and at any reachable situation, the
strategies always prescribe an action to take. Although we
focus on postdiction strategies whose conditions are first-
order definable, the state representation of the resulting
reachable situations is not always first-order definable. In
general, to test whether S is a solution is a second-order
theorem-proving task, which is highly undecidable.

Automated Synthesis of Invariant Strategies
This section presents a sound but incomplete method to syn-
thesize safe postdiction strategies called invariant strategies.

The definition of safe postdiction strategies involves
second-order theorem proving. In this paper, we focus on
safe postdiction strategies that can be verified with first-
order theorem proving. We call them invariant strategies.

Intuitively, an invariant strategy enables a player to
maintain a first-order definable property that ensures the
safety condition, no matter how the opponent acts through-
out the games. The verification of an invariant strategy
relaxes the requirement of reachability that is needed for
a safe postdiction strategy, and thus possibly examines
unreachable states of the games.

We say that a postdiction strategy ϕ?;πa.a;ψ? for player
p is an invariant strategy if the following hold:
1. whenever it’s p’s turn to move and ϕ holds, p can execute

an action to enforce ψ;
2. whenever it’s the opponent’s turn to move and ψ holds,

any action the opponent can execute makes ϕ true;
3. both ϕ and ψ imply the safety condition;
4. any initial state satisfies ϕ (resp. ψ) if p is P1 (resp. P2).
The formal definition is as follows:
Definition 9. Given a GFSS game problem 〈D, p, φ〉, we
say that a postdiction strategy ϕ?;πa.a;ψ? for player p is
an invariant strategy if the following conditions hold:
I1 ϕ ∧ turn(p) |=

N∨
i=1

∃~x.R[Poss(Ai(~x), s) ∧ ψ(do(Ai(~x), s))]↓;

I2 ψ ∧ ¬turn(p) |=
N∧
i=1

∀~x.R[Poss(Ai(~x), s) ⊃ ϕ(do(Ai(~x), s))]↓;

I3 ϕ |= φ, and ψ |= φ;
I4 if p = P1, DS0↓ |= ϕ; otherwise DS0↓ |= ψ.
Example 5. n%2 = 0?;πa.a;n%2 = 1? is not an invariant
strategy, as it at least violates I1: a state 〈n = 0,m = 1〉
is a counterexample, in which no action can be executed to
enforce n%2 = 1.
Proposition 3. Given a GFSS game problem 〈D, p, φ〉, an
invariant strategy is a safe strategy.

Proof. For our purpose, we use notation W (s) to de-
note the condition ∀s′∀δ′.T rans∗(δ∗S , s, δ′, s′) ⊃
φ[s′] ∧ ∃s′′.T rans(δS , s′, nil, s′′). Thus a strategy S
is a safe strategy if D |= W (S0).

We prove that if a strategy of the form ϕ?;πa.a;ψ?
is an invariant strategy, then we have D |= W (S0) as
follows. We first prove D |= ∀s.ϕ[s] ∧ turn(p, s) ⊃ W (s)
and D |= ∀s.ψ[s] ∧ ¬turn(p, s) ⊃ W (s). Let M be
a model of D. We prove M |= ϕ[s] ∧ turn(p, s) ∧
Trans∗(δ∗S , s, δ

′, s′) ⊃ φ[s′] ∧ ∃s′′.T rans(δS , s′, nil, s′′)
and M |= ψ[s] ∧ ¬turn(p, s) ∧ Trans∗(δ∗S , s, δ′, s′) ⊃
φ[s′] ∧ ∃s′′.T rans(δS , s′, nil, s′′) for any s and s′.
We prove by induction on the distance d between
s and s′. Basis: d = 0 hence s′ = s. We prove
M |= ϕ[s]∧ turn(p, s) ⊃ φ[s]∧∃s′′.T rans(δS , s, nil, s′′),



Algorithm 1: synthesize
Input: GFSS game problem 〈D, p, φ〉
Output: a safe strategy or failure or unknown

1 P ← predicates(D) ;
2 S ← φ?;πa.a;φ? ;
3 while not timing-out do
4 M ← verify(S, 〈D, p, φ〉) ;
5 if verification succeeds then return S ;
6 else S ← refine(S,M , 〈D, p, φ〉,P) ;
7 if S is failure then return failure ;
8 return unknown

which follows by I3 and I1; andM |= ψ[s]∧¬turn(p, s) ⊃
φ[s] ∧ ∃s′′.T rans(δS , s, nil, s′′), which follows by I3 and
the requirement of FTTP games that plays are infinite se-
quences of states. Induction: we assume that the proposition
holds when d = n, and proceed to prove that it holds when
d = n + 1. So suppose that M |= ϕ[s] ∧ turn(p, s) ∧
Trans∗(δ∗S , s, δ

′, s′) and dist(s, s′) = n + 1. Since there
exists s′′ and δ′ such that M |= Trans(δS , s, nil, s

′′) ∧
Trans∗(δ∗S , s

′′, δ′, s′) and dist(s′′, s′) = n, from I1 and
the axioms for turn, we have M |= ψ[s′′]∧¬turn(p, s′′)∧
Trans∗(δ∗S , s

′′, δ′, s′) and dist(s′′, s′) = n. Now by induc-
tion, M |= φ[s′] ∧ ∃s′′.T rans(δS , s′, nil, s′′). Similarly,
suppose thatM |= ψ[s]∧¬turn(p, s)∧Trans∗(δ∗S , s, δ′, s′)
and dist(s, s′) = n + 1, from I2, together with the ax-
ioms for turn and the requirement of FTTP games,
we prove M |= φ[s′] ∧ ∃s′′.T rans(δS , s′, nil, s′′).
Thus D |= ϕ[S0] ∧ turn(p, S0) ⊃ W (S0) and
D |= ψ[S0] ∧ ¬turn(p, S0) ⊃ W (S0). By I4 and the
axioms for turn, it follows D |= W (S0).

We show the relations among safe postdiction strategies,
invariant strategies, and first-order verifiable strategies.
Here first-order verifiable strategies mean strategies that
can be verified using first-order theorem proving. First,
invariant strategies are a proper subset of safe postdiction
strategies. Given an invariant strategy ϕ?;π.a.a;ψ?, by
using a first-order formula γ denoting some unreachable
states of the games, one could obtain a safe postdiction
strategy ϕ ∨ γ?;π.a.a;ψ?, which may no longer be an
invariant strategy, as it may violate I3, as γ may induce
unsafe states. Second, invariant strategies are a proper
subset of first-order verifiable strategies. Given γ as men-
tioned above, the unreachability of γ may be proved using
first-order theorem proving. Thus, ϕ ∨ γ?;π.a.a;ψ? can be
a first-order verifiable strategy but not an invariant strategy.

In the following, we present our algorithms for the
synthesis of invariant strategies.

Alg. 1 is the main procedure to synthesize an invariant
strategy. We adapt the idea of counterexample-guided
inductive synthesis. First, predicate symbols are extracted
from the game BAT. Postdiction strategy S is initialized
with the two formulas taken as the safety goal φ. While not
timing out, repeat this process: verify if S is an invariant
strategy via using an SMT solver to examine the conditions
of Def. 9; if all the conditions hold, return S; otherwise, re-

Algorithm 2: refine
Input: strategy ϕ?;πa.a;ψ?, counterexample M ,

GFSS game problem 〈D, p, φ〉, predicate set P
Output: a refined postdiction strategy or failure

1 M+
ϕ ,M−ϕ ,M+

ψ ,M
−
ψ ← getPosNegSet(ϕ,ψ);

2 switch M do
3 case M falsifies ϕ |= φ doM−ϕ ←M−ϕ ∪ {M};
4 case M falsifies ψ |= φ do M−ψ ←M

−
ψ ∪ {M};

5 case M falsifies DS0↓ |= ϕ do
M+

ϕ ←M+
ϕ ∪ {M};

6 case M falsifies DS0↓ |= ψ do
M+

ψ ←M
+
ψ ∪ {M};

7 case M falsifies I1 do
8 sr ← findSafeRegion(M, 〈D, p, φ〉);
9 if sr is failure then return failure;

10 if sr is ∅ then M−ϕ ←M−ϕ ∪ {M} ;
11 else M+

ψ ←M
+
ψ∪ succStates(sr,M) ;

12 case M falsifies I2 do
13 sr ← findSafeRegion(M, 〈D, p, φ〉);
14 if sr is failure then return failure ;
15 if sr is ∅ then M−ψ ←M

−
ψ ∪ {M} ;

16 else M+
ϕ ←M+

ϕ∪ succStates(sr,M) ;

17 ϕ′ ← update(ϕ,M+
ϕ ,M−ϕ , k,P);

18 ψ′ ← update(ψ,M+
ψ ,M

−
ψ , k,P);

19 return ϕ′?;πa.a;ψ′?

fine S using the returned counterexample; if the refinement
process fails, return failure.

Alg. 2 and Alg. 3 show the idea of counterexample-guided
strategy refinement, whose intuition is as follows: a coun-
terexampleM is understood as a game state, which we call a
state model, and in which the postdiction strategy fails to be
an invariant strategy. As an invariant strategy represents safe
strategies of all the game instances, to fix the postdiction
strategy such that M no longer becomes a counterexample,
we attempt to find a safe strategy of a game instance, whose
safe region contains M . If we could do so, we use the infor-
mation how that safe strategy behaves in the state model M ,
to refine the postdiction strategy. Otherwise, we let M no
longer occur in the executions of the postdiction strategy.

In Alg. 2, to refine postdiction strategy ϕ?;πa.a;ψ?, we
refine its formulas ϕ and ψ. Throughout the algorithms,
we maintain positive sets and negative sets, to indicate
how to refine the formulas. A positive set denotes a set of
models that should satisfy a formula, and a negative set de-
notes a set of models that should falsify a formula. Using
getPosNegSet, we get the positive sets and negative sets.

We begin with deciding if counterexample M should be
added to a positive set or a negative set: In case M falsifies
ϕ |= φ, M should be added to M−ϕ , to exclude M from
formula ϕ, thus to exclude the failure scenarios, in which the
executions of the postdiction strategy lead to the state model
M falsifying the safety goal φ. The case in whichM falsifies



ψ |= φ is similar. In case M falsifies DS0↓ |= ϕ, M should
be added toM+

ϕ , asM represents an initial state of the game
problem. The case in which M falsifies DS0↓ |= ψ is sim-
ilar. In case M falsifies I1, which means that in state model
M , player p cannot perform any action to enforce ψ, we
do the following: we decide if state model M is spurious
by resorting to findSafeRegion (see Alg. 3). Intuitively,
we say that a state model is spurious if it does not occur in
any execution of the safe strategies of the game instances.
If safe region sr is ∅, meaning that the state model M is
spurious, we add M toM−ϕ , to exclude M from formula ϕ,
thus to exclude the occurrences of M in the executions of
the postdiction strategy. Otherwise, with safe region sr, we
add the successor states of M to M+

ψ (using succStates),
to guarantee that in M , following the postdiction strategy,
the player can perform an action to enforce ψ. The case in
which M falsifies I2 is similar, thus we omit it here.
Example 5 cont’d. Given counterexample 〈n = 0,m = 1〉,
suppose that DS0

is {n(S0) 6= m(S0)}, then there is a game
instance whose initial state is 〈n = 0,m = 1〉, and whose
safe region is (g1, g2), where g1 is {〈n = 0,m = 1〉}, and g2

is {〈n = 0,m = 0〉}. As we know that the counterexample
occurs in the safe region, we add 〈n = 0,m = 0〉 toM+

ψ .

We then update formulas ϕ and ψ with the new positive
sets, the new negative sets, and predicate language P . To ac-
celerate the update process, we consider first-order formulas
of the form φ∧

∧
{c1, . . . cn}, where φ is the safety goal, and

each ci is a clause possibly with free variables, understood
as being universally quantified. A clause is the disjunction of
a set of literals, where a literal is an atom or its negation. For
instance, clause {P (x), Q(x, y)} should be understood as
∀x∀y.P (x)∨Q(x, y). With the form, given a modelM satis-
fying the safety goal, we update a formula γ as follows: sup-
pose we need to update γ such that M |= γ, we update each
clause ci of γ such that M |= ci; suppose we need to update
γ such that M 2 γ, we update a certain clause cj of γ such
that M 2 cj . Thus, the clauses of γ share the same positive
setM+

γ , while partitioning the negative setM−γ . Formally,

• M+
ci =M+

γ , for each ci ∈ γ;

• (
⋃n
i=1M−ci) =M−γ andM−ci∩M

−
cj = ∅ for ci, cj ∈ γ.

To update a formula, we follow the idea of local update
presented in [Luo and Liu 2019]. We first give the definition
of a change set as follows.
Definition 10. Given a clause c, a number k and two model
sets M+ and M−, change(c, k,M+,M−,P) is a clause
set such that a clause c′ is in it iff the following hold:
• c′ is obtained from c via changing at most k times,

where the change operation denotes adding a literal or
replacing a literal with another one;

• c′ is satisfied by every model inM+ and is falsified by
every model inM−.

With the above definition, to update formula γ such
that M |= γ, we replace each ci of γ with c′i, where
c′i ∈ change(ci, k,M+

ci ∪ {M},M
−
ci ,P). If no such

c′i is available, we drop ci from γ. To update γ such
that M 2 γ, we replace one cj of γ with c′j , where

Algorithm 3: findSafeRegion
Input: counterexample M ,
GFSS game problem 〈D, p, φ〉
Output: a safe region containing M or ∅ or failure

1 G ← grounding(D, |M |+ c);
2 foreach G ∈ G do
3 σ ←model-checking(G, 〈〈p〉〉Gφ) ;
4 if σ does not exist then return failure;
5 else if M ∈ G|σ then return G|σ ;
6 return ∅

c′j ∈
⋃
ci∈γ change(ci, k,M

+
ci ,M

−
ci ∪ {M},P). If no

such c′j is available, we restart the main algorithm if it is
not timing-out. There may be multiple available clauses,
for which we define a preference relation to select one. The
preference relation is based on an intuition that if we choose
a clause from a set of clauses, we choose that one which has
less potential to cause restarts, and which has fewer literals
to keep the formula simple. The definition of the preference
relation is through a scoring function. Initially, the score of
each literal is 0. During restart, we decrease by one the score
of each literal appearing in clauses that have been chosen.
The score of a clause is the sum of the scores of the literals
in the clause. A clause c1 is preferred over another clause
c2 if score(c1) > score(c2) or score(c1) = score(c2)
and |c1| < |c2|. Note that with a clause replaced by another
clause, the proof obligation might fall into an undecidable
fragment, so that the SMT solvers trap into a loop. We thus
set a time-out bound for the solvers, so that we are able to
backtrack to select another clause for the formula update.
Example 5 cont’d. With the new M+

ψ as mentioned ear-
lier, a possible refinement for formula ψ is to replace clause
n%2 = 1 with clause n%2 = 1 ∨m = 0.

In Alg. 3, we attempt to find a safe region which contains
M , and which is induced by a safe strategy of a certain
game instance. First, from M , we attempt to generate a set
of game instances. However, recall that a game BAT might
possibly represent infinitely many game instances. To con-
sider a finite subset of them, we use a bound b. The bound b
is set as |M |+c, where c is a parameter, and |M | is a number
N such that M |= B(N, s)↓ (where B is presented in Def.
3). Intuitively, |M | denotes a number such that all larger
numbers are inactive throughout the state model M . Using
the bound b, we consider game instances whose game active
numbers are smaller than b+1: we first generate a finite set I
of initial states from the initial database, that is, we generate
all models of formula

∧
DS0↓ ∧ ∃k.B(k, S0)↓ ∧ k < b+ 1

via an SMT solver, and take such models as the initial states.

Example 6. In the 2-Nim game, let DS0
be {n(S0) 6=

m(S0), n(S0) ≥ 1 ∧ m(S0) ≥ 1}, and parameter c be 1.
Suppose that a returned counterexample M is 〈n = 1,m =
1〉. Then |M | can be 1, and the bound b is 2. Using the
bound and an SMT solver, we get a finite set of models:
{〈n = 1,m = 2〉, 〈n = 2,m = 1〉}.

For each initial state I ∈ I, we then induce a game



instance G as follows. We take bound b as the game active
number, and ground the action precondition axioms and
successor state axioms, where the ground operation involves
replacing every quantifier ∀k (resp. ∃x) with the bounded
quantifier ∀x ≤ b (∃x ≤ b). An initial state I with the
grounded precondition axioms and successor state axioms
represents a game instance G.

For each game instance G, we then attempt to find a safe
strategy via ATL model checking. We check 〈〈p〉〉Gφ over
game instance G, where 〈〈p〉〉Gφ expresses that agent p
has a strategy to ensure that φ always holds. We translate
a turn-based game to a concurrent game by letting a player
do null action when not in her turn. Checking 〈〈p〉〉Gφ
over G might fail, in which case we know that the game
problem is unsolvable, as we find a game instance in which
the player does not have a safe strategy. Finally, we check
whether M occurs in the safe regions of the game instances
and return the result.
Theorem 1. Given a GFSS game problem, if Algorithm 1
returns a strategy, then it is a safe strategy; if failure is
returned, the problem is unsolvable.

Proof. When Algorithm 1 returns a strategy, we know that
it is an invariant strategy. It is also a safe strategy, which
follows by Prop. 3. If failure is returned, we know that
there are no safe strategies for a game instance; hence there
are no solutions for the GFSS game problem.

Example 6 cont’d. Given DS0 as before, let the safety goal
be n = 0 ∧m = 0 ⊃ ¬turn(p). We synthesize an invariant
strategy for P1, where ϕ and ψ are as follows:

∀x.[x < 0 ∨ n 6= x ∨m 6= x] and
∀x.[x < 0 ∨ n 6= x ∨m = x],

which can be further simplified to m 6= n and m = n.

Experimentation
This section presents our implementation and the experi-
mental results. We implemented a prototype system using
Python. We use two SMT solvers for the first-order reason-
ing: Z3 [de Moura and Bjørner 2008] and CVC4 [Barrett
et al. 2011], both of which support quantified formulas. We
use the multi-agent model checker MCMAS [Lomuscio,
Qu, and Raimondi 2017] for synthesizing safe strategies
for FTTP games. With the SMT solvers, to check whether
ϕ |= φ holds, we check whether ϕ ∧ ¬φ is unsatisfiable.
We may receive the following from the SMT solvers:
sat, i.e., it finds a counterexample; unsat, i.e., it proves
ϕ |= φ; unknown, i.e., it is unsolvable or timing-out. To
improve the success rate of the verification, when Z3 returns
unknown, we change to CVC4. Further, we perform quan-
tifier elimination on formulas via Z3 before sending them to
the SMT solvers. The time-out bound for the main algorithm
is 3600 seconds. The time-out bound for the SMT solvers is
10 seconds. Considering the computational resources, we set
the number c in Alg. 3 to 1, and the number k in Alg. 2 to 3.

We did experiments with combinatorial games Nim, its
variants and Chomp2xN from [Farzan and Kincaid 2018;
Wu et al. 2020], and grid games ChompNxN and a variant

game L R+ R− B S T(s)
2-Nim 44 2 5 0 6 14.5

Take-away 94 3 11 1 6 43.2
Sub. 118 7 23 0 4 321.1

E.&D. 64 3 13 0 10 210.8
Mon. 2-Nim 44 1 9 0 6 26.4

Ch.2xN 44 2 12 0 14 35.6
Ch.NxN 58 – – – – –
Coloring 32 4 11 1 8 303.2
Leader 66 0 8 2 16 367.2

Table 1: Experimental results

of coloring from [Luo and Liu 2019], and a game variant
of a standard protocol for leader election from [Padon et al.
2016]. If games have ending states, we adapt them into
our framework by letting null action be the only possible
action when a game ends. All experiments were conducted
on a MacOS machine with 2.30GHz CPU and 8GB RAM.
The details of domains are as follows.
2-Nim: The rule is as mentioned in the Introduction.
Take-away: It is a variant of the 1-Nim. Only removing 1
or 2 or 3 pebbles is possible.
Subtraction: It is a variant of the 1-Nim. Only removing 1
or 3 or 4 pebbles is possible.
Empty-and-Divide: It is a variant of the 2-Nim. The effect
of an action will remove all the pebbles from one heap and
divide the pebbles of the remaining heap into two heaps.
Monotonic 2-Nim: It is a variant of the 2-Nim. A player
can remove a certain number of pebbles, but can neither
make any heap empty nor make the number of pebbles in
the second heap more than that in the first heap.
Chomp2xN (resp.NxN): Cookies are laid out on a 2xN
(resp. NxN) rectangle. The cookie in the top left position
is poisoned. Two players take turns making moves: at each
move, a player eats a remaining cookie, together with all
cookies to the right or below it. The player who eats the
poisoned cookie loses the game.
Coloring: Two players take turns to perform actions. A
player paints red and another player does cleaning on a
1xN grid. Painting red on a cell is possible if the cell is not
painted. Cleaning a cell is possible if the cell is painted.
Show that the grid is always clean when in the player’s turn.
Leader: The protocol assumes a ring of unbounded size.
Every node has a unique ID. Every node can send its own
ID to its neighbour in one direction. A node forwards
messages containing an ID higher than its own ID. When
a node receives a message with its own ID, it declares itself
as a leader. Show that there is at most one leader.

Experimental results are summarized in Table 1. Here L
is the number of generated literals; R+ (resp. R−) denotes
the number of times of adding models to positive sets (resp.
negative sets); B denotes the number of times of backtrack-
ing for another clause when the SMT solvers time out; S
denotes the number of literals used in the strategy after
simplification; T (in seconds) is the total time for synthesis.
Notation – means timing out. Our system successfully syn-



2-Nim Take-away Sub. E.&D. Mon. 2-Nim Ch.2xN Ch.NxN Coloring Leader
[Wu et al. 2020] 4 4 4 4 4 4 8 8 8

Our method 4 4 4 4 4 4 – 4 4

Table 2: 4 means that a strategy is synthesized successfully; 8 means that the framework cannot formalize the problem.

thesizes strategies for all the domains except ChompNxN.
There are some factors affecting the running time: the

number of literals, how large a game instance to solve,
and how complicated the invariants to search for, i.e., how
many literals are in the invariants, and whether they involve
quantifiers or non-arithmetic relations.

We do not directly compare with the related method pre-
sented in [Wu et al. 2020], as their problem is defined differ-
ently, in that their formalizations of domains do not include
initial states but include legal states. Their method generates
strategies within 250 seconds for all the tested domains,
while for domain Subtraction, our method needs more than
250 seconds. However, as shown in Table 2, with the expres-
sive framework, our method can synthesize more expressive
strategies, while still in a reasonable amount of time.

Related Work
For representing and reasoning about strategies in the situa-
tion calculus, Lespérance et al. [2000] defined an action se-
lection function σ(s), which is a mapping from situations to
primitive actions, prescribing which action the agent should
perform in a situation. Xiong and Liu [2016] extended the
situation calculus with a second-order strategy sort, and
proposed a general strategic framework, where strategies
can be compactly represented by a fragment of Golog
programs. Luo and Liu [2019] proposed FSA representation
of strategies and their automated verification. But none of
these work concerns automated synthesis of strategies.

In the area of infinite state game solving, Farzan and
Kincaid [2018] focused on linear arithmetic games, and
proposed a method to solve the general problem by solving
games of increasing sizes. Wu et al. [2020] proposed a faster
algorithm, making use of compacted representation of states
and counterexample-guided synthesis. Instead of incomplete
approaches, there are also researches focusing on subclasses
of game structures for which the synthesis problem is decid-
able, e.g., push-down games [Walukiewicz 2001] and multi-
counter games [Kucera 2012]. However, none of these work
has enough expressiveness to formalize the games Chomp-
NxN, Coloring and Leader and also their strategies, as these
domains involve non-arithmetic relations and quantified
formulas, e.g., ∀x, y.[x 6= y ⊃ ¬leader(x) ∨ ¬leader(y)],
expressing that there is at most one leader.

Our work is related to generalized planning. Hu and De
Giacomo [2011] gave a general definition of generalized
planning where generalized plans work with a set of
deterministic environments. De Giacomo et al. [2016]
correlated generalized planning to a game of imperfect
information. These frameworks are related to the notion
of two-player games, but they assume a common action
pool for the planning domains. Bonet and Geffner [2018]
considered relational domains where the set of actions and

objects depends on the instance, by projecting actions over
a common set of features. They provided an automated
method to learn these features as abstractions. While the
language for features is rich, involving counting and transi-
tive closure, but without theorem-proving, their method can
only guarantee approximate soundness that the plan works
for the set of learning samples.

In planning, Seipp and Helmert [2013] use the idea of
counterexample-guided abstraction refinement to compute
abstraction heuristics for optimal classical planning. They
start from a coarse abstraction of the planning task, and iter-
atively compute an abstract solution, by checking if and why
it fails for the planning task, and refining the abstraction ac-
cordingly. The problem we focus is different, in that we fo-
cus on infinite-state systems but not finite-state systems. We
refine a strategy but not a transition system; our goal of re-
finement is to find a solution but not an abstraction heuristic.

Conclusion
In this paper, we investigate the generalized strategy syn-
thesis problem for a set of FTTP games with safety goals.
We formalize the problem in the situation calculus. We
focus on invariant strategies that aim to maintain invariants
no matter how the opponent acts. We propose a sound but
incomplete method to synthesize invariant strategies via
counterexample-guided strategy refinement, making use
of safe strategies for game instances generated with ATL
model-checking. We implemented a prototype system and
tested with a number of domains, and our experiments
showed the viability of our approach. With the expressive
framework in the situation calculus, our approach shows
the potential to synthesize expressive strategies, to solve
richer domains, such as those whose formalizations need
quantified formulas. Although we consider two-player turn-
based games, our framework is adaptable to the settings of
concurrent games and multiple player games.

Our algorithm is not guaranteed to terminate, as the
synthesis problem is generally undecidable. While our
method is designed for broader cases, it’s interesting but
non-trivial to consider a class of game problems for which
our algorithm will terminate. Our current approach focuses
on invariant strategies, which have simple structures, while
whose synthesis relies heavily on the synthesis of formulas.
Introducing more complicated structures in strategies to
relieve the dependence is one possible future direction.
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