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Abstract

Logical reasoning is fundamental to intelli-
gent systems. Large language models (LLMs)
have demonstrated promise in natural language
(NL) reasoning, especially with techniques like
chain-of-thought (CoT) prompting. Neuro-
symbolic methods like Logic-LM and LINC
further enhance performance on challenging
datasets FOLIO and AR-LSAT by integrating
formalization with LLMs and symbolic solvers,
and possibly refinement with LLMs. How-
ever, these methods still struggle with the ac-
curate formalization of complex NL problems.
In this paper, we introduce LTRAG, a frame-
work to enhance autoformalization and self-
refinement for logical reasoning with Retrieval-
Augmented Generation (RAG), by building
knowledge bases of thought-guided examples1.
Experimental results on FOLIO and AR-LSAT
show that LTRAG consistently outperforms
Logic-LM and LINC across different models.
On GPT-4 and AR-LSAT, it achieves an accu-
racy gain of 13% over Logic-LM.

1 Introduction

Logical reasoning is a fundamental aspect of hu-
man intelligence and is essential for complex tasks
such as problem solving. Recently, logical reason-
ing over natural language (NL) exploiting large
language models (LLMs) has received much at-
tention. Many datasets have been proposed, in-
cluding synthetic ProofWriter for rule reasoning
(Tafjord et al., 2021), human-crafted FOLIO for
complex first-order logic (FOL) reasoning (Han
et al., 2024), and AR-LSAT extracted from LSAT
exams (Zhong et al., 2021). Various methods have
been explored, including prompting (Wei et al.,
2022; Kojima et al., 2022), fine-tuning (Zelikman
et al., 2022), and neuro-symbolic methods based
on search (Kazemi et al., 2023; Hao et al., 2023).

*Corresponding author
1https://github.com/sysulic/LTRAG

A recent endeavor for logical reasoning over NL
is neuro-symbolic methods based on autoformal-
ization, by combining translation with LLMs from
NLs to formal languages and rigorous reasoning
of symbolic solvers. As long as the translations
are correct, resorting to symbolic solvers can guar-
antee faithfulness of reasoning, which cannot be
ensured by reasoning in LLMs, because of their
fundamental nature of black-box probabilistic mod-
els. Typical works are Logic-LM (Pan et al., 2023)
which introduces self-refinement to use the sym-
bolic solver’s error messages to refine the formal-
ization, and LINC (Olausson et al., 2023), which
uses majority-vote to decide the result from mul-
tiple formulations. On GPT-4, LINC achieves an
accuracy of 98% on ProofWriter, and Logic-LM
reaches 79% on FOLIO.

However, research on autoformalization still
faces significant challenges in guaranteeing correct-
ness of translation, especially for more complex NL
inputs. For example, with GPT-4, on AR-LSAT,
Logic-LM only achieves an accuracy of 43%. In
particular, these methods rely on a fixed set of ex-
amples for autoformalization and self-refinement,
thus struggling with diverse and complex inputs,
limiting their generalizability. On the other hand,
Retrieval-Augmented Generation (RAG) (Lewis
et al., 2020) enhances generation by dynamically
retrieving relevant information from an external
knowledge base (KB).

In this paper, we propose a framework LTRAG
to enhance autoformalization and self-refinement
for logical reasoning with thought-guided RAG,
by building KBs of thought-guided examples for
formalization and refinement. Experimental results
on FOLIO and AR-LSAT show that LTRAG con-
sistently outperforms Logic-LM and LINC across
different models. In particular, LTRAG achieves
an accuracy gain of 8% over Logic-LM and LINC
on GPT-3.5-turbo and FOLIO, and 13% on GPT-4
and AR-LSAT.

https://github.com/sysulic/LTRAG


2 Related Work

Translating a NL into a formal language is challeng-
ing due to its ambiguity and implicit information.
Nguyen et al. (2022) proposed a method combining
manual translation with deep learning. Yang et al.
(2024) introduced LogicLLaMA, combining super-
vised fine-tuning and reinforcement learning with
human feedback. Chen et al. (2023) developed a
framework using LLMs for translation between NL
and temporal logic using intermediate languages.

Autoformalization-based neuro-symbolic meth-
ods for logical reasoning have recently gained
much attention. Pan et al. (2023) proposed Logic-
LM, including a Problem Formulator to formal-
ize the problem, a Symbolic Reasoner, and a Self-
Refiner module for error correction. Olausson et al.
(2023) introduced LINC, which also combines aut-
oformalization and symbolic solving, but uses ma-
jority voting to aggregate results. Ye et al. (2023b)
proposed SATLM, which uses LLMs to formalize
NL input into satisfiability (SAT) problems and
uses a SAT solver for reasoning. Jiang et al. (2024)
introduced LeanReasoner, which fine-tunes with
data in the Lean theorem-proving environment, for-
malizes problems into Lean theorems and solves
them with a tactic generator and proof search. Xu
et al. (2024) proposed SymbCoT, which does aut-
oformalization but reasons with CoT prompting
based on both NL and FOL inputs.

Lewis et al. (2020) proposed RAG, using doc-
ument retrieval to improve output precision with
external knowledge. Fan et al. (2024) showed RAG
reduces hallucinations and improves generation
quality. Jiang et al. (2023) introduced FLARE,
enabling efficient retrieval during generation.

Example selection is key to in-context learning.
Liu et al. (2022) used a sentence encoder to select
top-k similar examples for given problems, show-
ing dynamic selection improves LLM performance.
Levy et al. (2023) studied compositional general-
ization in semantic parsing, selecting diverse exam-
ples via coverage and diversity based methods. Ye
et al. (2023a) proposes CEIL, an example selection
method using Determinantal Point Processes and
contrastive learning.

3 Framework

The structure of LTRAG is depicted in Figure 1. It
comprises four key components: a Retrieval Mod-
ule, a Translator LLM, a Solver, and a Fixer LLM.
The Translator LLM (similar to Logic-LM’s Prob-

lem Formulator) converts NL problems into for-
mal representations, while the Fixer LLM (akin
to Logic-LM’s Self-Refine) corrects translation er-
rors. The Retrieval Module, built upon FastGPT2,
dynamically retrieves similar examples from the
RAG KBs. Specifically, we store the embeddings
of examples from the KBs as vectors. When a new
task of translation or fixing is introduced, its text is
embedded into a vector of the same dimension. We
then compute cosine similarity between the task
vector and all vectors in the KB, selecting the top-k
most similar examples to provide context for the
LLMs. These retrieved examples serve as guid-
ing references for both Translator and Fixer LLMs,
enhancing the accuracy of formalization and error
correction. The detailed method for constructing
the KBs can be found in Section 4.2. Once the
problem is formalized, the Solver takes over to
perform logical reasoning. The Solver is based
on Microsoft’s Z3 solver3 (de Moura and Bjørner,
2008), and is capable of handling FOL expressions
(in FOLIO) and constraint satisfaction problems (in
AR-LSAT). If errors are detected, they are reported
to the Fixer LLM for another formalization, and
the above process is repeated.

Here is an example (full version in Ap-
pendix A.1): One of the input premises is “There
are four seasons in a year: Spring, Summer, Fall,
and Winter". The full problem is used to retrieve
the translation KB, and both the problem and the
retrieved examples are provided to the Translator
LLM, resulting in an initial formalization:

∀x(Season(x) → (x = Spring∨
x = Summer ∨ x = Fall ∨ x = Winter)).

The solver will return an error, indicating that using
“=" is not allowed. The error is used to retrieve
the fixer KB, and both the error and the retrieved
examples are provided to the Fixer LLM, resulting
in the final correct formalization:

∀x(Season(x) → (IsSpring(x)∨
IsSummer(x) ∨ IsFall(x) ∨ IsWinter(x))).

4 Experiments

4.1 Experimental Setup
We evaluate LTRAG on FOLIO and AR-LSAT,
comparing it against baselines such as Standard
prompting, CoT prompting (using 2 examples on

2https://github.com/labring/FastGPT
3https://github.com/Z3Prover/z3
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https://github.com/Z3Prover/z3


Problem

Examples

If errorTranslator LLM SolverTranslation result Final result

No

Error message

Examples

Translation KB
Fixer LLM Fix result

Yes

Fixer KB

Figure 1: The framework of LTRAG.

FOLIO and 1 on AR-LSAT), LINC, and Logic-LM,
across models including GPT-4o (OpenAI, 2024),
DeepSeek v2.5 (DeepSeek-AI, 2024), Llama3.3-
70b (Grattafiori et al., 2024), GPT-3.5-turbo, and
Gemma2-27b (Rivière et al., 2024).

On FOLIO, as our test set, we use the 182 ver-
ified samples retained by LINC after filtering out
the problematic ones from the original 204 sam-
ples. On AR-LSAT, as Logic-LM, we use the 231
samples from the dev set as our test set.

Note that AR-LSAT samples are single-choice
questions. Even when the program generated for a
sample is executable, the solver may return no or
multiple answers. This is a type of semantic errors.
When errors persist after repeated repairs, Logic-
LM returns an answer using the CoT method, and
we do the same.

4.2 Knowledge Base Construction

Our RAG KBs are semi-automatically constructed.
Roughly, the translation KBs are automatically con-
structed from the training sets with programs or
LLMs, while the fixer KBs are constructed by first
manually fixing a small set of error cases and then
using it to guide LLMs to generate the rest. De-
tailed examples are in Appendix A.2. In the follow-
ing, we give details of our KB construction.

For FOLIO, the translation KB is built from the
training set, with the 122 samples where DeepSeek
fails to obtain the correct answer using the Transla-
tor LLM with an empty KB and the solver. We
focus on errors made by powerful models like
DeepSeek, as these are often more representative
and challenging. Each such sample is provided
with the annotated formulas and translation steps
obtained with a program as follows: first, extract
all predicates and constants from the problem; sec-

ond, identify relevant predicates and constants for
each sentence; and finally, translate the sentence
into FOL. The fixer KB is built from the training
set, using samples where DeepSeek fails to obtain
an executable formalization. A subset is manually
corrected for high-quality references, while the rest
are automatically repaired as follows: for each such
sample, using the annotated formulas and the man-
ual repair subset as context, let DeepSeek return
the thought process for repairing, and retain the
sample if the solver returns the correct answer. The
fixer KB ends up with 57 samples.

For AR-LSAT, the translation KB is built as fol-
lows: first, we pick 1,500 samples from the train-
ing set; second, for each of these samples, we
use DeepSeek to formalize it with the RAG KB
of Logic-LM’s formalizations of the dev set; fi-
nally, we retain 538 executable samples. As to
the second step, we focus on defining the formal-
ization’s syntax and precautions in the prompts;
due to the length of AR-LSAT samples, we choose
not to let LLMs generate the thought process be-
cause long outputs confuse LLMs and easily gen-
erate unexecutable formalizations. The fixer KB
is built from the training set, using samples where
DeepSeek fails to obtain an executable formaliza-
tion or a unique answer. We first manually ana-
lyze the types of errors reported by the solver (e.g.,
syntax errors, multiple answers). For each error
type, we craft high-quality examples demonstrating
the error and its correction. The rest samples are
semi-automatically repaired as follows: for each
such sample, using the manual repair subset, let
DeepSeek return the thought process for repairing
the formulation, which is manually checked for
correctness and decided for being retained or not.
The fixer KB ends up with 41 samples.



Model FOLIO (Accuracy %) AR-LSAT (Accuracy %)
LTRAG Standard CoT LINC Logic-LM LTRAG Standard CoT Logic-LM

GPT-4o 80.77 73.63 78.02 72.50 78.92 56.71 40.26 43.72 43.04
DeepSeek v2.5 78.57 74.73 76.37 - - 68.40 51.52 64.50 -
Llama3.3 78.57 72.53 71.43 - - 59.31 40.26 39.83 -
GPT-3.5-turbo 70.88 56.59 59.34 62.60 61.27 26.84 24.24 19.48 26.41
Gemma2 79.67 59.89 62.09 - - 35.06 25.97 24.67 -

Table 1: Performance comparison on FOLIO and AR-LSAT. The data for Logic-LM and LINC comes from their
papers, and ‘-’ denotes that they did not experiment on the model. LINC did not experiment on AR-LSAT. Best
results in each row are bolded.

4.3 Results
The experimental results are summarized in Table 1.
To handle longer contexts, we use GPT-4o, which
has a larger context window (128K tokens) com-
pared to GPT-4 (8K tokens) used in prior works.
The two models show minimal performance differ-
ences on reasoning tasks.

On FOLIO, LTRAG consistently outperforms
other methods across different models. For GPT-4o,
it achieves 80.77%, surpassing Logic-LM’s 78.92%
and LINC’s 72.50%. For GPT-3.5-turbo, LTRAG
attains 70.88%, significantly outperforming Logic-
LM (61.27%) and LINC (62.60%).

Model Exe_rate Exe_accuracy
GPT-4o 69.3 50.0
GPT-4(Logic-LM) 39.8 58.8
GPT-3.5-turbo 54.1 19.2
GPT-3.5(Logic-LM) 21.8 60.3
DeepSeek v2.5 71.0 44.5
Llama3.3 66.7 52.6
Gemma2 45.0 36.5

Table 2: Executable rate (Exe_rate) and Execution Ac-
curacy (Exe_accuracy) on AR-LSAT.

On AR-LSAT, LTRAG also consistently im-
proves over the baseline methods. For GPT-4o,
it outperforms both Logic-LM and CoT by about
13%. LTRAG also enhances DeepSeek v2.5’s per-
formance, achieving 68.40% compared to 51.52%
under Standard prompting. However, LTRAG at-
tains limited improvements on GPT-3.5-turbo, with
the performance gain being less than 3% compared
to Standard Prompting and Logic-LM.

In Table 2, we analyze the executable rate and
execution accuracy of LTRAG on AR-LSAT, in
comparison to Logic-LM. In terms of executable
rate, on both GPT-4o and GPT-3.5-turbo, LTRAG
outperforms Logic-LM by about 30%, indicating
its superior ability to generate executable programs.
It is easy to notice that our execution accuracy is

lower compared to Logic-LM. A possible reason
is that we get much more executable programs,
making the error rate in execution increase.

4.4 Ablation Experiments

In ablation studies, we investigate the effect of the
Fixer LLM, i.e., we compare the performance with
and without the Fixer LLM.

We test the performance with different temper-
atures ranging from 0.1 to 0.3 and different num-
bers of in-context examples. We test with 1, 2,
and 3 examples for each model on FOLIO; and on
AR-LSAT, with 3, 5, and 7 examples during the
translation phase, and only one example during the
repair phase due to the length of the examples. We
show the results of each model at the optimal tem-
perature for the translation process. For the repair
process, we show the results at the optimal temper-
ature, where the input is the result of the translation
process at the optimal temperature for the optimal
number of examples.

Model
w/o Fix with Fix

E=1 E=2 E=3 E=1 E=2 E=3
DeepSeek V2.5 76.9 75.3 75.8 78.6 78.0 78.0
GPT-4o 74.7 74.7 75.8 80.8 80.8 80.8
Llama3.3 74.2 73.1 74.2 78.0 78.0 78.0
GPT-3.5-turbo 60.9 64.3 63.7 69.8 70.3 69.8
Gemma2 73.1 76.4 75.3 78.6 79.1 78.0

Table 3: Accuracy (%) comparison on FOLIO – Exact
Match. E represents the number of in-context examples.

For FOLIO, we use two evaluation settings:
Exact Match, and Error as Unknown. Exact
Match considers correct only if the predicted label
matches the ground truth label. In contrast, Er-
ror as Unknown treats grammatical errors as “Un-
known” results, which may allow some outputs to
be counted as correct by chance. Tables 3 and 4
present the accuracy comparison with and without



Model
w/o Fix with Fix

E=1 E=2 E=3 E=1 E=2 E=3
DeepSeek V2.5 78.6 78.0 78.6 78.6 78.6 78.6
GPT-4o 75.8 77.5 78.0 80.8 80.8 80.8
Llama3.3 75.8 75.8 78.0 78.6 78.6 78.6
GPT-3.5-turbo 65.4 68.7 68.1 70.9 70.9 70.9
Gemma2 75.3 78.6 78.0 79.7 79.7 79.7

Table 4: Accuracy (%) comparison on FOLIO – Error
as Unknown.

Fix in the two settings, respectively. The “w/o Fix”
parts show that increasing the number of examples
slightly improves accuracy, while in others it in-
troduces noise. Most importantly, the two tables
show that the Fixer LLM improves accuracy by
2–5% for large models, while the improvement is
3–6% for small models. The improvements are par-
ticularly notable in the exact match setting, where
Fixer LLM corrects superficial grammatical errors.

For AR-LSAT, Table 5 presents the accuracy
comparison with and without Fix. We observe that
in the “w/o Fix” part, large models achieve their
highest accuracy around 17%, with GPT-4o per-
forming best at 19.5%, while small models reach a
maximum accuracy of only 8.2%. The table shows
Fixer LLM improves accuracy by 15–20% for large
models, while the improvement is 2–8% for small
models. The larger improvements on AR-LSAT
compared to FOLIO can be attributed to the higher
complexity and error rate in AR-LSAT.

Model
w/o Fix with Fix

E=1 E=2 E=3 E=1
DeepSeek V2.5 12.1 16.0 13.9 31.6
GPT-4o 19.5 15.6 16.0 34.6
Llama3.3 16.0 16.9 14.7 35.1
GPT-3.5-turbo 6.10 8.20 6.10 10.4
Gemma2 5.20 7.80 3.00 16.5

Table 5: Accuracy (%) comparison on AR-LSAT.

4.5 Discussion

We first analyze on FOLIO, why LTRAG achieves
better improvements on small models than on large
models. We think the thought-guided examples
for the Translator LLM notably benefit small mod-
els by mitigating their inherent limitations. Large
models produce fewer errors, and small models
have limited repair capabilities, leading to limited
improvements by the Fixer LLM.

We then analyze on AR-LSAT, why LTRAG
achieves better improvements on large models than
on small models. AR-LSAT samples are primar-
ily constraint satisfaction problems, having unique
answers, making it difficult to provide a system-
atic translation approach. The samples also involve
complex long-text constraints, thus limiting the
number of reference examples given to the Fixer
LLM. As a result, while both large and small mod-
els face difficulties, large models can make effec-
tive corrections with limited assistance, whereas
small models cannot.

5 Conclusion

In this paper, we propose the LTRAG framework to
enhance autoformalization and self-refinement for
logical reasoning with thought-guided RAG. The
translation KBs are automatically constructed, and
the fixer KBs are semi-automatically constructed
where a small set of error cases are manually fixed
and used to guide LLMs to generate more repair-
ing examples. Empirical results on the challenging
datasets FOLIO and AR-LSAT demonstrate that
our approach significantly improves refinement ca-
pabilities of large models and formalization capa-
bilities of small models. An outstanding advantage
of our work is to improve formalization with less
computational resources than approaches based
on fine-tuning. In the future, we are interested
in improving our framework by enhancing retrieval
mechanisms, prioritizing error additions to the fixer
KBs, handling more types of semantic errors, and
more automated KB construction.
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Limitations

Below, we outline some of the key challenges and
constraints associated with our framework:

Difficulty in Constructing Thought Processes
for Certain Tasks While structured reasoning
steps can be effectively constructed for datasets
like FOLIO with short context, other tasks such as
AR-LSAT present challenges. AR-LSAT problems
often involve complex constraints and relationships
that are harder to break down into a thought pro-
cess. This makes it difficult to provide the same
level of guidance for small models, limiting their
performance improvements.



Limited Impact of the Fixer LLM on Tasks
with Few Syntax Errors The Fixer LLM, which
corrects errors flagged by the Solver, shows limited
improvement on tasks where syntax errors are rare,
such as FOLIO. This is particularly true for large
models like GPT-4o, DeepSeek, and Llama, which
already produce fewer syntax errors due to their ad-
vanced reasoning capabilities. As a result, the Fixer
LLM’s contributions are marginal in such cases,
and the primary benefits of LTRAG come from the
structured formalization process. Conversely, the
Fixer LLM proves more effective on complex tasks
like AR-LSAT, where the error types are more var-
ied. Large models, with their superior refinement
capabilities, can leverage the Fixer LLM to achieve
significant improvements. However, small models,
that struggle with both autoformalization and self-
refinement, gain less benefit from the Fixer LLM
in these scenarios.

Limitations in the Fixer LLM on Semantic
Errors The Fixer LLM is primarily designed to
address surface-level syntax errors, such as incor-
rect predicate usage or invalid logical operators. It
is not capable of resolving deeper semantic errors,
where the logical formalization may be syntacti-
cally correct but semantically flawed. On FOLIO,
where the solver provides unique answers, it’s hard
to detect semantic errors, while AR-LSAT provides
extra feedback when the solver returns no or multi-
ple answers. This limitation highlights the need for
more advanced mechanisms that can handle both
syntactic and semantic errors.

Dependency on Knowledge Base Quality The
performance of LTRAG heavily relies on the qual-
ity and comprehensiveness of the KBs. In cases
where the KB lacks sufficient examples or contains
inaccuracies, the system’s abilities may be compro-
mised.
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A Appendix

A.1 An example of solving FOLIO problems

Premises:
1.[BG] There are four seasons in a

↪→ year: Spring , Summer , Fall , and
↪→ Winter.

2.All students who want to have a long
↪→ vacation love summer the most.

3.Emma 's favorite season is summer.
4.Mia 's favorite season is not the same

↪→ as Emma 's.
5.James wants to have a long vacation.

Conclusion:
James 's favorite season is summer.

Listing 1: Problem

Premises:
1. ∀x(Season(x) → (x = Spring∨
x = Summer ∨ x = Fall ∨ x = Winter))
2. ∀x(WantsLongV acation(x) →
FavoriteSeason(x, Summer))
3. FavoriteSeason(Emma, Summer)
4. ¬(FavoriteSeason(Mia,Emma)∧
FavoriteSeason(Emma,Mia))
5. WantsLongV acation(James)

Conclusion:
FavoriteSeason(James, Summer)

Listing 2: Translated Formulas

The solver will return an error, indicating that using
“=" is not allowed on premise 1. Instead, predicates
should be used to represent relationships.

Premises:
1. ∀x(Season(x) → (IsSpring(x)∨
IsSummer(x) ∨ IsFall(x) ∨ IsWinter(x)))
2. ∀x(WantsLongV acation(x) →
FavoriteSeason(x, Summer))
3. FavoriteSeason(Emma, Summer)
4. ¬(FavoriteSeason(Mia,Emma)∧
FavoriteSeason(Emma,Mia))
5. WantsLongV acation(James)

Conclusion:
FavoriteSeason(James, Summer)

Listing 3: Fixed Formulas

A.2 Examples from the RAG KBs
A.2.1 FOLIO

Input:
Premises:
1.All pets are animals.
2.Pets can be either a dog or a cat.
3.If a person has a pet , they care for

↪→ that pet.
4.Dogs and Cats can be naughty.
5.Pets who are naughty are not liked as

↪→ much.
6. Charlie has a naughty pet dog named

↪→ Leo.

Conclusion:
Leo is an animal.
Output:
We can get these predicates:
Pet(x), Animal(x), Dog(x), Cat(x), \\
HasPet(x), Cares(x,y), Naughty(x),

↪→ Liked(x,y)
We can get these constants:
charlie ,leo
Let 's translate one by one.
Premises:
1.Text:All pets are animals.
Predicates:
Animal(x),Pet(x)
Fol: ∀x(Pet(x) → Animal(x))
2.Text:Pets can be either a dog or a

↪→ cat.
Predicates:
Cat(x),Pet(x),Dog(x)
Fol: ∀x(Pet(x) → Dog(x)⊕ Cat(x))
3.Text:If a person has a pet , they care

↪→ for that pet.
Predicates:
Cares(x,y),HasPet(x)
Fol: ∀x∀y(HasPet(x) → Cares(x, y))
4.Text:Dogs and Cats can be naughty.
Predicates:
Cat(x),Naughty(x),Dog(x)
Fol: ∃x((Cat(x) ∧Naughty(x))∨
(Dog(x) ∧Naughty(x)))
5.Text:Pets who are naughty are not

↪→ liked as much.
Predicates:
Naughty(x),Pet(x),Liked(x,y)
Fol: ∀x∀y(Pet(x) ∧Naughty(x) → ¬Liked(x, y))
6.Text:Charlie has a naughty pet dog

↪→ named Leo.
Predicates:
Pet(x),Naughty(x),HasPet(x),Dog(x)
Constants:
charlie ,leo
Fol: HasPet(charlie) ∧ Pet(leo)
∧Dog(leo) ∧Naughty(leo)
Conclusion:
Text:Leo is an animal.
Predicates:
Animal(x)
Constants:
leo
Fol: Animal(leo)

Listing 4: An Example from the Translation KB for
FOLIO



Input:
Premises:
1.All commercial aircraft are produced

↪→ by either Boeing or Airbus.
origin: ∀x(CommercialAircraft(x)
→ (ProducedByBoeing(x) ∨ ProducedByAirbus(x)))
true answer: ∀x(CommercialAircraft(x)
→ ProducedBy(x, boeing)⊕ ProducedBy(x, airbus))
2.All American Airlines jets are

↪→ commercial aircraft.
origin: ∀x(AmericanAirlinesJet(x)
→ CommercialAircraft(x))
true answer: ∀x(AmericanAirlinesAircraft(x)
→ CommercialAircraft(x))
3. Airbus made more in revenue than

↪→ Boeing last year.
origin: ∃y(Revenue(airbus, y)∧
∃z(Revenue(boeing, z) ∧ y > z))
true answer: MoreinRevenue(airbus, boeing)

Conclusion:
There does not exist a United Airlines

↪→ plane produced by Boeing.
Error:
∃y(Revenue(airbus, y)∧
∃z(Revenue(boeing, z) ∧ y > z)) error :

↪→ (" Illegal comparisons: Matched
↪→ 'y > z' from position 50 to 55.
↪→ You can 't use x > something , try
↪→ to use predicate(x, something)
↪→ to replace it.",) Invalid
↪→ symbols in `=<>>=<=` at position
↪→ 52

Output:
Premises:

1. Original:
∀x(CommercialAircraft(x)
→ (ProducedByBoeing(x)
∨ProducedByAirbus(x)))
Explanation: The use of ∨ (logical

↪→ disjunction) is incorrect
↪→ here because it implies that
↪→ an aircraft can be produced
↪→ by both Boeing and Airbus ,
↪→ which is not the case. We
↪→ should use ⊕ (logical
↪→ exclusive disjunction) to
↪→ indicate that an aircraft is
↪→ produced by either Boeing or
↪→ Airbus , but not both.

Corrected:
∀x(CommercialAircraft(x)
→ (ProducedByBoeing(x)
⊕ProducedByAirbus(x)))

2. Original:
∀x(AmericanAirlinesJet(x)
→ CommercialAircraft(x))
Explanation: There is no need to

↪→ change.

3. Original:
∃y(Revenue(airbus, y)
∧∃z(Revenue(boeing, z) ∧ y > z))
Explanation: The use of '>' (greater

↪→ than) is invalid according to
↪→ the grammar rules. We need to

↪→ replace it with a predicate
↪→ that represents the
↪→ relationship between the
↪→ revenues of Airbus and
↪→ Boeing. We can use a
↪→ predicate
↪→ MoreInRevenue(airbus, boeing) to
↪→ indicate that Airbus made
↪→ more revenue than Boeing.

Corrected:
MoreInRevenue(airbus, boeing)

Conclusion:

Original:
¬∃x(UnitedAirlinesP lane(x)
∧ProducedByBoeing(x))
Explanation: There is no need to change.

Final Corrected Formulas:

Premises:
1. ∀x(CommercialAircraft(x)
→ (ProducedByBoeing(x)⊕ ProducedByAirbus(x)))

↪→
2. ∀x(AmericanAirlinesJet(x)
→ CommercialAircraft(x))
3. MoreInRevenue(airbus, boeing)

Conclusion:
¬∃x(UnitedAirlinesP lane(x)
∧ProducedByBoeing(x))

Listing 5: An Example from the Fixer KB for FOLIO



A.2.2 AR-LSAT

Input:
# Context:
Charlie makes a soup by adding exactly

↪→ six kinds of foods ---kale ,
↪→ lentils , mushrooms , onions ,
↪→ tomatoes , and zucchini ---to a
↪→ broth , one food at a time. No
↪→ food is added more than once.
↪→ The order in which Charlie adds
↪→ the foods to the broth must be
↪→ consistent with the following:
↪→ If the mushrooms are added
↪→ third , then the lentils are
↪→ added last. If the zucchini is
↪→ added first , then the lentils
↪→ are added at some time before
↪→ the onions. Neither the tomatoes
↪→ nor the kale is added fifth. The
↪→ mushrooms are added at some time
↪→ before the tomatoes or the kale ,
↪→ but not before both.

# Question:
If the lentils are added last , then

↪→ which one of the following must
↪→ be true?

# Options:
A) At least one of the foods is added

↪→ at some time before the zucchini.
B) At least two of the foods are added

↪→ at some time before the kale.
C) The mushrooms are added third.
D) The zucchini is added third.
E) The tomatoes are added fourth.

Output:
# Declarations
foods = EnumSort ([kale , lentils ,

↪→ mushrooms , onions , tomatoes ,
↪→ zucchini ])

order = Function ([foods] -> [int])
# Constraints
ForAll ([f:foods], And(order(f) <= 6,

↪→ order(f) >= 1)) ::: ** Implied
↪→ Information **: The order is
↪→ defined between 1 and 6.

ForAll ([f1:foods , f2:foods], Implies(f1
↪→ != f2, order(f1) != order(f2)))
↪→ ::: ** Implied Information **: All
↪→ food items have different
↪→ positions.

Implies(order(mushrooms) == 3,
↪→ order(lentils) == 6) ::: If the
↪→ mushrooms are added third , then
↪→ the lentils are added last

Implies(order(zucchini) == 1,
↪→ order(lentils) < order(onions))
↪→ ::: If the zucchini is added
↪→ first , then the lentils are
↪→ added at some time before the
↪→ onions

And(order(tomatoes) != 5, order(kale)
↪→ != 5) ::: Neither the tomatoes
↪→ nor the kale is added fifth

Exists ([f:foods],
↪→ And(Or(order(mushrooms) <
↪→ order(tomatoes),

↪→ order(mushrooms) < order(kale)),
↪→ Not(And(order(mushrooms) <
↪→ order(tomatoes),
↪→ order(mushrooms) <
↪→ order(kale))))) ::: The
↪→ mushrooms are added at some time
↪→ before the tomatoes or the kale ,
↪→ but not before both

order(lentils) == 6 ::: If the lentils
↪→ are added last

# Options
is_valid(Exists ([f:foods], order(f) <

↪→ order(zucchini))) ::: (A)
is_valid(Count([f:foods], order(f) <

↪→ order(kale)) >= 2) ::: (B)
is_valid(order(mushrooms) == 3) ::: (C)
is_valid(order(zucchini) == 3) ::: (D)
is_valid(order(tomatoes) == 4) ::: (E)

Listing 6: An Example from the Translation KB for
AR-LSAT

Input:
### Context:
Eight camp counselorsFran , George ,

↪→ Henry , Joan , Kathy , Lewis ,
↪→ Nathan , and Olgamust each be
↪→ assigned to supervise exactly
↪→ one of three activitiesswimming ,
↪→ tennis , and volleyball. The
↪→ assignment of counselors must
↪→ conform to the following
↪→ conditions: Each activity is
↪→ supervised by at least two , but
↪→ not more than three , of the
↪→ eight counselors. Henry
↪→ supervises swimming. Neither
↪→ Kathy nor Olga supervises
↪→ tennis. Neither Kathy nor Nathan
↪→ supervises the same activity as
↪→ Joan. If George supervises
↪→ swimming , both Nathan and Olga
↪→ supervise volleyball.

### Question:
Which one of the following is a pair of

↪→ counselors who could be two of
↪→ three counselors assigned to
↪→ supervise swimming?

### Options:
A) George and Nathan
B) George and Olga
C) Joan and Kathy
D) Joan and Nathan
E) Joan and Olga
### Logic program
```plaintext
# Declarations
counselors = EnumSort ([Fran , George ,

↪→ Henry , Joan , Kathy , Lewis ,
↪→ Nathan , Olga])

activities = EnumSort ([swimming ,
↪→ tennis , volleyball ])

assigned = Function ([ counselors] ->
↪→ [activities ])

# Constraints
ForAll ([a:activities],

↪→ And(Count([c:counselors],
↪→ assigned(c) == a) >= 2,



↪→ Count([c:counselors],
↪→ assigned(c) == a) <= 3)) :::
↪→ Each activity is supervised by
↪→ at least two , but not more than
↪→ three , of the eight counselors

assigned(Henry) == swimming ::: Henry
↪→ supervises swimming

assigned(Kathy) != tennis ::: Neither
↪→ Kathy nor Olga supervises tennis

assigned(Olga) != tennis ::: Neither
↪→ Kathy nor Olga supervises tennis

assigned(Kathy) != assigned(Joan) :::
↪→ Neither Kathy nor Nathan
↪→ supervises the same activity as
↪→ Joan

assigned(Nathan) != assigned(Joan) :::
↪→ Neither Kathy nor Nathan
↪→ supervises the same activity as
↪→ Joan

Implies(assigned(George) == swimming ,
↪→ And(assigned(Nathan) ==
↪→ volleyball , assigned(Olga) ==
↪→ volleyball)) ::: If George
↪→ supervises swimming , both Nathan
↪→ and Olga supervise volleyball

# Options
is_accurate_list ([ assigned(George) ==

↪→ swimming , assigned(Nathan) ==
↪→ swimming ]) ::: (A)

is_accurate_list ([ assigned(George) ==
↪→ swimming , assigned(Olga) ==
↪→ swimming ]) ::: (B)

is_accurate_list ([ assigned(Joan) ==
↪→ swimming , assigned(Kathy) ==
↪→ swimming ]) ::: (C)

is_accurate_list ([ assigned(Joan) ==
↪→ swimming , assigned(Nathan) ==
↪→ swimming ]) ::: (D)

is_accurate_list ([ assigned(Joan) ==
↪→ swimming , assigned(Olga) ==
↪→ swimming ]) ::: (E)

```
### Error
No correct option problem. All options

↪→ in this program are judged as
↪→ incorrect , but this question is
↪→ a single -choice question. It
↪→ seems that some information has
↪→ been overlooked , and the program
↪→ needs to be re-examined.

Output:
### Analysis
1. There is no statement that each

↪→ counselor can only be assigned
↪→ to one activity; this constraint
↪→ needs to be added.

2. The question asks which two people
↪→ can simultaneously be assigned
↪→ to swimming , so `is_sat ` should
↪→ be used.

The final program is modified as
↪→ follows:

```plaintext
# Declarations
counselors = EnumSort ([Fran , George ,

↪→ Henry , Joan , Kathy , Lewis ,
↪→ Nathan , Olga])

activities = EnumSort ([swimming ,

↪→ tennis , volleyball ])
assigned = Function ([ counselors] ->

↪→ [activities ])

# Constraints
ForAll ([a:activities],

↪→ And(Count([c:counselors],
↪→ assigned(c) == a) >= 2,
↪→ Count([c:counselors],
↪→ assigned(c) == a) <= 3)) :::
↪→ Each activity is supervised by
↪→ at least two , but not more than
↪→ three , of the eight counselors

ForAll ([c:counselors],
↪→ Count([a:activities],
↪→ assigned(c) == a) == 1) ::: A
↪→ person can only participate in
↪→ one activity.

assigned(Henry) == swimming ::: Henry
↪→ supervises swimming

assigned(Kathy) != tennis ::: Neither
↪→ Kathy nor Olga supervises tennis

assigned(Olga) != tennis ::: Neither
↪→ Kathy nor Olga supervises tennis

assigned(Kathy) != assigned(Joan) :::
↪→ Neither Kathy nor Nathan
↪→ supervises the same activity as
↪→ Joan

assigned(Nathan) != assigned(Joan) :::
↪→ Neither Kathy nor Nathan
↪→ supervises the same activity as
↪→ Joan

Implies(assigned(George) == swimming ,
↪→ And(assigned(Nathan) ==
↪→ volleyball , assigned(Olga) ==
↪→ volleyball)) ::: If George
↪→ supervises swimming , both Nathan
↪→ and Olga supervise volleyball

# Options
is_sat(And(assigned(George) ==

↪→ swimming , assigned(Nathan) ==
↪→ swimming)) ::: (A)

is_sat(And(assigned(George) ==
↪→ swimming , assigned(Olga) ==
↪→ swimming)) ::: (B)

is_sat(And(assigned(Joan) == swimming ,
↪→ assigned(Kathy) == swimming))
↪→ ::: (C)

is_sat(And(assigned(Joan) == swimming ,
↪→ assigned(Nathan) == swimming))
↪→ ::: (D)

is_sat(And(assigned(Joan) == swimming ,
↪→ assigned(Olga) == swimming)) :::
↪→ (E)

```

Listing 7: An Example from the Fixer KB for AR-LSAT
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