
A Modal Logic for Joint Abilities of Structured Strategies
with Bounded Complexity

Ruiqi Jin1, Yongmei Liu1*, Liping Xiong2

1Department of Computer Science, Sun Yat-sen University, Guangzhou 510006, China
2College of Electronics and Information Engineering, Wuyi University, Jiangmen 529020, China

jinrq7@mail2.sysu.edu.cn, ymliu@mail.sysu.edu.cn, xionglp@wyu.edu.cn

Abstract

Coordination and joint abilities are important topics in rep-
resentation and reasoning about multi-agent systems. The
modal logic JAADL proposed by Liu et al. extends ATL
with joint abilities, which enables reasoning about whether a
coalition of agents can coordinate and achieve a goal with-
out communication. However, like ATL, strategic abilities
in JAADL are defined in terms of combinatorial strategies,
which are functions from histories or states to actions. On
the other hand, there has been research on reasoning about
natural strategic abilities, where a natural strategy is formal-
ized as a sequence of condition-action pairs, making it more
human-friendly than the notion of combinatorial strategies.
In this work, we propose SJAADL, a variation of JAADL
where strategic abilities are defined in terms of structured
strategies represented with LDL (linear dynamic logic) for-
mulas, with bounded complexity. We use nondeterministic
strategies since they are more expressive, natural and suc-
cinct than determinstic ones. We present syntax and seman-
tics of SJAADL. We show that model checking SJAADL can
be done in time polynomial with the model size, exponen-
tial with the formula size, and with the complexity bound of
structured strategies, exponential in the memoryless case and
double exponential in the memoryful case. Finally, we intro-
duce the problem of synthesizing norms to achieve joint abil-
ities, and give two algorithms for it.

Introduction
Representation and reasoning about strategic abilities has
been an active research field in AI and logic. A fundamental
contribution in this field is Alternating-time Temporal Logic
ATL/ATL∗ (Alur, Henzinger, and Kupferman 2002) where
formula ⟨⟨A⟩⟩φ means coalition A has a strategy to ensure
the LTL goal φ holds. Many variants and extensions of ATL
have been studied in the area of multi-agent systems.

Cooperation and coordination abilities are important
problems in multi-agent systems. There could be multiple
collective strategies to ensure a goal, but a player may not
know other agents’ choices, thus a coalition might end up
with a collective strategy that does not achieve the goal.
Ghaderi, Levesque, and Lespérance (2007) present a for-
malization of joint abilities of coalitions based on the idea

*Corresponding author
Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of iterated elimination of dominated strategies (Osborne and
Rubinstein 1994). Essentially, a coalition has joint ability
if after such iterated elimination, any remaining collective
strategy achieves the goal. Based on their idea, Liu et al.
(2020) propose JAADL (Alternating-time Dynamic Logic
with Joint Abilities), an extension of ATL∗ with modalities
((A))∞φ, meaning coalition A has joint ability to achieve
φ. They show that model checking memoryless JAADL can
be done in time exponential in both the model and formula
size, but whether model checking memoryful JAADL is de-
cidable remains open.

In recent years, it has been brought into attention the is-
sue of whether to use combinatorial strategies or syntac-
tic forms of strategies to define strategic abilities. Combi-
natorial strategies, defined as functions mapping histories
or states to actions, are used in defining strategic abili-
ties in ATL and most strategic logics. However, there have
been arguments that the notion of combinatorial strategies
is not a good representation of human strategies, as humans
are not good at handling combinatorially complex objects
(Jamroga, Malvone, and Murano 2019). Syntactic forms
of strategies, called structured strategies, have been inves-
tigated, and regular expressions have been used to repre-
sent the internal structures of strategies (Ramanujam and
Simon 2008; van Eijck 2013). Most importantly, Jamroga,
Malvone, and Murano (2017; 2019) propose NatATL, a vari-
ation of ATL where strategic abilities are defined in terms of
natural strategies, formalized as sequences of pairs of reg-
ular expression conditions and actions. In NatATL, the op-
erator ⟨⟨A⟩⟩≤kφ means coalition A has a collective natural
strategy with complexity ≤ k to ensure the goal φ holds.

In this paper, we propose SJAADL, an adaptation of
JAADL where strategic abilities are defined in terms of
structured strategies with bounded complexity. We choose
to use structured strategies, since they are more general than
natural strategies. Also, our structured strategies are non-
deterministic, and hence more expressive, succinct, and nat-
ural than deterministic strategies. Just as natural strategies,
there are mainly two advantages in considering structured
strategies instead of combinatorial ones. First, structured
strategies are more human friendly, as they better capture
the intuitive approach a human would use when describing
strategies. Thus, using structured strategies in JAADL would
better describe the process of dominated strategy elimina-

The Thirty-Ninth AAAI Conference on Artificial Intelligence (AAAI-25)

15014

tion of humans, thus better capture the decision-making by
humans and human-like agents with bounded rationality.
Second, structured strategies with bounded complexity are
better models of behavior for agents with limited memory,
compared with combinatorial strategies with bounded mem-
ory. In this paper, we use structured strategies in the form
of condition-action pairs, where a condition is a formula
of LDLf , i.e., Linear Dynamic Logic interpreted over finite
traces (De Giacomo and Vardi 2013). Whether a finite trace
satisfies an LDLf formula can be checked by a deterministic
finite-state automaton (DFA). Imposing bound on the length
of the condition, and thus imposing bound on the number of
states of the DFA better models agents with bounded mem-
ory, compared with imposing bound on the length of the his-
tory an agent can memorize. We prove that JAADL is not
less expressive than SJAADL, but is more expressive than a
variant of SJAADL using deterministic structured strategies.
Finally, we show that model checking SJAADL can be done
in time polynomial with the model size, exponential with the
formula size, and with the complexity bound of structured
strategies, exponential in the memoryless case and double
exponential in the memoryful case.

Preliminaries
In this section, we introduce JAADL (Liu et al. 2020).

Let AP be a set of atoms, AC a set of actions, and AG =
{1, . . . n} a set of agents; all are finite and non-empty.
Definition 1. A concurrent game structure (CGS) is a tuple
G = ⟨W,L, P, τ, w0⟩, where W is a finite non-empty set
of states; w0 ∈ W is the initial state; L : W → 2AP is a
labeling function; for each agent i, Pi :W → 2AC specifies
her available actions at each state; τ is the transition function
mapping a state w and a tuple of actions chosen by each
agent ⟨a1, . . . an⟩ (called a decision d) to a new state.
Example 1. As shown in Figure 1, two squirrels and two
acorns live on a finite grid. Squirrels can move around. A
squirrel can see an acorn if they are in the same place, and if
the squirrel does not hold an acorn, she can try to pick up the
acorn, but it only succeeds if the other squirrel is not trying
to pick it up. We model such a system with a CGS where
• AG = {1, 2}, AC = {e, s,w, n, idle, pickUp}, AP =
{seeAcorni, hasAcorni, posEi, posSi, posWi, posNi |
i ∈ AG}, where, e.g., posEi means it is possible for i to
move east.

• W = {(x1, y1, x2, y2, ax1, ay1, ax2, ay2, h1, h2) |
−1 ≤ xj , yj , axj , ayj ≤ 1, hj = 0, 1, 2, j = 1, 2},
where (xj , yj) is the location of squirrel j, (axj , ayj) is
the location of acorn j, hj means which acorn is hold by
squirrel j, or she holds nothing (hj = 0).

• w0 = (−1,−1, 1, 1, 1,−1,−1, 1, 0, 0).
• L, P and τ are defined intuitively.

Definition 2. A track h in a CGS G is a finite state-decision
sequence w0d0 . . . wn s.t. for all i, di is a decision at state
wi, and τ(wi, di) = wi+1. We let last(h) = wn.
Definition 3. A path λ in a CGS G is an infinite state-
decision sequence w0d0 . . . s.t. for all i, di is a decision at
state wi, and τ(wi, di) = wi+1.

1

2A2

A1

(0, 0)

(0, 1)

(1, 0)

σ1

(a)

1

2A2

A1

δ11

δ21 δ22

δ12

(b)

Figure 1: A simple squirrel world. (a) Combinatorial strat-
egy σ1. (b) The four structured strategies in Example 4.

We introduce combinatorial strategies and the corre-
sponding strategy space for JAADL.

Definition 4. A combinatorial strategy σi of agent i from
state w is a function mapping each track h beginning from
w to an action a ∈ Pi(last(h)). We use CSi(w) to denote
the set of combinatorial strategies for agent i from w.

Definition 5. A combinatorial strategy space cs is a func-
tion mapping each agent i to a subset of CSi(w). The full
combinatorial strategy space fcs(w) maps each agent i to
CSi(w). csA is the restriction of cs to coalition A, which is
a group of agents.

We also introduce memoryless combinatorial strategies.

Definition 6. A memoryless combinatorial strategy for
agent i is a function mapping each state w to an action from
Pi(w). The full memoryless combinatorial strategy space
fcsr maps i to the set of all memoryless strategies for i.

We use σ to represent combinatorial strategies. σA ranges
over collective strategies of coalitionA, which is a collection
of individual strategies for each agent in A. σi ranges over
individual strategies of agent i. We use −A to denote AG−
A, −i for AG − {i}. We will represent collective strategies
with their components, e.g., (σ1, σ2) is a collective strategy
of coalition {1, 2}, where agent 1 uses σ1 and agent 2 uses
σ2; (σA, σ−A) is a collective strategy of AG, etc.

Example 2. If squirrel 2 does not interfere, squirrel 1 has a
memoryless strategy σ1 (drawn in Figure 1a) to get acorn 1,
formalized as follows:

• σ1(x,−1, ·, ·, 1,−1, ·, ·, 0, ·) = e for −1 ≤ x < 1;
• σ1(1,−1, ·, ·, 1,−1, ·, ·, 0, ·) = pickUp;
• Other states are mapped to idle.

Definition 7. A state w and a collective combinatorial strat-
egy σAG determine a unique path w0d0w1d1 . . . as follows:
w0 = w, and for each j ≥ 0, dj is the decision associated to
track w0 . . . wj , i.e., for each agent i, dj(i) = σi(w0 . . . wj),
wj+1 = τ(wj , dj). We use out(w, σAG) to denote this path.

We introduce syntax and semantics of JAADL. For a ∈
AC and i ∈ AG, we have ai to denote the atomic proposi-
tion that agent i does action a, as a type of atomic proposi-
tions outside AP . We use ⊤ for true and ⊥ for false.

Definition 8 (JAADL syntax). JAADL uses state formula
φ, path formula ψ, path expression ρ, and propositional for-

15015

mula ϕ. Let p ∈ AP , and A ⊆ AG, we have:

φ ::= p | ¬φ | φ1 ∧ φ2 | ⟨⟨A⟩⟩ψ | (A)ψφ | (A)∞ψ φ,
ψ ::= φ | ¬ψ | ψ1 ∧ ψ2 | ⟨ρ⟩ψ,

ρ ::= ϕ | ψ? | ρ1 + ρ2 | ρ1; ρ2 | ρ∗,
ϕ ::= p | ai | ¬ϕ | ϕ1 ∧ ϕ2.

Here, in path formulas, ⟨ρ⟩ψ means there exists an exe-
cution from the current state which satisfies the path expres-
sion ρ s.t. its last state satisfies ψ. We use [ρ]ψ to abbreviate
¬⟨ρ⟩¬ψ. In state formulas, ⟨⟨A⟩⟩ψ means coalition A has a
combinatorial strategy to achieve ψ. We write ⟨⟨i1, . . . , ik⟩⟩
for ⟨⟨{i1, . . . , ik}⟩⟩ where i1, . . . , ik ∈ AG. The formula
⟨⟨∅⟩⟩ψ, where ∅ denotes the empty set, means ψ holds no
matter how agents play. (A)ψφmeans φ holds after one step
elimination of dominated strategies w.r.t. coalition A and
goal ψ. (A)2ψφ is used to denote (A)ψ(A)ψφ, and similarly
for (A)nψφ. (A)∞ψ φ means φ holds after iterated elimination
of dominated strategies w.r.t A and ψ.

We write ((A))nψ for (A)nψ⟨⟨∅⟩⟩ψ, and ((A))ψ for
((A))1ψ. Here ((A))nψ means after n-round elimination of
dominated strategies, ψ holds no matter how the agents play.
Therefore, coalition A has stage-n joint ability to achieve ψ.
We write ((A))∞ψ for (A)∞ψ (⟨⟨A⟩⟩ψ ∧ ⟨⟨∅⟩⟩ψ). The reason
⟨⟨∅⟩⟩ψ is conjoined with ⟨⟨A⟩⟩ψ is that the strategy space
might become empty after iterated elimination.

We give semantics of JAADL. The cases of ¬ and ∧
are trivial thus omitted for simplicity. For interpreting state
formulas w.r.t a strategy space, two reduction operators
on combinatorial strategy spaces are used: RA,ψ,w(cs) and
R∞
A,ψ,w(cs), meaning the reduction of cs by one step and it-

erated elimination of dominated strategies, respectively. The
operator of iterated reduction applies the one step reduction
operator iteratively on the strategy space until reaching a
fixed point, i.e., no strategy is dominated (and thus can be
eliminated) in the resulting strategy space. Their definitions
and the following definition are mutual-recursive.

Definition 9 (JAADL semantics). Given a CGS G, a state
w, a decision d at w, we interpret propositional formulas as
follows: w, d ⊨ p if p ∈ L(w); w, d ⊨ ai if d(i) = a.

Given a CGS G, a state w, a combinatorial strategy space
cs, and a path λ, state formulas and path formulas are inter-
preted inductively:

• w, cs ⊨ p if p ∈ L(w).
• w, cs ⊨ ⟨⟨A⟩⟩ψ if there exists a collective combinatorial

strategy σA ∈ csA s.t. for all strategies σ−A ∈ cs−A, we
have out(w, (σA, σ−A)), cs ⊨ ψ.

• w, cs ⊨ (A)ψφ if w,RA,ψ,w(cs) ⊨ φ.
• w, cs ⊨ (A)∞ψ φ if w,R∞

A,ψ,w(cs) ⊨ φ.

• λ, cs ⊨ φ if w0, cs ⊨ φ, where λ = w0d0w1
• λ, cs ⊨ ⟨ϕ⟩ψ if w0, d0 ⊨ ϕ and λ′, cs ⊨ ψ, where λ =
w0d0w1 . . . and λ′ = w1d1

• λ, cs ⊨ ⟨ψ1?⟩ψ2 if λ, cs ⊨ ψ1 and λ, cs ⊨ ψ2.
• λ, cs ⊨ ⟨ρ1 + ρ2⟩ψ if λ, cs ⊨ ⟨ρ1⟩ψ or λ, cs ⊨ ⟨ρ2⟩ψ.
• λ, cs ⊨ ⟨ρ1; ρ2⟩ψ if λ, cs ⊨ ⟨ρ1⟩⟨ρ2⟩ψ.

• λ, cs ⊨ ⟨ρ0⟩ψ if λ, cs ⊨ ψ.
• λ, cs ⊨ ⟨ρm+1⟩ψ if λ, cs ⊨ ⟨ρm; ρ⟩ψ for m ∈ N.
• λ, cs ⊨ ⟨ρ∗⟩ψ if there is m ∈ N s.t. λ, cs ⊨ ⟨ρm⟩ψ.

A state formula φ is valid if for all CGS G, we have G ⊨ φ,
i.e., w0, fcs(w0) ⊨ φ.

We define the set of combinatorial strategies of −i that
work with σi to ensure ψ w.r.t. state w and combinato-
rial strategy space cs as follows: Mψ,w,cs(σi) = {σ−i ∈
cs−i | out(w, (σi, σ−i)), cs ⊨ ψ}. For σi, σ′

i ∈ csi, we
write σi ≥ψ,w,cs σ′

i if Mψ,w,cs(σi) ⊇ Mψ,w,s(σ
′
i), and

we say σi weakly dominates σ′
i. We write σi >ψ,w,cs σ′

i
if Mψ,w,cs(σi) ⊃ Mψ,w,s(σ

′
i), and we say σi dominates σ′

i.
We say that σi and σ′

i are incomparable if neither σi ≥ψ,w,cs
σ′
i nor σ′

i ≥ψ,w,cs σi.
For a combinatorial strategy space cs, we define the re-

duction of cs w.r.t. coalition A, goal ψ and state w as fol-
lows: RA,ψ,w(cs) = cs′ s.t. if i /∈ A, cs′i = csi; otherwise
cs′i = {σi ∈ csi | ¬∃σ′

i ∈ csi.σ
′
i >ψ,w,cs σi}. The itera-

tive reduction of cs is defined as R∞
A,ψ,w(cs) = cs′ s.t. for

i ∈ AG, cs′i =
⋂∞
n=0R

n
A,ψ,w(cs)i.

Syntax and Semantics of SJAADL
In this section, we propose SJAADL, a variation of JAADL
where strategic abilities are defined in terms of structured
strategies of bounded complexity. We first introduce struc-
tured strategies. After presenting the syntax and semantics,
we analyze properties of the logic.

Structured Strategies
To define structured strategies, we use a fragment of path
formulas of SJAADL/JAADL, where the operators ⟨⟨A⟩⟩,
(A)ψ , and (A)∞ψ are excluded from the definition of state
formulas, and the action atoms ai are excluded from the defi-
nition of propositional formulas. This fragment is equivalent
to LDLf , which has the same syntax as LDL. The semantics
of LDLf differs from that of LDL in the evaluation of ⟨ϕ⟩ψ,
where h ⊨ ⟨ϕ⟩ψ iff h = w0d0w1 . . . has length at least 2,
w0 ⊨ ψ and h′ ⊨ ψ where h′ = w1d1

We also introduce a simple action language AL, the
propositional language over action atoms. Let α be an AL
formula, and a an action. We say that a satisfies α, written
a |= α if the assignment where a is the only atom assigned
true satisfies α. Thus, an AL formula defines a set of actions.

Intuitively, a structured strategy is a set of condition-
action pairs. When applying the strategy at a history, the ac-
tion formulas corresponding to the satisfied conditions give
the set of actions that can be performed.

Definition 10. A structured strategy δi of agent i is a
set of pairs {(ψ1, α1), . . . , (ψn, αn)}, also written {ψ1 →
α1, . . . , ψn → αn} or (ψj , αj)nj=1, where ψj is a formula
of LDLf , and αj is a formula of AL. We say that δi is mem-
oryless if each ψj is propositional.

Definition 11. The application of a structured strategy
δi = (ψj , αj)

n
j=1 on a track h is a set of actions δi(h) ⊆

Pi(last(h)) s.t. a ∈ δi(h) iff a ⊨ αj for some j s.t. h ⊨ ψj .
When δi is memoryless, we replace h ⊨ ψj by last(h) ⊨ ψj .

15016

Thus, unlike combinatorial strategies, which are deter-
ministic as a history corresponds to a unique action, struc-
tured strategies are non-deterministic: Different actions
might be performed at a history. In the rest of the paper, we
assume a structured strategy to be well-defined: It gives at
least one executable action for any given history. We use δ to
range over structured strategies, rδ and Rδ to denote mem-
oryless and memoryful structured strategies, respectively.

Example 3. We first give an example of a memoryless struc-
tured strategy, and then a memoryful example. The combina-
torial strategy of squirrel 1 in Example 2 can be represented
with a structured strategy δ11 :

{(seeAcorn1, pickUp1), (hasAcorn1,⊤), (¬seeAcorn1, e1)}.

This strategy is non-deterministic: when she has an acorn,
she can do any possible action.

Squirrel 1 can also have a passive strategy to get an acorn:
she wanders around if she does not see an acorn or has one;
She tries to pick up an acorn if seeing one, but gives up if
squirrel 2 is also trying to pick it up, causing the action to
fail. The strategy can be formalized as a memoryful struc-
tured strategy as follows:

δp1 = {⟨⊤∗; hasAcorn1 ∨ ¬seeAcorn1⟩Last→ ⊤,
⟨⊤∗; seeAcorn1;¬hasAcorn1⟩Last→ ¬pickUp1,
⟨⊤∗;¬seeAcorn1; seeAcorn1⟩Last→ pickUp1}.

We write Last for [⊤]⊥, meaning there is no next state.
We now define outcomes of collective structured strate-

gies of a coalition. Since structured strategies are non-
deterministic, the outcome of a collective structured strategy
at a state is a set of paths.

Definition 12. A state w and a collective structured strategy
δAG determine a set of paths Out(w, δAG) as follows: For
w0d0 · · · ∈ Out(w, δAG), we have w0 = w, and for each
j ≥ 0, dj is a decision associated to track w0 . . . wj , i.e., for
each agent i, dj(i) ∈ δi(w0 . . . wj), wj+1 = τ(wj , dj).

Definition 13. The length of an LDLf formulaψ is the num-
ber of symbols in the formula where an atom is treated as a
single symbol. The complexity of a structured strategy δi is
the sum of length of all conditions in the strategy.

For example, δ11 given in Example 3 has complexity 4.

Definition 14. A structured strategy space ss is a function
mapping each agent i to a set of i’s possible structured strate-
gies. The full structured strategy space fss maps each agent
i to the set of i’s all possible structured strategies. A struc-
tured strategy space with bounded complexity ss≤k maps i
to a set of i’s possible structured strategies with complexity
≤ k. ssA is the restriction of ss to coalition A.

It is easy to see that the number of different k-bounded
structured strategies, memoryless or memoryful, is O(2k),
while the number of different combinatorial strategies is
O(2n), where n is the size of CGS. Thus structured strat-
egy space is much smaller than combinatorial strategy space.
This is a clear advantage of considering structured strategies.

Syntax and Semantics
Definition 15 (SJAADL syntax). SJAADL modifies
JAADL’s state formula φ as follows:

φ ::= p | ¬φ | φ1 ∧ φ2 | ⟨⟨A⟩⟩≤kψ | (A)≤kψ φ | (A)≤k,∞ψ φ,

where k ∈ N, and operators appearing in the scopes
of ⟨⟨A⟩⟩≤k, (A)≤kψ , (A)≤k,∞ψ should have the same k-
superscripts. Other formulas are the same as in JAADL.

Intuitively, these modal operators have meanings similar
to those of JAADL, but coalition A now uses k-bounded
structured strategies. ((A))≤k,nψ, ((A))≤kψ and ((A))≤k,∞ψ
are defined similarly to JAADL. If ((A))≤k,nψ holds, we say
coalitionA has stage-n k-bounded joint ability to achieve ψ.
Definition 16 (SJAADL semantics). Given a CGS G, a state
w, a structured strategy space ss, and a path λ, we interpret
state formulas and path formulas as follows (we omit the
cases similar to those of JAADL):

• w, ss ⊨ ⟨⟨A⟩⟩≤kψ if there exists a collective structured
strategy δA ∈ ss≤kA s.t. for all strategies δ−A ∈ ss≤k−A,
and for all λ ∈ Out(w, (δA, δ−A)), λ, ss≤k ⊨ ψ.

• w, ss ⊨ (A)≤kψ φ if w,R≤k
A,ψ,w(ss

≤k) ⊨ φ.

• w, ss ⊨ (A)≤k,∞ψ φ if w,R≤k,∞
A,ψ,w(ss

≤k) ⊨ φ.

Note that our definition of the semantics of the strategic
modality ⟨⟨A⟩⟩≤k is similar to that of JAADL, in which each
agent gets a strategy assigned to her in the strategy space.
In contrast, in NatATL, only agents in the coalition are as-
signed strategies, while other agents are allowed to perform
arbitrary actions.
Definition 17. The set of structured strategies of −i that
work with δi to ensureψ w.r.t. statew and structured strategy
space ss≤k, denoted by Mψ,w,ss≤k(δi), is defined as the set
of δ−i ∈ ss≤k−i s.t. for all λ ∈ Out(w, (δi, δ−i)), we have
λ, ss≤k ⊨ ψ.

The concept of strategy domination and the reduction op-
erators can be similarly defined as in JAADL.
Example 4. Consider the squirrel world from Example 1.
We check if given SJAADL formulas hold in w0 and fss≤4.

First, ⟨⟨1⟩⟩≤4⟨⊤∗⟩seeAcorn1 holds, meaning squirrel 1
has a 4-bounded strategy to let her see an acorn, an
example of which is δ11 from Example 3. Secondly,
⟨⟨1, 2⟩⟩≤4⟨⊤∗⟩(hasAcorn1 ∧ hasAcorn2) holds. As shown in
Figure 1b, there are two achieving collective strategies. One
is combining δ11 with a strategy δ12 for 2:

{(seeAcorn2, pickUp2), (hasAcorn2,⊤), (¬seeAcorn2,w2)}.

Here, 1 goes east and gets acorn 1, 2 goes west and gets
acorn 2. The other collective strategy is δ21 and δ22 , where 1
goes north and 2 goes south.

However, ((1, 2))≤4,∞⟨⊤∗⟩(hasAcorn1∧hasAcorn2) does
not hold, as none of the strategies can be eliminated, since
the compatible sets of δ11 and δ21 are {δ12} and {δ22}, respec-
tively, which are incomparable.

The above example inspires the following definition:

15017

1

2A2

A1A3

δ11

δ21 δ22

δ12

δd1

1

2

A2

A1

δ21 δ22

δ31

δ32

Figure 2: Walled squirrel worlds

Definition 18. We say that two strategies δ1i and δ2i of an
agent i form an incoordination core if they are incomparable.

It is easy to prove the following:

Proposition 1. If a coalition has strategic ability after iter-
ated reduction but no joint ability, then there exists an inco-
ordination core in the reduced strategy space.

Proof. As there is strategic ability after iterated reduction,
there is at least one strategy for each agent in the reduced
strategy space. Assume that all agents in the coalition only
have equivalent strategies. Then there is joint ability. Thus,
there is an agent with two incomparable strategies.

Properties of SJAADL
Liu et al. (2020) analyze valid formulas in JAADL (Proposi-
tions 1-4), and give sufficient/necessary conditions for joint
abilities (Theorems 1-4). The SJAADL variants of these re-
sults still hold, and the proofs are the same.

We now present two simple properties unique to
SJAADL, where A denotes the complement of A. Intu-
itively, item 1 means k-bounded strategic ability implies
strategic ability with a bigger bound. Item 2 means if other
agents have a strategy to spoil the goal, then a coalition does
not have k-bounded joint ability for any k. Note that k2 ≥ k1
is not required, since the strategic power of A to act accord-
ing to their k1-bounded spoiling strategy is retained by the
simple nondeterministic strategy {⊤ → ⊤}.
Proposition 2. The following are valid in SJAADL:

1. ⟨⟨A⟩⟩≤k1ψ → ⟨⟨A⟩⟩≤k2ψ, where k2 ≥ k1.

2. ⟨⟨A⟩⟩≤k1¬ψ → ¬((A))≤k2,∞ψ for all k1 and k2.

An interesting question to explore is whether the formula
((A))≤k1,nψ → ((A))≤k2,nψ is valid when k2 ≤ k1 or
k2 ≥ k1. Intuitively, ((A))≤k1,nψ ∧ ¬((A))≤k2,nψ might
hold for k2 < k1 in two situations: first, there is not k2-
bounded strategic ability, but as we increase the bound and
include more strategies we get k1-bounded joint ability; sec-
ond, there is a k2-bounded incoordination core, but as we
increase the bound and get a strongly dominating strategy,
the core disappears. Similarly, ((A))≤k1,nψ ∧ ¬((A))≤k2,nψ
might hold for k2 > k1 because a new core can appear with
increased bound. We illustrate this with concrete examples.

w0(,) w0 w1(b,)
(a,)

(,)

Figure 3: CGS Gc (left) and G′c (right). All states are labeled
by p. Actions of agents 1 and 2 are labeled on the edges.

Example 5. Consider two modified versions of the squir-
rel world in Example 1, shown in Figure 2. There is a
wall limiting squirrels’ moving action, represented by a
solid bold line. We are concerned with the problem whether
φ = ((1, 2))≤k⟨⊤;⊤;⊤;⊤⟩(hasAcorn1 ∧ hasAcorn2) holds
for some k in the starting position.

In the left world, φ does not hold for k = 4, as δ12
and δ22 let δ11 and δ21 form an incoordination core. But for
k = 8, φ holds, as a new strategy δd1 dominating both
δ11 and δ21 lets squirrel 1 take a detour and get acorn 3:
{seeAcorn1 → pickUp1, hasAcorn1 → ⊤,¬seeAcorn1 →
w1∨s1,¬(posW1∨posS1)→ n1}. The incoordination core
is destroyed by this strategy.

In the right world, φ holds for k = 4, for only δ21 , δ22 are
available. But for k = 8, φ does not hold, because there are
two new strategies δ31 and δ32 available, and the two strategies
form an incoordination core.

Expressivity of Logics for Joint Abilities
In this section, we compare expressive power of JAADL
and its variants, including SJAADL and a variant of it with
deterministic structured strategies called SJAADLd. It has
the same syntax as SJAADL, but uses deterministic strategy
space dss in its semantics.

We use classic definitions of distinguishing power and ex-
pressivity.
Definition 19. Let L1 and L2 be two logics interpreted over
the same classes of modelsM. We say that L2 is at least as
distinguishing as L1, written L1 ⪯d L2, if for every pair of
models M,M ′ ∈ M, we have that if there exists a formula
φ1 ∈ L1 s.t. M ⊨ φ1 and M ′ ⊭ φ1, then there is also
φ2 ∈ L2 s.t. M ⊨ φ2 and M ′ ⊭ φ2; We say that L2 is
at least as expressive as L1, written L1 ⪯e L2, if for every
formula φ1 ∈ L1, there exists a formula φ2 ∈ L2 s.t. for
every model M ∈M, we have M ⊨ φ1 iff M ⊨ φ2.

Clearly, L1 ⪯e L2 implies L1 ⪯d L2.
First, we prove that JAADL ⪯̸d SJAADL, by construct-

ing two models that are distinguishable by JAADL but not
by SJAADL. The main reason is that a structured strategy
cannot react differently to two different paths with the same
state labeling, thus an agent may have different combinato-
rial strategic abilities, but the same structural strategic abili-
ties in different models.
Theorem 3. JAADL ⪯̸d (therefore ⪯̸e) SJAADL in both
memoryless and memoryful semantics.

Proof. Consider the models Gc and G′c in Figure 3. There are
AP = {p}, AG = {1, 2}, AC = {a, b} available for both
agents in every state.

We can prove no SJAADL formula can distinguish states
(Gc, w0), (G′c, w0) and (G′c, w1) via structural induction.

15018

σb1 σa1 (1) σa1 (2) σa1 (3) . . .
σb2

σa2 (1)
σa2 (2) ✓
σa2 (3) ✓
σa2 (4) ✓

...
. . .

σb1 σa1
σb2
σr2 ✓
...

...
...

Table 1: Memoryful combinatorial strategy spaces and com-
patible matrices in Gc (top) and G′c (bottom).

The case of atoms is straightforward, as there is only one
atom p, which takes the same value in all states. The cases
of negations and disjunctions are trivial.

To prove the case of ⟨⟨A⟩⟩≤kψ where no state subformula
in ψ can distinguish the three states, note that in every state,
the agents have the same set of actions, thus both agents
have the same set of structured strategies available in all
three states. Moreover, using the same structured strategy
δAG in these states will give outcomes of equivalent paths.
For example, for a path in Out(w0, δAG) of G′c, we can re-
place all states to w0 in Gc to get a path in Out(w0, δAG) of
Gc. In addition, ψ takes the same value on equivalent paths.
Therefore, ⟨⟨A⟩⟩≤kψ takes the same value on states (Gc, w0),
(G′c, w0) and (G′c, w1).

To prove the case of (A)≤kψ φ (and (A)≤k,∞ψ φ) where no
state subformula in ψ and φ can distinguish the three states
given the same strategy space, note that the reduction of
strategy space is based on compatible sets, which are based
on outcomes of strategies. As we have already shown, the
same strategy results in outcomes of equivalent paths, and ψ
evaluates the same on equivalent paths, thus results of reduc-
tions will be the same. Therefore, given the same structured
strategy space, formula (A)≤kψ φ (and (A)≤k,∞ψ φ) takes the
same value on states (Gc, w0), (G′c, w0) and (G′c, w1).

To prove JAADL can distinguish these two CGSs, we give
a formula that takes different values on their initial states.

For memoryless JAADL, ⟨⟨1⟩⟩⟨a1; b1⟩p is true in G′c but
false in Gc. The formula means agent 1 has a strategy to per-
form a then b and achieve p. There exists such memoryless
strategy in G′c but not in Gc, as in G′c agent 1 can choose
different actions in different states.

For memoryful JAADL, consider the formula

((1, 2))∞⟨(b1 ∧ b2)∗; a1 ∧ b2; a2⟩p,

where the goal means that agent 2’s first a action must be
performed one step after agent 1’s first a action, e.g., if agent
1’s first a is done at step t, then agent 2 should do its first a
at step t+ 1. The whole formula means the two agents have
joint ability w.r.t. the goal.

The strategy spaces and compatible matrices are shown in

Table 1, where the check mark means combining two strate-
gies can achieve the goal. In the tables, σbi denotes the strat-
egy that do b only, σai denotes strategies that do a at some
step, σai (t) denotes strategies that do a at step t. In G′c, agent
2 can choose to do a only after transition to w1, which can
only happen if 1 has done a. Such a strategy σr2 of doing a
iff 1 did a in the last step will work with all σa1 , but not with
σb1. However, σb1 works with no strategies of 2 and is elim-
inated in the first round. Thus joint ability holds. Yet, such
coordination cannot be done in Gc, since σr2 does not exist
as 2 cannot tell if 1 has done a. The only strategies that can
be eliminated are σb1, σb2 and σa2 (1). The resulting strategy
space has an incoordination core.

Next, we prove SJAADLd ⪯e JAADL. The main idea is
that we can use a JAADL path formula to represent a de-
terministic structured strategy, by explicitly specifying that
on the path, the agent always does the action allowed by
the strategy. Hence, by using the strategy elimination opera-
tor of JAADL, we can restrict our attention to deterministic
structured strategies of bounded complexity.

Theorem 4. SJAADLd ⪯e JAADL in both memoryless and
memoryful semantics.

Proof. We first show that the strategy space dss≤k can be
expressed in JAADL with a strategy space in which strate-
gies that are not equivalent to one of the strategies in dss≤k
are eliminated.

Strategies in dss≤ki are in the form of δdi = (ψj , αj)
n
j=1

that satisfy the following conditions: First, in the memory-
less case, no state will satisfy two different ψj ; In the mem-
oryful case, no history will satisfy two different ψj . Second,
every αj is a single action atom.

For a propositional formula ϕ and an action formula
α of a pair (ϕ, α) in a deterministic memoryless struc-
tured strategy, we write their corresponding path formula
trPr(ϕ, α) = ¬⟨⊤∗;ϕ ∧ ¬α⟩⊤. The formula means there
does not exist a path in which ϕ is satisfied somewhere but
the corresponding action does not satisfy α.

For an LDLf formula ψ and an action atom α of a pair
(ψ, α) in a deterministic memoryful structured strategy, we
can also write such a corresponding path formula. To do so,
we first translate ψ into a corresponding REf formula ϱ ::=
ϕ | ϱ1 + ϱ2 | ϱ1; ϱ2 | ϱ∗ using method in (De Giacomo and
Vardi 2013), where ϱ∗ means ϱ is repeated for zero or more
times. We then translate the formula into regular expressions
under an alternative syntax ϱ ::= ϕ | ϱ1 + ϱ2 | ϱ1; ϱ2 | ϱ+,
where ϱ+ means ϱ is repeated for one or more times. This
translation can be done by rewritting each ϱ∗ into ϵ + ϱ+,
where ϵ means an empty path, and reorganizing the formula
to move all ϵ into top level. In the progress, all ϵ appearing
in ϱ1; ϵ or ϵ; ϱ2 can be removed. Finally, if the top level ex-
pression is in the form of ϵ+ ϱ, ϵ can also be removed since
a strategy doesn’t apply to an empty path.

Finally, we write the corresponding path expression of
this REf formula with alternative syntax ϱ and action for-
mula α, denoted trPR(ϱ, α), recursively as follows:

• trPR(ϕ, α) = ϕ ∧ ¬α,

15019

• trPR(ϱ1 + ϱ2, α) = trPR(ϱ1, α) + trPR(ϱ2, α),

• trPR(ϱ1; ϱ2, α) = ϱ1; trPR(ϱ2, α),

• trPR(ϱ+, α) = ϱ∗; trPR(ϱ, α).

The corresponding path formula of the original pair (ψ, α)
is written as trPR(ψ, α) = ¬⟨trPR(ϱ, α)⟩⊤, where ψ is
rewritten as the REf ϱ with alternative syntax. The formula
means there does not exist a path in which ψ is satisfied
somewhere but the corresponding action does not satisfy α.

For a deterministic structured strategy δdi = (ψj , αj)
n
j=1,

we write its corresponding path formula as ψδdi =∧n
j=1 trP (ψj , αj). Here we use trPr (resp. trPR) if

δi is a memoryless (resp. memoryful) strategy. The for-
mula is made by conjoining all corresponding formulas of
condition-action pairs of δdi . It describes the set of paths
where i’s strategy is equivalent to δdi .

For the deterministic structured strategy space dss≤ki ,
we write its corresponding path formula as ψ≤k

i =∨
δdi ∈dss

≤k
i
ψδdi . The formula, constructed by disjoining all

such formulas of strategies in dss≤ki , describes the set of
paths where i’s strategy is equivalent to one of the strategies
in dss≤ki . This is possible as dss≤ki is finite.

For the collective deterministic structured strategy space
dss≤kA , we write its corresponding path formula as ψ≤k

A =∧
i∈A ψ

≤k
i . The formula is made by conjoining all such for-

mulas of agents in coalition A. This is the formula we need:
It is a path formula with no strategic modalities, meaning
that on this path, coalition A’s strategy is equivalent to one
of the strategies in dss≤kA .

Finally, for each SJAADLd formula φ, we translate it
into an equivalent JAADL formula tr(φ) recursively, by re-
ducing the combinatorial strategy space before considering
strategic abilities and joint abilities.

• tr(p) = p, tr(¬φ) = ¬tr(φ),
• tr(φ1 ∧ φ2) = tr(φ1) ∧ tr(φ2),

• tr(⟨⟨A⟩⟩≤kψ) = (AG)
ψ

≤k
AG
⟨⟨A⟩⟩ψ,

• tr((A)≤kψ φ) = (AG)
ψ

≤k
AG

(A)ψφ,

• tr((A)≤k,∞ψ φ) = (AG)
ψ

≤k
AG

(A)∞ψ φ.

Intuitively, this means that in the translated JAADL formu-
las, when strategic abilities are considered, we consider it in
the reduced strategy space where each strategy is equivalent
to a deterministic structured strategy with complexity ≤ k.

The translation is exponential in k in the memoryless case,
as it enumerates all strategies in dss≤k, which has size expo-
nential in k. It is double exponential in k in the memoryful
case, as LDLf to REf translation is double exponential.

However, the proof of Theorem 4 does not work with
SJAADL as nondeterministic structured strategies cannot be
described using linear-time path formulas as in the proof.
Further, it is unclear how to simulate the reduction of non-
deterministic strategies with that of deterministic ones in
JAADL. Therefore, it remains open whether SJAADL is less
expressive than JAADL.

Algorithm 1: Labeling State Formulas

function Label(G, ss, φ):
if φ = p then [φ]ss ← {w ∈W | p ∈ L(w)}
else if φ = ¬φ1 then [φ]ss ←W − [φ1]ss
else if φ = φ1 ∧ φ2 then [φ]ss ← [φ1]ss ∩ [φ2]ss
else if φ = ⟨⟨A⟩⟩≤kψ then

(G′, ψ′)← ReduceP (G, ss≤k, ψ);
[φ]ss ← {w | ∃δA ∈ ss≤kA .∀δ−A ∈ ss≤k−A.

PathF (G′, w, (δA, δ−A), ψ′)}
else if φ = (A)≤kψ φ1 then

(G′, ψ′)← ReduceP (G, ss≤k, ψ);
[φ]ss ← {w | w ∈ [φ1]StrS(G′,A,ψ′,w,ss≤k)}

else if φ = (A)≤k,∞ψ φ1: then
(G′, ψ′)← ReduceP (G, ss≤k, ψ);
[φ]ss ← {w | w ∈ [φ1]StrS∞(G′,A,ψ′,w,ss≤k)}

return [φ]ss

Algorithm 2: Reducing Path Formulas

function ReduceP (G, ss, ψ):
Max(ψ)← the set of maximal state-subformulas in ψ;
for each φ ∈ Max(ψ) do

define a fresh atom pφ s.t. pφ ∈ L(w) for w ∈ [φ]ss;
replace φ∈Max(ψ) in ψ by pφ to get LDL formula ψ′;
return G′, ψ′

Model Checking
Liu et al. (2020) propose a model-checking algorithm for
memoryless JAADL with time exponential in both the
model size and formula size. But whether model checking
memoryful JAADL is decidable remains open. In this sec-
tion, we give model-checking algorithms for both memory-
ful and memoryless SJAADL. We show that the complex-
ity of both algorithms is exponential in the formula size
and polynomial in the model size, and with the complexity
bound k of structured strategies, exponential in the memo-
ryless case and double exponential in the memoryful case.

We first state the model-checking problem for SJAADL.
We say that an SJAADL formula φ has complexity bound b,
if the largest k-superscript in φ is b.

Definition 20 (SJAADL model checking). Given a CGS
G, an SJAADL formula φ with complexity bound k, a full
structured strategy space with bounded complexity fss≤k,
the problem is to find states w s.t. w, fss≤k ⊨ φ.

In this section, we use n for the size of G, l for the size
of φ, and k for the complexity bound of φ. We denote k-
bounded memoryless structured strategy space by ss≤k,r,
and the memoryful one by ss≤k,R.

We first give Algorithm 1 for labeling state formulas.
Given a CGS G = ⟨W,L, P, τ, w0⟩, a structured strategy
space ss and a SJAADL state formula φ, Algorithm 1 re-
turns [φ]ss = {w ∈ W | w, ss ⊨ φ} by recursively label-
ing the subformulas. In the cases of ⟨⟨A⟩⟩≤kψ, (A)≤kψ φ1 and
(A)≤k,∞ψ φ1, Algorithm 1 first calls Algorithm 2 to reduce

15020

Algorithm 3: Calculating Reduced Strategy Space

function StrS(G, A, ψ,w, ss):
for each i ∈ A do

for each δi ∈ ssi do
for each δ−i ∈ ss−i do

if PathF (G, w, (δi, δ−i), ψ) then
add δ−i to Mψ,w,ss(δi)

for each δi, δ′i ∈ ssi do
if Mψ,w,ss(δi) ⊃Mψ,w,ss(δ

′
i) then

ssi ← ssi − {δ′i}
return ss

Algorithm 4: Model Checking Path Formulas in the r Case

function PathF (G, w, rδAG, ψ):
Prune G with rδAG to get a Kripke structure K
return whether w ⊨ldl ψ in K

the model checking of the path formula ψ w.r.t. G to that of
a pure LDL formula ψ′ w.r.t. an extended CGS G′. The idea
is to first label each maximal state-subformula φ of ψ, call
Algorithm 1 to compute [φ]ss, introduce a fresh atom pφ to
represent φ, and so get G′ and ψ′.

Algorithm 3 StrS(A,ψ,w, ss) reduces ss w.r.t. coalition
A, goal ψ and state w. StrS∞ is calculated by calling StrS
repeatedly until reaching a fixed point.

Both Algorithms 1 and 3 call PathF to model-check a
path formula. In JAADL, when checking a path formula ψ
w.r.t. a state w and a collective strategy σAG, first use the
idea in Algorithm 2 to get a pure LDL formula ψldl. The
infinite path out(w, σAG) can be viewed as a finite Kripke
model with initial state w, denoted as Kripke(w, σAG). To
verify whether Kripke(w, σAG) |=ldl ψldl , call the LDL
model-checking algorithm (Faymonville and Zimmermann
2017), which is in time linear in the model size and expo-
nential in the formula size. We now show that for SJAADL,
PathF can also be reduced to LDL model checking.

Memoryless SJAADL
In memoryless SJAADL, as decisions of a coalition are
based only on the current state, given a state w and a col-
lective structured strategy rδAG, we can construct a Kripke
structure from a CGS G by keeping the necessary transitions.

Lemma 5. PathF for memoryless SJAADL can be reduced

Algorithm 5: Model Checking Path Formulas in the R Case

function PathF (G, w,RδAG, ψ):
for each ψij in RδAG do

construct AFW Aij from ψij ;
convert Aij to DFA Dij ;
W i
j ← the set of states of Dij

W ← the set of states of G;
construct a Kripke structure K by joining G and all Dij ;
return whether w ⊨ldl ψ in K

to model checking an LDL formula with size O(l) on a
Kripke structure with size O(n).

Proof. We first construct a pure LDL formula ψldl. Given a
memoryless strategy rδAG and a state w, we can construct a
Kripke structure K as follows: at any state w0, for an agent
i, her possible actions rδi(w0) ⊆ Pi(w0), and thus we keep
only those necessary transitions.K has size at most n and we
have PathF (G, w, rδAG, ss≤k,r, ψ) iff K ⊨ldl ψldl.

Memoryless PathF algorithm is given as Algorithm 4.
Theorem 6. Model checking memoryless SJAADL can be
done in time exponential in k and l, and polynomial in n.

Proof. We prove that Label takes O(nl2k2l) time by in-
duction on l. We only show the two most complex cases:
processing ⟨⟨A⟩⟩≤kψ and (A)≤kψ φ, both requiring calling
ReduceP , enumerating strategies and calling PathF . Let
l1 = |ψ|, and l2 = |φ|. Assume that processing a subformula
φ′ takes O(nl′2k2l′) time, where l′ = |φ′|. Then calling
ReduceP takes O(nl12k2l1) time. There are O(2k) struc-
tured strategies, and calling PathF takes O(n2l1) time by
Lemma 5, hence calling StrS takes O(n2k2l1) time. Pro-
cessing (A)≤kψ φ1 requires calling StrS and Label for each
state, which takes O(n(n2k2l1 + nl22k2l2)) = O(nl2k2l)
time. Hence processing each case takesO(nl2k2l) time.

Note that the model-checking algorithm for memoryless
JAADL is exponential in n, while our model-checking al-
gorithm for memoryless SJAADL is polynomial in n. The
main reason is that the size of the strategy space for mem-
oryless JAADL is exponential in n, while for memoryless
SJAADL the size is exponential in k. Thus, our model-
checking algorithm for memoryless SJAADL has better
complexity than that for memoryless JAADL.

Memoryful SJAADL
In memoryful SJAADL, as decisions of a coalition are based
on the whole history, given a state w and a collective struc-
tured strategy RδAG, when we construct a Kripke structure
from a CGS G, we have to use extra states to memorize the
history. For an agent i, δi has at most k LDLf conditions.
Each LDLf condition can be transformed to an equivalent
finite automaton. So for agent i, she can use the states of at
most k automata to memorize the history.
Lemma 7. PathF for memoryful SJAADL can be reduced
to model checking an LDL formula with size O(l) on a
Kripke structure with size O(n22k).

Proof. We first construct a pure LDL formula ψldl. Each
LDLf formula ψ in RδAG can be converted to an equivalent
alternating finite automata on words (AFW)Aψ with at most
2|ψ| states (De Giacomo and Vardi 2013), the exact state set
is the Fisher-Ladner closure (Harel, Pnueli, and Stavi 1983)
of ψ. An AFW with m states can be converted to an equiv-
alent DFA with at most 22

m

states (Chandra, Kozen, and
Stockmeyer 1981). Given a memoryful strategy RδAG and
a state w, we can construct a Kripke structure K as follows:
at any history h, for an agent i, after input h, her possible

15021

actions depend only on the current state of each DFA. Thus,
we represent K’s states by states of G and all DFAs. The ini-
tial state s0 ofK is composed of the initial statew0 of G, and
for each DFA, the w0-successor (i.e., successor via edge w0)
of the initial state. Let s be a state of K composed from state
w of G and state wD for each DFA D. Let d be a possible
decision at w. Let s′ be composed from w′, the d-successor
of w, and for each DFA D, the w′-successor of wD. Then s′

is a succesor of s in K. RδA needs O(k) DFAs with O(22k)
states each, therefore K has O(n22k) states, and we have
PathF (G, w,RδAG, ss≤k,r, ψ) iff K ⊨ldl ψldl.

We call the Kripke structure constructed in the proof the
joining of G and all DFAs. Memoryful PathF algorithm is
given as Algorithm 5.
Theorem 8. Model checking memoryful SJAADL can be
done in time double exponential in k, exponential in l, and
polynomial in n.

Proof. We prove Label takes O(nl22k2l) time by induction
on l. The proof is similar to the memoryless case, except that
calling PathF takes O(n22k2l) time by Lemma 7.

Norm Synthesis
In this section, we introduce the problem of norm synthesis,
and solve it with SJAADL model checking.

We have presented cases in which a coalition has strategic
ability, but has no joint ability despite agents’ coordinating
intention. In some cases, adding a rule to enforce the coali-
tion follows the rule can ensure joint ability. We call the rule
a social norm, and the problem of finding it norm synthesis.
In this paper, we consider the memoryless case. The mem-
oryful case is more complex and is left for future work. We
first state it formally for SJAADL:
Definition 21 (norm synthesis). Given a CGS G, a state w,
an SJAADL formula φ in the form of ((A))≤k,∞⟨⊤∗⟩ψ or
((A))≤k,∞[⊤∗]ψ, a k-bounded memoryless strategy space ss
s.t. w, ss ⊭ φ, the problem is to find a propositional for-
mula ϕ s.t. for the corresponding formula φ′ in the form of
((A))≤k,∞⟨ϕ∗⟩ψ or ((A))≤k,∞[ϕ∗]ψ, we have w, ss ⊨ φ′.

Then, we give two algorithms for the case φ =
((A))≤k,∞⟨⊤∗⟩ψ. The other case is dealt similarly.

The first algorithm (Algorithm 6) enumerates all possible
ϕ with a fixed size bound, and checks whether each of them
fulfills the requirement with SJAADL model checking.
Proposition 9. Algorithm 6 is sound and complete if there is
a solution of the given bound, and runs in time exponential
w.r.t. the bound.

The second algorithm (Algorithm 7) is based on Propo-
sition 1 that if a coalition has strategic ability but no joint
ability, there will be an incoordination core. The algorithm
uses StrSM∞, which is the same as StrS∞ except it also
returns the compatible sets of each remaining strategy (writ-
ten as M). For δi = (ϕj , αj)

n
j=1, let ϕd = ¬(ϕp → αp) for

some p ≤ n, then ϕd disables a condition-action pair of δi,
we call ϕd a disabler of δi. Although the complexity is not
improved, the exhaustive search in Algorithm 6 is avoided.

Algorithm 6: Exhaustive Search for Norm Synthesis

function Search(A,φ,w, ss,G, bound):
for each ϕ that |ϕ| ≤ bound do

if w ∈ Label(G, ss, ((A))≤k,∞⟨ϕ∗⟩ψ) then
return ϕ

return ⊥

Algorithm 7: Local Search for Norm Synthesis

function LSearch(A,φ,w, ss,G, bound):
ϕ← ⊤
while |ϕ| ≤ bound do

ss,M ← StrSM∞(A, ⟨ϕ∗⟩ψ,w, ss);
return ϕ if there is joint ability;
return ⊥ if there is no strategic ability;
choose a core (δi, δ

′
i);

construct a disabler ϕd of δi;
ϕ← ϕ ∧ ϕd

return ⊥

Proposition 10. Algorithm 7 is sound, and runs in time ex-
ponential w.r.t. the bound.

Example 6. Consider the scenario in Example 4, where
((1, 2))≤4,∞⟨⊤∗⟩(hasAcorn1 ∧ hasAcorn2) does not hold.
Here δ11 and δ21 are in an incoordination core. Algo-
rithm 7 lets ϕ be ¬(¬seeAcorn1 → e1), which dis-
ables δ11 and destroys the core, enabling 4-bounded joint
ability. The new formula ((1, 2))≤4,∞⟨(¬(¬seeAcorn1 →
e1))

∗⟩(hasAcorn1 ∧ hasAcorn2) holds.

Conclusions
In this paper, we have proposed SJAADL, a modal logic for
joint abilities of structured strategies with bounded complex-
ity. Compared with JAADL, SJAADL has the following ad-
vantages. First, in contrast to combinatorial or deterministic
strategies, the notion of our structured strategies is a better
representation of human strategies, especially in the mem-
oryful case where a strategy is combinatorially more com-
plex. Secondly, our algorithms for model-checking SJAADL
have complexity polynomial in the model size, and thus
excel over the model-checking algorithm for memoryless
JAADL. Thirdly, in SJAADL, we can formalize the prob-
lem of synthesizing norms to achieve joint ability, and give
preliminary algorithms for it. In the future, we are inter-
ested in solving the expressivity problem in the nondeter-
ministic case, finding non-trivial lowerbounds for model-
checking both memoryless and memoryful SJAADL, for-
malizing more natural and restricted ways of reasoning
about coordination, as well as further exploration of norm
synthesis and its implementation.

Acknowledgments
We thank the anonymous reviewers for helpful comments.
We acknowledge support from the Natural Science Founda-
tion of China under Grant No. 62076261.

15022

References
Alur, R.; Henzinger, T. A.; and Kupferman, O. 2002.
Alternating-time temporal logic. Journal of the ACM
(JACM), 49(5): 672–713.
Chandra, A. K.; Kozen, D. C.; and Stockmeyer, L. J. 1981.
Alternation. J. ACM, 28(1): 114–133.
De Giacomo, G.; and Vardi, M. Y. 2013. Linear Temporal
Logic and Linear Dynamic Logic on Finite Traces. In Pro-
ceedings of the Twenty-Third International Joint Conference
on Artificial Intelligence, IJCAI ’13, 854–860. AAAI Press.
ISBN 9781577356332.
Faymonville, P.; and Zimmermann, M. 2017. Parametric
linear dynamic logic. Information and Computation, 253:
237–256.
Ghaderi, H.; Levesque, H.; and Lespérance, Y. 2007. To-
wards a logical theory of coordination and joint ability. In
Proceedings of the 6th international joint conference on Au-
tonomous agents and multiagent systems, 1–3.
Harel, D.; Pnueli, A.; and Stavi, J. 1983. Propositional dy-
namic logic of nonregular programs. Journal of Computer
and System Sciences, 26(2): 222–243.
Jamroga, W.; Malvone, V.; and Murano, A. 2017. Reasoning
about natural strategic ability. In Proceedings of the 16th
Conference on Autonomous Agents and MultiAgent Systems,
714–722.
Jamroga, W.; Malvone, V.; and Murano, A. 2019. Natural
strategic ability. Artificial Intelligence, 277: 103170.
Liu, Z.; Xiong, L.; Liu, Y.; Lespérance, Y.; Xu, R.; and Shi,
H. 2020. A Modal Logic for Joint Abilities under Strategy
Commitments. In IJCAI, 1805–1812.
Osborne, M. J.; and Rubinstein, A. 1994. A Course in Game
Theory. The MIT Press. London, England: MIT Press.
Ramanujam, R.; and Simon, S. E. 2008. Dynamic Logic on
Games with Structured Strategies. In KR, 49–58.
van Eijck, J. 2013. PDL as a multi-agent strategy logic. In
Proceedings of the 14. Conference on Theoretical Aspects of
Rationality and Knowledge, 206–215.

15023

