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In the past decades, forgetting has been investigated for many logics and has found many 
applications in knowledge representation and reasoning. In this paper, we study forgetting 
in multi-agent modal logics. We adopt the semantic definition of existential bisimulation 
quantifiers as that of forgetting. We resort to canonical formulas of modal logics introduced 
by Moss. An arbitrary modal formula is equivalent to the disjunction of a unique set of 
satisfiable canonical formulas. We show that, for the logics of Kn , Dn , Tn, K45n , KD45n and 
S5n, the result of forgetting an atom from a satisfiable canonical formula can be computed 
by simply substituting the literals of the atom with �. Thus we show that these logics are 
closed under forgetting, and hence have uniform interpolation. Finally, we generalize the 
above results to include common knowledge of propositional formulas.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In the past decades, forgetting has been investigated for many logics and has found many applications in knowledge 
representation and reasoning (KR). Intuitively, forgetting some symbols from a theory should result in a theory that is 
weaker than the original theory and entails the same set of sentences that do not mention those symbols. We say that 
a logic is closed under forgetting if the result of forgetting can always be expressed in the same logic. A closely related 
concept is uniform interpolation. A logic has uniform interpolation if for any formula φ and any set S of symbols occurring 
in φ, there is a formula ψ , called a uniform interpolant of φ w.r.t. S , using only symbols in S such that φ and ψ entail the 
same set of formulas formulated only in S .

Over the years, forgetting in propositional logic has been used in abductive reasoning [30], reasoning under inconsistency 
[29], reasoning about knowledge [40], epistemic planning [22], etc. Forgetting in first-order logic has been used in computing 
first-order circumscription and identifying first-order frame conditions corresponding to modal axioms [15], progression for 
basic action theories in the situation calculus [32,33], and many other applications [16]. Forgetting in description logics has 
been applied to ontology reuse [44,42,25,36].

The seminal paper by Lin and Reiter [31] coined the name “forgetting”. Nonetheless, the idea of forgetting in proposi-
tional logic dates back to Boole [5]. Forgetting in propositional logic is equivalent to propositional existential quantification: 
the result of forgetting atom p from formula φ is φ[p/�] ∨ φ[p/⊥], where φ[p/�] (resp. φ[p/⊥]) denotes the result of 
replacing each occurrence of p in φ by true (resp. f alse). Besides propositional existential quantification, there are three 
other ways to compute forgetting in propositional logic. Firstly, take the conjunction of the finitely many non-equivalent 
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logical consequences of φ which only mention atoms appearing in φ but do not mention p. Secondly, as a special case 
of the first method, convert φ to a conjunction of clauses, do all possible resolutions w.r.t. p, and take the conjunction of 
all clauses which do not mention p. Thirdly, convert φ to a disjunction of satisfiable terms where a term is a conjunction 
of literals, then substitute any occurrence of a literal p or ¬p with �, i.e., substitute any occurrence of ¬p with � and 
subsequently substitute any occurrence of p with � [28]. We call this method literal elimination. In the following, we will 
see that the above three methods have been generalized to other logics.

Lin and Reiter [31] gave a semantic definition of forgetting in first-order logic (FOL): the result of forgetting a predicate P
in a theory T is a theory whose models are exactly those structures which agree with a model of T except possibly on the 
interpretation of P . They showed that for finite theories, forgetting a predicate coincides with second-order existential 
quantification, and thus is not first-order definable in general. Naturally, second-order quantifier elimination techniques can 
be used in computing the result of forgetting [15,16]. The notion of forgetting by Lin and Reiter was called strong forgetting 
by Zhang and Zhou [49], who proposed the notion of weak forgetting for FOL. A sentence φ is irrelevant to a predicate P
if φ is logically equivalent to a sentence containing no occurrence of P . The result of weak forgetting a predicate P from 
a theory T is the set of first-order logical consequences of T irrelevant to P . They showed that weak forgetting is weaker 
than strong forgetting, and the two coincide when strong forgetting is first-order definable.

In recent years, forgetting has been generalized to various description logics (DLs) [44,42,25,36,50–52]. The community 
defines forgetting as the dual notion of uniform interpolation. There are different forms of forgetting including concept-
forgetting, TBox-forgetting, ontology-forgetting, and query-forgetting. The research covers the following issues: whether a 
language is closed under forgetting, the complexity of deciding if a uniform interpolant exists, the size of a uniform in-
terpolant, the complexity of computing forgetting, and methods for approximate forgetting. The majority of approaches for 
computing uniform interpolants are based on resolution [35,26,52], while ten Cate et al. [6] used the idea of literal elimina-
tion: to compute concept-forgetting for the expressive DL ALC , they first transform a concept into a disjunctive form, and 
then do literal elimination.

Forgetting has also been studied for logic programming, in particular, for answer set programming (ASP). The non-
monotonic nature of ASP creates unique challenges to forgetting in ASP. The community has proposed various concepts 
of forgetting satisfying different sets of postulates, including strong and weak forgetting by Zhang and Foo [47], seman-
tic forgetting by Eiter and Wang [11], semantic strong and weak forgetting by Wong [46], knowledge forgetting by Wang 
et al. [43], etc. Gonçalves et al. [19] provided a uniform overview of existing forgetting operators and postulates in ASP.

Modal logics play an important role in AI. In a nutshell, AI is concerned with building intelligent agents. Agents possess 
mental attitudes, such as knowledge, beliefs, desires, goals, intentions, commitments, obligations, etc.; to reason about these 
mental attitudes and their dynamics, especially in the presence of multiple agents, one may fruitfully employ modal logics.

Forgetting for modal logics has also been investigated and applied to reasoning about knowledge and belief. Baral and 
Zhang [3] studied knowledge update, a special form of update with the effect that the agent becomes ignorant of a propo-
sitional formula. Van Ditmarsch et al. [10] presented a dynamic epistemic logic where the dynamic operator is the action 
of forgetting a propositional atom. Zhang and Zhou [48] studied forgetting in propositional S5 logic and its applications in 
knowledge updates and knowledge games. Liu and Wen [34] explored forgetting in first-order S5 logic and applied it to 
progression of knowledge in the situation calculus.

While forgetting in propositional logic is equivalent to propositional existential quantification, bisimulation quantifiers 
extend modal logics with a form of weak propositional quantification. They were introduced by Visser [41] and Ghilardi 
and Zawadowski [18] to semantically characterize uniform interpolants for modal logics. The intuitive idea is to quantify 
“modulo bisimulation”: a model M satisfies a formula ∃pφ where p is an atom iff there is a model M ′ satisfying φ such that 
M and M ′ are bisimilar with exception on p. A logic is bisimulation invariant if any two bisimilar models satisfy the same 
set of formulas. It turns out that any logic that is invariant under bisimulation and closed under bisimulation quantification, 
that is, closed under elimination of the quantification, has uniform interpolation. However, the converse does not hold in 
general [9].

There has been considerable work on uniform interpolation in modal logics. It is well-known that K, T and S5 have 
uniform interpolation. Ghilardi [17] and Visser [41] gave constructive proofs that K has uniform interpolation. Bílková [4]
showed that K and T have uniform interpolation by transforming a formula into a disjunctive form and then doing literal 
elimination. Wolter [45] showed that for S5, the uniform interpolant of a formula φ w.r.t. a subset P of atoms appearing 
in φ is the conjunction of the finitely many non-equivalent logical consequences of φ using only atoms from P . However, 
neither K4 nor S4 has uniform interpolation [4,18]. The reason is that when accessibility relations satisfy only transitivity, 
or only transitivity and reflexivity, formulas with bisimulation quantifiers can be used to express properties such as the 
existence of an infinite path where an atom has opposite truth values at neighboring states, which is not expressible 
using a quantifier-free formula. More concretely, in S4, ∃p∃q.[p ∧ K(p → K̂q) ∧ K(q → K̂p) ∧ K(q → r) ∧ K(p → ¬r)] is 
equivalent to the following infinite set of formulas: {¬r, K̂r, K̂(r ∧ K̂¬r), K̂(r ∧ K̂(¬r ∧ K̂r)), · · ·}, which is not equivalent to 
any quantifier-free formula. Wolter [45] proved that uniform interpolation for any single-agent normal modal logic can 
be generalized to its multi-agent case. Pattinson [38] showed that all rank-1 modal logics over a finite number of agents 
have uniform interpolation. A modal logic is rank-1 if it can be axiomatized by formulas whose modal nesting depth is 
uniformly equal to one. Thus rank-1 logics include K and D, but exclude other systems such as T, K45, KD45 and S5. So it 
is known that Kn , Dn , Tn , and S5n have uniform interpolation. D’Agostino and Hollenberg [7] showed that the μ-calculus 
[27], an extension of Kn with a fixed-point operator, has uniform interpolation; later, D’Agostino and Lenzi [8] showed that 
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for a normal form for the μ-calculus, the so-called disjunctive formulas introduced by Janin and Walukiewicz [24], uniform 
interpolants can be simply obtained by the operation of literal elimination. Studer [39] showed that KC, which is Kn with 
common knowledge, does not have uniform interpolation, and neither does K4C. The reason can be explained as follows: 
the common knowledge operator is defined via an accessibility relation which is the transitive closure of the union of the 
accessibility relations for all agents. In Kn and K4n , this relation satisfies only transitivity. Hence, similarly to K4, neither KC
nor K4C has uniform interpolation. In summary, it remains open whether K45n and KD45n have uniform interpolation, and 
whether Dn , Tn , K45n , KD45n and S5n with common knowledge have uniform interpolation.

In this paper, we systematically study forgetting in multi-agent modal logics. We adopt the semantic definition of ex-
istential bisimulation quantifiers as that of forgetting. We resort to a normal form of propositional modal logics, called 
canonical formulas by Moss [37]. An arbitrary modal formula is equivalent to a disjunction of a finite set of satisfiable 
canonical formulas, and there is an algorithm to construct this set for any modal system whose satisfiability is decidable. 
Due to the distributive law of forgetting over disjunction, forgetting for arbitrary modal formulas can be reduced to for-
getting for satisfiable canonical formulas. We give a model-theoretic proof that literal elimination generates the result of 
forgetting for satisfiable canonical formulas: given a model satisfying the formula obtained from a satisfiable canonical for-
mula via literal elimination, we construct a model satisfying the original formula and p-similar to the given model. Thus 
with a uniform and constructive proof method, we show that except K4n and S4n , which do not have uniform interpo-
lation, the other main multi-agent modal systems, namely Kn , Dn , Tn , K45n , KD45n and S5n , are closed under forgetting 
and hence have uniform interpolation; so we settle the open problem concerning K45n and KD45n . Finally, using the same 
proof methods, we generalize these results to the above modal logics with common knowledge of propositional formulas. To 
this end, we propose canonical formulas with propositional common knowledge, in short pc-canonical formulas, and show 
that every formula with propositional common knowledge can be equivalently transformed into a disjunction of satisfiable 
pc-canonical formulas.

In summary, in this paper, for the systems Kn , Dn , Tn , K45n , KD45n and S5n with propositional common knowledge, 
we provide a uniform method to compute uniform interpolants. However, although our proof is constructive, it has non-
elementary complexity since the number and size of canonical formulas is non-elementary. Two important topics are left 
for future research. The first is more efficient approaches for forgetting and the second is forgetting for more general cases 
of common knowledge.

A preliminary version of this paper was published in IJCAI-2016 [12]. In this version, we have added the results of 
forgetting for propositional common knowledge, and full proofs of all propositions, lemmas, and theorems.

The paper is organized as follows. Preliminaries are introduced in Section 2. In Section 3, we define forgetting in multi-
agent modal logics and analyze its properties. In Section 4, we show that Kn , Dn , Tn , K45n , KD45n and S5n are closed under 
forgetting. In Section 5, we extend the above results to include propositional common knowledge. Related work is discussed 
in Section 6. Finally, we conclude the paper. For coherence of presentation, the main theorems in the paper are accompanied 
by proof sketches only. Details of proofs and yet other proofs can be found in Appendix A.

2. Preliminaries

In this section, we introduce the background material, i.e., the syntax and semantics of multi-agent modal logics, and the 
canonical formulas for modal logics as defined by Moss [37].

2.1. Multi-agent modal logics

We fix a set A of n agents and a countable set P of atoms. A (propositional) literal is an atom p (positive literal) or its 
negation ¬p (negative literal). Given a finite subset P of P , a minterm of P is a conjunction of literals that uses only atoms 
of P and where each atom in P appears exactly once.

Definition 1. The language LK
C is generated by the BNF:

φ ::= p | ¬φ | φ ∧ φ | φ ∨ φ | Kiφ | Cφ,

where p ∈ P and i ∈ A. We use Lpl for the propositional language, LK
n for the language without the C modality, and LK

PC
for the language with propositional common knowledge where any φ appearing in Cφ must be propositional.

Intuitively, Kiφ means that agent i knows φ holds, and Cφ means φ is common knowledge among all agents, i.e., 
everybody knows φ, everybody knows everybody knows φ, everybody knows everybody knows everybody knows φ, and 
so on. We let � and ⊥ represent true and f alse respectively. We use i, j and k to range over agents, p and q to range over 
atoms, φ and ψ to range over formulas, and � and � to range over finite sets of formulas. We let P(φ) denote the set of 
atoms which appear in φ.

The (modal) depth of a formula φ in LK
C , written dep(φ), is the depth of nesting of modal operators in φ. We let K̂iφ

stand for ¬Ki¬φ and Ĉφ stand for ¬C¬φ. We let 
∨

� (resp. 
∧

�) denote the disjunction (resp. conjunction) of members 
of �; and we use 

∧
K̂i� (resp. 

∧
Ĉ�) to abbreviate 

∧
φ∈� K̂iφ (resp. 

∧
φ∈� Ĉ�).
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Table 1
The main modal systems.

L K D T K4 S4 K45 KD45 S5

Serial � � � � �
Reflexive � � �
Symmetric �
Transitive � � � � �
Euclidean � � �

Definition 2. A frame is a pair (S, R), where

• S is a non-empty set of possible worlds;
• R is a function that maps each agent i to a binary relation Ri on S , called the accessibility relation for i.

We let RA denote the transitive closure of the union of Ri for i ∈ A. For s ∈ S , we write Ri(s) for {t ∈ S | sRit}, and call 
it the set of the i-children of s; similarly, we write RA(s) for {t ∈ S | sRAt}, and call it the set of the descendants of s.

Different modal systems result from different sets of conditions on the accessibility relations. We say Ri is serial if for any 
s ∈ S , there is s′ ∈ S s.t. sRi s′; we say Ri is reflexive if for any s ∈ S , we have sRi s; we say Ri is symmetric if whenever sRi s′ , 
we have s′Ri s; we say Ri is transitive if whenever sRi s1 and s1 Ri s2, we have sRi s2; we say Ri is Euclidean if whenever sRi s1
and sRi s2, we have s1 Ri s2.

In Table 1, we list the modal systems of K, T, K4, S4, KD45, and S5 examined by Halpern and Moses [21], and also 
include the D and K45 systems. S5 and KD45 are well-accepted as the logics for knowledge and belief, respectively. For 
each symbol L listed here, we use L for the single agent case, Ln for the case where there are n agents but no common 
knowledge, LC for the common knowledge case, and LnPC for the propositional common knowledge case.

An interpretation of propositional logic, called a valuation, is a mapping from P to the values of true and false. We 
denote a valuation by a subset P of P , meaning that an atom is mapped to true iff it is in P .

Definition 3. A Kripke model is a triple M = 〈S, R, V 〉, where (S, R) is a frame, and V is a valuation map, which maps each 
s ∈ S to a valuation. A pointed Kripke model is a pair (M, s), where M is a Kripke model and s is a world of M , called the 
actual world.

For simplicity, we often omit the word “pointed”.

Definition 4. Let (M, s) be a Kripke model where M = 〈S, R, V 〉. We interpret formulas in LK
C by induction:

• M, s |= p iff p ∈ V (s);
• M, s |= ¬φ iff M, s 
|= φ;
• M, s |= φ ∧ ψ iff M, s |= φ and M, s |= ψ ;
• M, s |= φ ∨ ψ iff M, s |= φ or M, s |= ψ ;
• M, s |= Kiφ iff for all t ∈ Ri(s), M, t |= φ;
• M, s |= Cφ iff for all t ∈ RA(s), M, t |= φ.

We use L to range over modal systems. Consider the context of a modal system L. We say φ is satisfiable, if there exists 
a Kripke model (M, s) s.t. M, s |= φ. We say φ is valid, if for every Kripke model (M, s), we have M, s |= φ. We say φ entails 
ψ , written φ |= ψ , if for any Kripke model (M, s), M, s |= φ implies M, s |= ψ . We say φ and ψ are equivalent, written 
φ ≡ ψ , if φ |= ψ and ψ |= φ.

2.2. Canonical formulas

Moss [37] defined a particular kind of modal formulas, called canonical formulas. A canonical formula captures a Kripke 
model up to a given depth and can be considered as the analogy in modal logics of a term in propositional logic. Moss [37]
gave constructive proofs of completeness of most standard modal logics via canonical formulas. In this paper, we will resort 
in our proofs to canonical formulas. In this subsection, we introduce the definition of canonical formulas of LK

n , and present 
relevant results from Moss [37] that are needed in the proofs of our paper.

The canonical formulas can be conveniently defined using a single modality – the cover modality, which was introduced 
by Janin and Walukiewicz [24] for the μ-calculus. So we first introduce the cover modality for multi-agent modal logics. 
Intuitively, ∇i� means that � covers all formulas considered possible by agent i.

Definition 5. Let i ∈A, and � be a finite set of formulas in LK
C . The cover modality is defined as follows:

∇i�
.= Ki(

∨
�) ∧ (

∧
K̂i�).
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Note that ∇i∅ ≡ Ki⊥.
It is easy to prove the following:

Proposition 1. Let (M, s) be a Kripke model where M = 〈S, R, V 〉 and s ∈ S. Then, M, s |= ∇i� iff the following conditions hold:

Forth For all t ∈ Ri(s), there is φ ∈ � s.t. M, t |= φ;
Back For all φ ∈ �, there is t ∈ Ri(s) s.t. M, t |= φ .

Thus each i-child of s satisfies some member of �, and each member of � is satisfied by some i-child of s.
The following proposition can be used to convert an arbitrary formula in LK

n to a formula using only the cover modalities.

Proposition 2. Suppose that φ is ⊥ when � is empty. Then

Kiφ ∧ (
∧

K̂i�) ≡ ∇icov(φ,�), where

cov(φ,�)
.=

{ ∅, if φ = ⊥;
{φ} ∪ {φ ∧ ψ | ψ ∈ �}, otherwise.

Intuitively, cov(φ, �) covers all the possibilities for agent i.

Example 1. Let φ = Ki p ∧ K̂iq ∧ K̂i¬q, meaning that agent i knows p but is ignorant about q. By Proposition 2,
φ ≡ ∇i{p, p ∧ q, p ∧ ¬q}.

Now we use the cover modality to define canonical formulas. Intuitively, a canonical formula captures a Kripke model 
(M, s) up to a given depth and a finite set P of atoms: a depth 0 canonical formula capturing (M, s) is simply a minterm 
of atoms from P , describing the actual world s; a depth (k + 1) canonical formula capturing (M, s) is a formula of the form 
δ0 ∧ ∧

i∈A ∇i�i , where δ0 is a depth 0 canonical formula capturing (M, s), and for each agent i, �i is the set of depth k
canonical formulas capturing (M, t) for some i-child t of s.

Let S1 and S2 be two sets. We use S1 \ S2 to denote the difference of S1 and S2. Let S be a finite set. We use |S| to 
denote the cardinality of S .

Definition 6 (Canonical formulas). Let P ⊆P be finite. We inductively define the set E P
k as follows:

• E P
0 = {∧p∈S p ∧ ∧

p∈P\S ¬p | S ⊆ P }, i.e., E P
0 is the set of minterms of P ;

• E P
k+1 = {δ0 ∧ ∧

i∈A ∇i�i | δ0 ∈ E P
0 and �i ⊆ E P

k }.

We call each member of E P
k a canonical formula with depth k and alphabet P .

Let δ = δ0 ∧ ∧
i∈A ∇i�i ∈ E P

k+1. We denote δ0 by w(δ), and call it the world of δ; we denote �i by Ri(δ), and call it the 
set of the i-children of δ. For a set � of canonical formulas, we use w(�) to denote the set {w(φ) | φ ∈ �}.

Let |P | = m and |A| = n. We define F (0, m) = 2m and F (k + 1, m) = 2n·F (k,m)+m . Clearly, |E P
k | = F (k, m). Thus the number 

and size of canonical formulas are non-elementary in the number of atoms [37].
Given a modal system L, there may exist unsatisfiable canonical formulas. For example, p ∧∇1{¬p} is unsatisfiable in the 

system T. We use E P
k (L) to denote the set of canonical formulas satisfiable in L.

A satisfiable canonical formula δ of E P
k is a consistent complete theory w.r.t. the set of atoms P and the depth k. That is, 

for any formula φ which uses only atoms of P and whose depth is at most k, δ entails either φ or its negation.

Proposition 3 (Moss [37]). Consider the context of a modal system L. Let δ ∈ E P
k (L) where k ∈ N and P ⊆ P is finite. Let φ ∈ LK

n s.t. 
dep(φ) ≤ k and P(φ) ⊆ P . Then either δ |= φ or δ |= ¬φ .

Moreover, the following proposition gives us an algorithm to check if δ |= φ.

Proposition 4. Consider the context of a modal system L. Let δ ∈ E P
k (L) where k ∈ N and P ⊆ P is finite. Let φ ∈ LK

n s.t. dep(φ) ≤ k
and P(φ) ⊆ P . Then we can check if δ |= φ recursively as follows:

• δ |= p iff p appears positively in w(δ);
• δ |= ¬φ iff δ 
|= φ;
• δ |= φ ∧ ψ iff δ |= φ and δ |= ψ ;
• δ |= φ ∨ ψ iff δ |= φ or δ |= ψ ;
• δ |= K φ iff for all δ′ ∈ R (δ), δ′ |= φ .
i i
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Fig. 1. Illustration of Proposition 5.

Fig. 2. The projection operation on canonical formulas.

The following proposition says that every Kripke model (M, s) satisfies a unique canonical formula of a given depth k, 
which we call the depth k canonical formula of (M, s).

Proposition 5 (Moss [37]). Let (M, s) be a Kripke model and k ∈N. Let P ⊆P be finite. Then, there exists a unique δ ∈ E P
k s.t. M, s |= δ.

We illustrate this proposition with an example.

Example 2. Fig. 1 shows a Kripke model (M, s) on the left and the relevant depth k canonical formulas δk ’s (k = 0, 1, 2) 
on the right. Here δ0 = p ∧ q, δ1 = p ∧ q ∧ ∇i{p ∧ ¬q,¬p ∧ q}, and δ2 = p ∧ q ∧ ∇i{p ∧ ¬q ∧ ∇i{p ∧ q, p ∧ ¬q}, ¬p ∧ q ∧
∇i{¬p ∧ q,¬p ∧ ¬q}}.

The following proposition says that every modal formula is equivalent to the disjunction of a unique set of satisfiable 
canonical formulas whose depth is not less than that of the original formula.

Proposition 6 (Moss [37]). Consider the context of a modal system L. Let φ ∈ LK
n , k ≥ dep(φ) and P = P(φ). Then there exists a 

unique set � ⊆ E P
k (L) s.t. φ ≡ ∨

�.

In fact, for the modal systems listed in Table 1, there is an algorithm to construct � in the above proposition, although 
the algorithm is of non-elementary complexity. Firstly, we construct E P

k . Then we remove from it those formulas unsatis-
fiable in L: for all the modal systems in Table 1, satisfiability is decidable [21]. Finally, by using Proposition 4, we remove 
from E P

k (L) those formulas which entail ¬φ.
Finally, we introduce the projection operations on canonical formulas that are needed in the proofs of our paper.
As shown in Fig. 1, a canonical formula can be graphically represented as a tree. The operation δ↓ prunes the leaves of 

this tree, while δ↓l prunes the bottom l levels of the tree. We call δ↓ the 1st-cut of δ, and δ↓l the lth-cut of δ. Fig. 2 depicts 
that δ↓

2 = δ1 and δ↓2
2 = δ0.

Definition 7. Let P ⊆P be finite. Let k ∈ N and δ ∈ E P
k . Then, δ↓ is inductively defined as follows:

δ↓ =
⎧⎨
⎩

δ, if k = 0;
w(δ), if k = 1;
w(δ) ∧ ∧

i∈A ∇i(Ri(δ))
↓, otherwise.

Let � be a set of canonical formulas. We use �↓ to denote the set {φ↓ | φ ∈ �}.
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Fig. 3. An example of Proposition 7.

Definition 8. Let P ⊆P be finite. Let k, l ∈ N s.t. k ≥ l. Let δ ∈ E P
k . Then, δ↓l is inductively defined as follows:

δ↓l =
{

δ, if l = 0;
(δ↓l−1)↓, otherwise.

Similarly to �↓ , �↓l is the set {φ↓l | φ ∈ �}. By induction, it is easy to prove that δ |= δ↓l for all l ≤ dep(δ).
The following proposition says that the i-children of the lth-cut of a canonical formula are equal to the lth-cut of its 

i-children, i.e., the two operations are commutative.

Proposition 7. Let δ be a canonical formula and l < dep(δ). Then for all i ∈A, we have Ri(δ
↓l) = (Ri(δ))

↓l .

Example 3. Let us continue Example 2. As illustrated in Fig. 3, we get the following:

• Ri(δ2) = {p ∧ ¬q ∧ ∇i{p ∧ q, p ∧ ¬q},¬p ∧ q ∧ ∇i{¬p ∧ q,¬p ∧ ¬q}};
• (Ri(δ2))

↓ = {p ∧ ¬q,¬p ∧ q};
• δ

↓
2 = p ∧ q ∧ ∇i{p ∧ ¬q,¬p ∧ q};

• Ri(δ
↓
2 ) = {p ∧ ¬q,¬p ∧ q}.

Hence, (Ri(δ2))
↓1 = Ri(δ

↓1
2 ).

3. Definition of forgetting

In this section, we define forgetting in multi-agent modal logics and analyze its properties.
We first review Lin and Reiter’s definition of forgetting in first-order logic.

Definition 9. Let P be a predicate, and let M1 and M2 be two structures. We say M1 and M2 are P -identical, written 
M1 ∼P M2, if M1 and M2 agree on everything except possibly on the interpretation of P .

Definition 10. Let T be a theory, and P a predicate. A theory T ′ is a result of forgetting P in T , denoted by forget(T , P ) ≡ T ′ , 
if for any structure M , M |= T ′ iff there is a model M ′ of T such that M ∼P M ′ .

We now apply Lin and Reiter’s definition to modal logics. The set A of agents and set P of atoms induce a first-order 
language consisting of the following: A unary predicate p(s) for each p ∈ P ; A binary predicate Ri(s, s′) for each i ∈ A; 
A constant S0 indicating the actual world. A pointed Kripke model (M, s) where M = 〈S, R, V 〉 induces a first-order structure 
Ms as follows: The domain is S; the interpretation of p(s) is the set of states where p holds; the interpretation of Ri(s, s′) is 
Ri , and the interpretation of S0 is s. We write M, s ∼p M ′, s′ if Ms ∼p M ′

s′ . Thus M, s ∼p M ′, s′ means that the two pointed 
Kripke models are p-identical: they have the same frame, the same actual world, and the same interpretation of every atom 
except p.

Applying Lin and Reiter’s definition of forgetting to modal logics, we get a notion of forgetting which is too strong. To 
illustrate, let φ be K̂i p ∧ K̂i¬p, meaning that agent i is ignorant about p. Then the result of forgetting p in φ states that 
the actual world have at least two different i-children, which is not expressible in LK

n . However, a uniform interpolant of φ
w.r.t. ∅ is K̂i�.



58 L. Fang et al. / Artificial Intelligence 266 (2019) 51–80
To give an appropriate definition of forgetting in multi-agent modal logics, we weaken the condition that two Kripke 
models are identical. As mentioned in the introduction, bisimulation quantifiers were introduced by Visser [41] and Ghilardi 
and Zawadowski [18] to semantically characterize uniform interpolants for modal logics. A model M satisfies a formula ∃pφ

where p is an atom iff there is a model M ′ satisfying φ such that M and M ′ are p-bisimilar. We weaken “identical” to 
“bisimilar”, and adopt the semantics of existential bisimulation quantifiers as that of forgetting.

Definition 11 (p-bisimulation). Let (M, s) and (M ′, s′) be two Kripke models where M = 〈S, R, V 〉 and M ′ = 〈S ′, R ′, V ′〉. 
A p-bisimulation between (M, s) and (M ′, s′) is a relation ρ ⊆ S × S ′ s.t. sρs′ , and whenever tρt′ , we get:

atoms V (t) ∼p V ′(t′);
forth For all i, if t Riu, then there is u′ s.t. t′R ′

iu
′ and uρu′;

back For all i, if t′R ′
iu

′ , then there is u s.t. t Riu and uρu′ .

We say that (M, s) and (M ′, s′) are p-bisimilar, written (M, s)↔p(M ′, s′), if there is a p-bisimulation between them.
It can be easily proved that ↔p is an equivalence relation [14]. A nice property of p-bisimilar Kripke models is that they 

agree on all modal formulas wherein p does not appear.

Proposition 8. Let φ ∈LK
C wherein p does not appear. Then, (M, s)↔p(M ′, s′) implies that M, s |= φ iff M ′, s′ |= φ .

We now define forgetting in multi-agent modal logics. Note two differences from Lin and Reiter’s definition: First, we 
are concerned with forgetting in finite theories, i.e., formulas, rather than arbitrary theories. Second, we require that when 
forgetting p in φ, p should not appear in the resulting formula.

Definition 12 (Forgetting). Consider the context of a modal system L. Let φ ∈ LK
C and p an atom. A formula ψ s.t. P(ψ) ⊆

P(φ) \ {p} is a result of forgetting p in φ, written kforget(φ, p) ≡ ψ , if the following conditions hold:

forth For any Kripke models (M, s) and (M ′, s′), if M, s |= φ and (M, s)↔p(M ′, s′), then M ′, s′ |= ψ ;
back For any model (M ′, s′) of ψ , there is a model (M, s) of φ s.t. (M, s)↔p(M ′, s′).

By the above definition, if ψ is a result of forgetting p in φ, then M ′, s′ |= ψ iff there is a model (M, s) of φ s.t. 
(M, s)↔p(M ′, s′). Thus, if both ψ1 and ψ2 are results of forgetting p in φ, then they are logically equivalent.

Consider again φ = K̂i p ∧ K̂i¬p. We show that kforget(φ, p) ≡ K̂i�. This is because M ′, s′ |= K̂i� iff there is (M, s) s.t. 
M, s |= K̂i p ∧ K̂i¬p and (M, s)↔p(M ′, s′).

We now analyze basic properties of forgetting.

Proposition 9. Consider the context of a modal system L. If kforget(φ, p) ≡ ψ , then the following hold:

1. φ |= ψ ;
2. for any formula η wherein p does not appear, φ |= η iff ψ |= η.

Proposition 9 says that forgetting a proposition p from a formula φ yields a formula ψ which is weaker than φ; and for 
any query wherein p does not appear, φ and ψ are equivalent.

Proposition 10. Consider the context of a modal system L. The following hold:

1. If φ ∈Lpl and forget(φ, p) ≡ ψ , then kforget(φ, p) ≡ ψ ;
2. kforget(φ1 ∨ φ2, p) ≡ kforget(φ1, p) ∨ kforget(φ2, p).

Proposition 10 says that if the original formula is propositional, then the result of forgetting in modal logic is the same 
as that in propositional logic; and forgetting is distributive over disjunction.

We now relate forgetting to uniform interpolation.

Definition 13. We say that a modal system L is closed under forgetting if for any formula φ and any atom p ∈ P(φ), there 
exists an L formula ψ s.t. kforget(φ, p) ≡ ψ .

Definition 14. We say a modal system L has uniform interpolation if for every formula φ and every P ⊆ P(φ), there is a 
formula ψ such that P(ψ) ⊆ P and such that for any formula η with P(η) ⊆ P , we have φ |= η iff ψ |= η. We say ψ is a 
uniform interpolant of φ w.r.t. P .
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By Proposition 9, we have

Proposition 11. If a modal system L is closed under forgetting, then L has uniform interpolation.

Zhang and Zhou [48] proposed four postulates for forgetting in S5 as follows.

Definition 15. Let φ ∈ LK
n and p an atom. We say that φ is irrelevant to p, written IR(φ, p), if there exists a formula ψ s.t. 

φ ≡ ψ and p does not appear in ψ .

Definition 16 (Forgetting postulates [48]). Let φ, ψ ∈ LK
n and p an atom. We say ψ is a result of forgetting p from φ, if the 

following postulates are satisfied:

(W) Weakening: φ |= ψ ;
(PP) Positive Persistence: if IR(η, p) and φ |= η, then ψ |= η;
(NP) Negative Persistence: if IR(η, p) and φ 
|= η, then ψ 
|= η;
(IR) Irrelevance: IR(ψ, p).

It is easy to see that the four postulates coincide with the definition of uniform interpolants w.r.t. atoms other than p
modulo irrelevance.

By Proposition 11, closure under forgetting (elimination of bisimulation quantifiers) implies uniform interpolation. 
D’Agostino and Lenzi [9] showed that the converse is not true in general, but provided a proof in the case of finite transitive 
frames.

As mentioned in the introduction, none of K4, S4, KC and K4C has uniform interpolation. Since K4-models satisfy 
transitivity, K4n , K4nPC and K4C are equally expressive in the single-agent case. For S4n , S4nPC and S4C, the above fact 
also holds. Hence, none of K4nPC, S4nPC and S4C has uniform interpolation.

Corollary 1. None of K4n, S4n , K4nPC, S4nPC, KC, K4C and S4C is closed under forgetting.

Finally, we propose a syntactical method of forgetting called literal elimination. As mentioned in the introduction, 
D’Agostino and Lenzi [8] showed that it computes uniform interpolants for disjunctive formulas for the μ-calculus. In 
the following sections, we will show that it computes the result of forgetting for satisfiable canonical formulas for the logics 
of Kn , Dn , Tn , K45n , KD45n and S5n .

Definition 17 (Literal elimination). Let φ ∈LK
C and p an atom. We let φp denote the formula obtained from φ by substituting 

all occurrences of ¬p with � and subsequently substituting all occurrences of p with �.

Similarly to �↓ , �p is the set {φp | φ ∈ �}.
Merely requiring to replace ¬p and p by � would be ambiguous about whether we should replace ¬p by � or by ⊥. The 

latter would happen if we were to replace the p in ¬p by �. That would be an undesirable outcome. The “subsequently” 
in Definition 17 is not ambiguous and avoids that outcome.

Example 4. Let δ1 = p ∧ q ∧ ∇i{¬p ∧ ¬q}. Then, δp
1 = � ∧ q ∧ ∇i{� ∧ ¬q} ≡ q ∧ ∇i{¬q}.

It is easy to get a property that literal elimination weakens a canonical formula.

Proposition 12. Let δ be a canonical formula and p an atom. Then, δ |= δp .

Finally, we comment that for K4 and S4, literal elimination does not necessarily compute the result of forgetting for 
satisfiable canonical formulas. Recall that in the introduction, we mentioned that in S4, ∃p∃qφ where

φ = p ∧ K(p → K̂q) ∧ K(q → K̂p) ∧ K(q → r) ∧ K(p → ¬r)

is equivalent to the following infinite set of formulas:

{¬r, K̂r, K̂(r ∧ K̂¬r), K̂(r ∧ K̂(¬r ∧ K̂r)), · · ·},
which is not equivalent to any quantifier-free formula. Assume that for S4, literal elimination does compute the result 
of forgetting for satisfiable canonical formulas. We first put φ into the disjunction of satisfiable canonical formulas. Then 
we eliminate the literals of p and q. Since forgetting distributes over disjunction, we get a formula which is the result of 
forgetting p and q in φ. Since we adopt the semantic definition of existential bisimulation quantifiers as that of forgetting, 
this quantifier-free formula is equivalent to ∃p∃qφ. This is a contradiction.
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Fig. 4. Illustration for the proof of Theorem 1.

4. Forgetting via literal elimination

In this section, we show that forgetting from satisfiable canonical formulas can be computed via literal elimination in the 
following multi-agent modal logics: Kn , Dn , Tn , K45n , KD45n and S5n . As an easy corollary, we have that the above logics 
are closed under forgetting and that they have uniform interpolation.

4.1. Forgetting in Kn and Dn

In this subsection, we consider Kn and Dn cases. The result for Kn was first proved by Wolter [45]. Here we present an 
easy inductive proof, which serves as the basis for the proofs of all the forgetting results in this paper.

Theorem 1 (The basic theorem). Let L be Kn or Dn , and δ an L-satisfiable canonical formula. Then kforgetL(δ, p) ≡ δp .

Proof. We first consider Kn . We prove by induction on dep(δ).
Base case: We show that the forth and back conditions of the definition of forgetting in modal logics (Definition 12) 

hold.
Forth: Let (M, s) and (M ′, s′) be two models s.t. M, s |= δ and (M, s)↔p(M ′, s′). By Proposition 12, we get that δ |= δp , 

and hence M, s |= δp . Since p does not appear in δp , by Proposition 8, M ′, s′ |= δp .
Back: Let (M ′, s′) be a model of δp . We get the valuation V ′(s′) of the actual world s′ . Let M be a copy of M ′ except the 

valuation on s′ . If δ |= p, then we let V (s) = V ′(s′) ∪ {p}; otherwise, we let V (s) = V ′(s′) \ {p}. It is obvious that M, s |= δ

and (M, s)↔p(M ′, s′).
Induction step: Here, we only prove the back condition. The proof of the forth condition is similar to that in the base 

case. Let M ′, s′ |= δp . We construct M and define a relation ρ between the worlds of M and M ′ as follows. The only tricky 
part of the construction is that it is possible that there exist i ∈ A, t′ ∈ Ri(s′), η1, η2 ∈ Ri(δ) s.t. (M ′, t′) satisfies both ηp

1
and ηp

2 . Fig. 4 illustrates the construction where δ = δ0 ∧ ∇i{η1, η2}, R ′
i(s′) = {t′

1, t′
2}, and both (M ′, t′

1) and (M ′, t′
2) satisfy 

both ηp
1 and ηp

2 .

1. Create a new world s, let sρs′ , and V (s) |= w(δ).
2. For all i ∈ A, t′ ∈ R ′

i(s′), and η ∈ Ri(δ), if M ′, t′ |= ηp , by the induction hypothesis, there exist (Mt′,η, tt′,η) and ρt′,η s.t. 
Mt′,η, tt′,η |= η and ρt′,η : (Mt′,η, tt′,η)↔p(M ′, t′). Add a new copy of Mt′,η into M , let sRitt′,η , and expand ρ with ρt′,η .

It is easy to verify that ρ : (M, s)↔p(M ′, s′) and M, s |= δ.
In the case of Dn , it is obvious from the above construction that if M ′ satisfies seriality, so does M . �
From the above proof, we can observe that the proof of the forth condition of Definition 12 is straightforward by making 

use of (M, s)↔p(M ′, s′) and Propositions 8 and 12. In addition, the back condition of the base case is easily proved by letting 
M be a copy of M ′ and modifying the valuation on s so that M, s |= δ. In the following, when we prove kforget(δ, p) ≡ δp

in other modal systems, we only present the proof of the back condition of the induction step.
By Proposition 6, every modal formula is equivalent to a disjunction of satisfiable canonical formulas. By Proposition 10, 

forgetting is distributive over forgetting. Thus by Theorem 1, we get

Corollary 2. Kn and Dn are closed under forgetting.

Example 5. Let φ be K̂i p ∧ K̂i¬p. By Proposition 2, we can convert φ into a disjunction of canonical formulas as follows: 
φ ≡ Ki� ∧ K̂i p ∧ K̂i¬p ≡ ∇i{�, p, ¬p} ≡ δ1 ∨ δ2, where δ1 = p ∧ ∇i{�, p,¬p} and δ2 = ¬p ∧ ∇i{�, p,¬p}. Then δp

1 = δ
p
2 =

� ∧ ∇i{�}. The disjunction of them is equivalent to K̂i�.
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Fig. 5. Illustration for the proof of Theorem 2.

4.2. Forgetting in Tn

In this subsection, we analyze properties of Tn satisfiable canonical formulas, and show that forgetting via literal elimi-
nation applies to them.

We begin with a simple example which shows that Theorem 1 does not hold for unsatisfiable canonical formulas.

Example 6. Let δ = ¬p ∧ ∇i{p}. Clearly, δ is a canonical formula, and it is equivalent to ⊥ in Tn . However, δp = � ∧ ∇i{�}, 
which is equivalent to �.

The reason that forgetting via literal elimination does not work on δ is that δ is unsatisfiable in Tn . This example 
illustrates that the literal elimination method is suitable only for satisfiable formulas.

The following proposition says that any Tn satisfiable canonical formula δ has the reflexive property: for any agent i and 
any 1 ≤ l ≤ dep(δ), the lth-cut of δ is an i-child of its (l − 1)th-cut.

Proposition 13. Let δ be a Tn satisfiable canonical formula where dep(δ) ≥ 1. Let l ∈N s.t. 1 ≤ l ≤ dep(δ). Then, for all i ∈A, we have 
δ↓l ∈ Ri(δ

↓l−1).

Example 6 Cont’d. We have δ↓ = ¬p and Ri(δ) = {p}. Obviously, δ↓ /∈ Ri(δ).

Example 7. Let δ = p ∧ q ∧ ∇i{p ∧ q, p ∧ ¬q}. It is a Tn satisfiable canonical formula. Then, δ↓ = p ∧ q, and Ri(δ) =
{p ∧ q, p ∧ ¬q}. Obviously, δ↓ ∈ Ri(δ).

Theorem 2 (The Tn theorem). Let δ be a Tn satisfiable canonical formula. Then kforgetTn
(δ, p) ≡ δp .

Proof. The proof is the same as that of the basic theorem except the following. In the induction step via the construction, 
we get (M, s)↔p(M ′, s′) and M, s |= δ. Let k = dep(δ). Then for any l ≤ k, M, s |= δ↓l . Although the model is not reflexive, 
we can fix it via adding the reflexive edge for the world s, i.e., let sRis for each agent i. Note that s′ ∈ R ′

i(s′). Fig. 5 shows 
the case that M ′, s′ |= η

p
1 , so s has an i-child of ts′,η1 s.t. M, ts′,η1 |= η1. It is obvious that (M, s) is a Tn model. It is easy to 

see that (M, s)↔p(M ′, s′) still holds. It remains to show that M, s |= δ still holds. We prove by induction on k − l that for 
any l ≤ k, M, s |= δ↓l still holds.

Base case: Obviously, M, s |= w(δ), which is δ↓k .
Induction step: Suppose that M, s |= δ↓l . To show that M, s |= δ↓l−1 still holds, it suffices to show that for each i ∈A, 

there exists η ∈ Ri(δ
↓l−1) s.t. M, s |= η. By the reflexive property (Proposition 13), δ↓l ∈ Ri(δ

↓l−1). Hence δ↓l is the de-
sired η. �
4.3. Multi-pointed Kripke models

In the next subsection, we show that forgetting via literal elimination applies to satisfiable canonical formulas of K45n , 
KD45n and S5n . The proof for the basic theorem does not immediately carry over to these cases, because the model con-
structed in the proof may not be transitive or Euclidean. Also, we cannot simply fix the problem by adding edges as we 
do in the proof of the Tn theorem. We will overcome the problem via multi-pointed Kripke models which offer flexibility 
in the construction of required models. In this subsection, we introduce the basic concepts regarding multi-pointed Kripke 
models.
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Definition 18. A multi-pointed Kripke model is a pair (M, T ) where M is a Kripke model, and T is a possibly empty set of 
worlds of M .

Throughout this paper, we use (M, s) to denote a single-pointed model, and (M, T ) a multi-pointed model.
Given a single-pointed model (M, s) and i ∈ A, we can naturally obtain a multi-pointed model (M, T ) where T = Ri(s), 

i.e., the i-children of s.
Similarly to the semantics of the cover modality, we have:

Definition 19. Let � be a set of formulas. We say a multi-pointed model (M, T ) is �-complete if the following conditions 
hold

Forth for every t ∈ T , there exists φ ∈ � s.t. M, t |= φ;
Back for every φ ∈ �, there exists t ∈ T s.t. M, t |= φ.

Obviously, M, s |= ∇i� iff (M, Ri(s)) is �-complete.
Then, we can extend Proposition 5 to multi-pointed models: we have that a multi-pointed model (M, T ) corresponds to 

a unique set of canonical formulas of a given depth k, which we call the depth k canonical formula set of (M, T ).

Proposition 14. Let (M, T ) be a multi-pointed model, and k ∈ N. Let P ⊆ P be finite. Then, there exists a unique set � ⊆ E P
k s.t. 

(M, T ) is �-complete.

We now extend the concept of bisimulation to multi-pointed models.

Definition 20. Let (M, T ) and (M ′, T ′) be two Kripke models. A p-bisimulation between (M, T ) and (M ′, T ′) is a relation ρ
between the worlds of M and M ′ s.t.

• for every t ∈ T , there exists t′ ∈ T ′ s.t. tρt′;
• for every t′ ∈ T ′ , there exists t ∈ T s.t. tρt′;
• whenever uρu′ , the conditions atoms, forth and back in Definition 11 hold.

Similarly to Proposition 8, we have a nice property of p-bisimilar multi-pointed models as follows:

Proposition 15. Let � ⊆ LK
C such that � is finite and every φ ∈ � does not contain any occurrence of p. Then, (M, T )↔p(M ′, T ′)

implies that (M, T ) is �-complete iff (M ′, T ′) is �-complete.

We end with a constraint on multi-pointed models, which is crucial for constructing transitive and Euclidean models. 
Intuitively, a multi-pointed model (M, T ) is i-equivalent if the restriction of Ri to T is a complete graph and T is closed 
under the Ri relation.

Definition 21. Let i ∈A and (M, T ) be a multi-pointed model where M = 〈S, R, V 〉. We say that (M, T ) is i-equivalent if for 
all t1, t2 ∈ T , we have t1 Rit2, and for every s ∈ S , if there exists t ∈ T s.t. sRit or t Ri s, then s ∈ T .

4.4. Forgetting in K45n, KD45n and S5n

In this subsection, we generalize the forgetting results for satisfiable canonical formulas to K45n , KD45n and S5n .
The following proposition says that any K45n satisfiable canonical formula δ has the identical-children property: for any 

agent i and any i-child δi of δ, the lth-cut of δ’s i-children is equal to the i-children of the (l − 1)th-cut of δi .

Proposition 16. Let δ be a K45n satisfiable canonical formula where dep(δ) ≥ 2. Let l ∈ N s.t. 1 ≤ l < dep(δ). Then, for all i ∈ A and 
δi ∈ Ri(δ), (Ri(δ))

↓l = Ri(δ
↓l−1
i ).

Now, we prove an important lemma, which is the multi-pointed extension of the back condition of the forgetting result 
for K45n .

Lemma 1 (The K45n lemma). Let δ be a K45n satisfiable canonical formula where dep(δ) ≥ 1. Let (M ′, s′) be a K45n model of δp . Then 
for all i ∈A, there exists a multi-pointed K45n model (M, T ) that is i-equivalent, Ri(δ)-complete and p-bisimilar to (M ′, R ′

i(s′)).
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Fig. 6. Illustration for the proof of Lemma 1.

Proof sketch. Here, we only give the construction of the model (M, T ) by induction on dep(δ). We will complete the proof 
in Appendix A.

Base case (dep(δ) = 1): Suppose that Ri(δ) is a set of propositional formulas. We construct (M, T ) and define the 
p-bisimulation ρ between (M, T ) and (M ′, R ′

i(s′)) as follows, and Fig. 6 illustrates the construction. Note that t′
1 ∈ R ′

i(s′), 
j, k ∈ A \ {i}, R ′

j(t
′
1) and R ′

k(t
′
1) may overlap so we put them in the same box. It is similar for t′

2. We initialize S = ∅ and 
ρ = ∅.

1. For all t′ ∈ R ′
i(s′) and δi ∈ Ri(δ), if M ′, t′ |= δ

p
i , we create a world t s.t. V (t) |= δi . Then we add it into S and T ; and let 

tρt′ . Finally, we let t1 Rit2 for all t1, t2 ∈ T .
2. For t ∈ T and j 
= i, we make a copy of (M ′, R ′

j(t
′)), denoted by (Mt, j, Tt, j) where Mt, j = 〈St, j, Rt, j, Vt, j〉 and t′ is the 

original world of t . We connect t to all worlds of Tt, j via j-edges, i.e., let t R ju for u ∈ Tt, j . Let the p-bisimulation ρt, j
between (Mt, j, Tt, j) and (M ′, R ′

j(t
′)) be the set {(u, u′) | u is the copy of u′}, and expand ρ with ρt, j .

Induction step (dep(δ) > 1): The construction of (M, T ) is similar to that of the base case except the following. In Step 1, 
since δi is not propositional, we create a world t s.t. V (t) |= w(δi). In Step 2, we acquire (Mt, j, Tt, j) and ρt, j by the induction 
hypothesis. Note that (Mt, j, Tt, j) is j-equivalent and R j(δi)-complete and ρt, j : (Mt, j, Tt, j)↔p(M ′, R ′

j(t
′)). �

Now, we get the following theorem via Lemma 1.

Theorem 3 (The K45n theorem). Let δ be a K45n satisfiable canonical formula. Then kforgetK45n
(δ, p) ≡ δp .

Proof sketch. The proof is the same as that of the basic theorem except Step 2 of the induction step. By the K45n lemma, 
for every i ∈ A, there exist (Mi, Ti) and ρi : (Mi, Ti)↔p(M ′, R ′

i(s′)). Add a new copy of Mi into M , let sRit for all t ∈ Ti , 
and expand ρ with ρi . It is obvious that M, s |= δ. Similarly to the proof of Lemma 1, (M, s) is transitive, Euclidean, and 
p-bisimilar to (M ′, s′). �

From the construction of the K45n lemma and the K45n theorem, if the given model M ′ is a KD45n model, then we can 
acquire a KD45n model M . Hence we can get

Theorem 4 (The KD45n theorem). Let δ be a KD45n satisfiable canonical formula. Then kforgetKD45n
(δ, p) ≡ δp .

Now, we proceed to S5n . Since the logic S5n is both K45n and Tn logics, any S5n satisfiable canonical formula has the 
reflexive and identical-children properties (Propositions 13 and 16), and hence the following property, called the symmetric 
property.

Proposition 17. Let δ be an S5n satisfiable canonical formula where dep(δ) ≥ 2. Let l ∈ N s.t. 2 ≤ l ≤ dep(δ). Then, for all i ∈ A and 
δi ∈ Ri(δ), δ↓l ∈ Ri(δ

↓l−2
i ).

The models constructed in the proofs of the K45n lemma and the K45n theorem may not be reflexive. We can fix it via 
adding reflexive and symmetric edges.

Lemma 2 (The S5n lemma). Let δ be an S5n satisfiable canonical formula where dep(δ) ≥ 1. Let (M ′, s′) be an S5n model of δp . Then 
for all i ∈A, there exists a multi-pointed S5n model (M, T ) that is i-equivalent, Ri(δ)-complete and p-bisimilar to (M ′, R ′

i(s′)).

Proof sketch. Here, we only give the construction of the model (M, T ). We will complete the proof in Appendix A.
As Fig. 7 shows, the construction of a proper model (M, T ) is similar to that illustrated in the proof of the K45n lemma 

except the following:
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Fig. 7. Adding reflexive and symmetric edges.

• Each submodel (Mt, j, Tt, j) is not only a K45n model, but also an S5n model. This requirement can be fulfilled as follows: 
for the base case, (Mt, j, Tt, j) is a copy of (M ′, R ′

j(t
′)) and M ′ is an S5n model; and for the induction step, we acquire 

an S5n model (Mt, j, Tt, j) by the induction hypothesis of this lemma.
• After adding j-edges from the world t to all worlds of Tt, j , we add some edges for the models M so as to ensure that 

M is an S5n model.
1. Add reflexive edges for all worlds of T , i.e., for every t ∈ T and every j ∈A, we let t R jt .
2. Add symmetric edges from all worlds of Tt, j to t where t ∈ T and j ∈A \ {i}, i.e., for every u ∈ Tt, j , we let uR jt . �

Theorem 5 (The S5n theorem). Let δ be an S5n satisfiable canonical formula. Then kforgetS5n
(δ, p) ≡ δp .

Proof sketch. The proof is the same as that of the K45n theorem (Theorem 3) except the following:

1. In the induction step, by exploiting the S5n lemma (Lemma 2), for every i ∈A, there exists an S5n multi-pointed model 
(Mi, Ti) and ρi : (Mi, Ti)↔p(M ′, R ′

i(s′)).
2. Similarly to the S5n lemma, after the construction illustrated in Theorem 3, we add the reflexive edges for the actual 

world s, i.e., for every i ∈ A, we let sRi s; and we add the symmetric edges from all worlds of Ti to s, i.e., for every 
world t ∈ Ti , we let t Ri s.

As in the proof of Lemma 2, (M, s) is the required model. �
As a corollary of Propositions 6 and 10 and Theorems 2–5, we get

Corollary 3. Tn , K45n , KD45n and S5n are closed under forgetting.

By Proposition 11 and Corollary 3, we can get the next corollary which settles the open problems regarding uniform 
interpolation in K45n and KD45n .

Corollary 4. Tn , K45n , KD45n and S5n have uniform interpolation.

5. Adding propositional common knowledge

A common feature of multi-agent systems is the presence of so-called background information. Such background infor-
mation can be formalized in the modal language as common knowledge of propositional formulas. Given the relevance for 
practical applications of such propositional common knowledge, in this section, we generalize the results of the last section 
to include propositional common knowledge. In Subsection 5.1, we propose canonical formulas for propositional common 
knowledge. In Subsection 5.2, we consider forgetting in KnPC, DnPC and TnPC. In Subsection 5.3, we handle forgetting in 
K45nPC, KD45nPC and S5nPC.

5.1. Canonical formulas for propositional common knowledge

Similarly to the cover modality ∇i , we use ∇� to denote the formula C(
∨

�) ∧ (
∧

Ĉ�). It is easy to prove the following 
proposition:

Proposition 18. Let (M, s) be a Kripke model where M = 〈S, R, V 〉 and s ∈ S. Then, M, s |= ∇� iff the following conditions hold:

Forth For all t ∈ RA(s), there is φ ∈ � s.t. M, t |= φ;
Back For all φ ∈ �, there is t ∈ RA(s) s.t. M, t |= φ .
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Moss [37] also defined canonical formulas for common knowledge: simply treat the common knowledge modality as just 
another knowledge modality. The definition makes use of the subscripted common knowledge operator CG where G ⊆ A. 
Similarly to the cover modality ∇ , a cover modality ∇G can be defined. The set D P

k of canonical formulas for common 
knowledge is inductively defined as follows: D P

0 is the set of minterms of P ; D P
k+1 = {δ0 ∧∧

i∈A ∇i�i ∧∧
G⊆A ∇G�G | δ0 ∈ D P

0

and �i, �G ⊆ D P
k }. Moss’ definition of canonical formulas for common knowledge were used by Aucher and Belle [2] to give 

a new semantic account of multi-agent only-knowing.
In this paper, we only consider propositional common knowledge. In this subsection, we propose a definition of canonical 

formulas including propositional common knowledge. We call them pc-canonical formulas.

Definition 22 (Pc-canonical formulas). Let P ⊆P be finite. We inductively define the set C P
k as follows:

• C P
0 = {δ0 ∧ ∇�A | δ0 ∈ E P

0 and �A ⊆ E P
0 };

• C P
k+1 = {δ0 ∧ (

∧
i∈A ∇i�i) ∧ ∇�A | δ0 ∈ E P

0 , �i ⊆ C P
k and �A ⊆ E P

0 }.

We call each member of C P
k a pc-canonical formula.

Let δ = δ0 ∧ ∧
i∈A ∇i�i ∧ ∇�A . We define w(δ) and Ri(δ) as before; we denote �A by RA(δ), and call it the proposi-

tional descendants (p-descendants in short) of δ. Similarly to E P
k (L), we use C P

k (L) to denote the set of pc-canonical formulas 
satisfiable in a modal system L.

For φ ∈LK
PC , we introduce a modified definition of depth of φ, written in dep′(φ). It is the same as the classical definition 

of depth except that we ignore the common knowledge operator, i.e., dep′(Cφ) = dep′(φ).
Similarly to Propositions 3–6 and 14, we can get the following propositions for pc-canonical formulas.

Proposition 19. Consider the context of a modal system L. Let δ ∈ C P
k (L) where k ∈N and P ⊆P be finite. Let φ ∈LK

PC s.t. dep′(φ) ≤ k
and P(φ) ⊆ P . Then either δ |= φ or δ |= ¬φ .

Moreover, the following proposition gives us an algorithm to check if δ |= φ.

Proposition 20. Consider the context of a modal system L. Let δ ∈ C P
k (L) where k ∈N and P ⊆P is finite. Let φ ∈LK

PC s.t. dep′(φ) ≤ k
and P(φ) ⊆ P . Then we can check if δ |= φ recursively as follows:

• δ |= p iff p appears positively in w(δ);
• δ |= ¬φ iff δ 
|= φ;
• δ |= φ ∧ ψ iff δ |= φ and δ |= ψ ;
• δ |= φ ∨ ψ iff δ |= φ or δ |= ψ ;
• δ |= Kiφ iff for all δ′ ∈ Ri(δ), δ′ |= φ .
• δ |= Cφ iff for all δ′ ∈ RA(δ), δ′ |= φ .

Proposition 21. Let (M, s) be a model and k ∈N. Let P ⊆P be finite. Then, there exists a unique δ ∈ C P
k s.t. M, s |= δ.

Proposition 22. Let (M, T ) be a multi-pointed model and k ∈N. Let P ⊆P be finite. Then, there exists a unique set � ⊆ C P
k s.t. (M, T )

is �-complete.

Proposition 23. Consider the context of a modal system L. Let φ ∈ LK
PC , k ≥ dep′(φ) and P = P(φ). Then there exists a unique set 

� ⊆ C P
k (L) s.t. φ ≡ ∨

�.

Similarly to Proposition 6, for the modal systems listed in Table 1, there is an algorithm to construct � in the above 
proposition. Firstly, we construct C P

k . Then we remove from it those formulas unsatisfiable in L: for all the modal systems 
in Table 1 with common knowledge, satisfiability is decidable [21]. Finally, by using Proposition 20, we remove from C P

k (L)

those formulas which entail ¬φ.
Now we extend the projection operations to pc-canonical formulas. Intuitively, given a pc-canonical formula δ, δ↓ is 

acquired by pruning the leaves of δ except maintaining the propositional common knowledge.

Definition 23. Let P ⊆P be finite. Let k ∈ N and δ ∈ C P
k . Then, δ↓ is inductively defined as follows:

δ↓ =
⎧⎨
⎩

δ, if k = 0;
w(δ) ∧ ∇R A(δ), if k = 1;
w(δ) ∧ ∧

i∈A ∇i(Ri(δ))
↓ ∧ ∇R A(δ), otherwise.
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Fig. 8. Illustration for the proof of Theorem 6.

For a pc-canonical formula δ, the definition of δ↓l is the same as Definition 8. Similarly to Proposition 7, the two 
operations Ri and ↓ l are commutative for pc-canonical formulas whose depth is greater than l.

Proposition 24. Let δ be a pc-canonical formula and l < dep′(δ). Then for all i ∈A, we have Ri(δ
↓l) = (Ri(δ))

↓l .

Proposition 12 can be extended to pc-canonical formulas. Given a pc-canonical formula δ, literal elimination leads to a 
formula which is entailed by δ.

Proposition 25. Let δ be a pc-canonical formula and p an atom. Then, δ |= δp .

5.2. Forgetting in KnPC, DnPC and TnPC

In this subsection, we prove that forgetting via literal elimination works on satisfiable pc-canonical formulas in the logics 
of KnPC, DnPC and TnPC. The proofs of the induction steps are similar to those without common knowledge. However, the 
proofs of the base cases are not straightforward. We first analyze properties of satisfiable pc-canonical formulas.

The following proposition says that any satisfiable pc-canonical formula has the transitive closure property: any p-
descendant is either the world of an i-child or a p-descendant of an i-child for some agent i.

Proposition 26. Let δ be a satisfiable pc-canonical formula where dep′(δ) ≥ 1. ThenRA(δ) = ⋃
i∈A

⋃
δi∈Ri(δ)

[{w(δi)} ∪ RA(δi)].

Theorem 6 (The KnPC/DnPC theorem). Let L be KnPC or DnPC, and δ an L-satisfiable pc-canonical formula. Then kforgetL(δ, p) ≡ δp .

Proof. Base case: We construct M and define a relation ρ between the worlds of M and M ′ as follows. Fig. 8 illustrates the 
construction.

1. Create a new world s, and then let sρs′ and V (s) |= w(δ).
2. For every t′ ∈ R ′

A(s′) and every δA ∈ RA(δ), if M ′, t′ |= δ
p
A , we create a world t s.t. V (t) |= δA , and let tρt′ .

3. For every i ∈A, we let Ri = {(s, t) | s′R ′
it

′ and t ∈ S \ {s}}∪ {(t, u) | t′R ′
iu

′ and t, u ∈ S \ {s}}, where t and u are copies of 
t′ and u′ respectively.

Obviously, M, s |= δ and (M, s)↔p(M ′, s′).
Induction step: The model construction is similar to that of the induction step of the basic theorem (Theorem 1). 

Obviously, M, s |= w(δ) ∧ ∧
i∈A ∇i Ri(δ) and (M, s)↔p(M ′, s′). It remains to verify M, s |= ∇RA(δ). Here, we only prove for 

every t ∈ RA(s), there exists δA ∈ RA(δ) s.t. M, t |= δA . A world t reachable from s is either an i-child of s, or a world 
reachable from an i-child of s for some i ∈ A. If t ∈ Ri(s), then there exists δi ∈ Ri(δ) s.t. M, t |= δi , so M, t |= w(δi). By 
the transitive closure property (Proposition 26), w(δi) ∈ RA(δ). If t ∈ RA(u) where u ∈ Ri(s), then there exists δi ∈ Ri(δ) s.t. 
M, u |= δi ; and there exists δA ∈ RA(δi) s.t. M, t |= δA . By Proposition 26, δA ∈ RA(δi) ⊆ RA(δ). �

The general reflexive property of Tn satisfiable canonical formulas (Proposition 13) can be extended to TnPC:

Proposition 27. Let δ be a TnPC satisfiable pc-canonical formula where dep′(δ) ≥ 1. Let l ∈ N s.t. 1 ≤ l ≤ dep′(δ). Then, for every 
i ∈A, we have δ↓l ∈ Ri(δ

↓l−1).

Similarly, any TnPC-satisfiable pc-canonical formula has the pc-reflexive property, which says that the world of δ belongs 
to the set of p-descendants of δ.
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Proposition 28. Let δ be a TnPC satisfiable pc-canonical formula. Then, we have w(δ) ∈ RA(δ).

With the above properties of TnPC-satisfiable pc-canonical formulas, we can prove that TnPC is closed under forgetting.

Theorem 7. Let δ be a TnPC satisfiable pc-canonical formula. Then kforgetTnPC(δ, p) ≡ δp .

Proof sketch. The proof is the same as that of the KnPC/DnPC theorem except the following. As in the proof of the Tn

theorem, in the induction step, we let sRi s for each agent i. Obviously, (M, s) is reflexive and p-bisimilar to (M ′, s′). As in 
the proof of the Tn theorem, we get M, s |= w(δ) ∧ ∧

i∈A ∇i Ri(δ) via the general reflexive property. As in the proof of the 
KnPC/DnPC theorem, we get M, s |= ∇RA(δ) via the transitive closure and pc-reflexive properties. �
5.3. Forgetting in K45nPC, KD45nPC and S5nPC

Finally, we extend the forgetting results to the logics of K45nPC, KD45nPC and S5nPC.
The identical-children property of K45n satisfiable canonical formulas (Proposition 16) can be extended to K45nPC:

Proposition 29. Let δ be a K45nPC satisfiable pc-canonical formula where dep′(δ) ≥ 2. Let l ∈ N s.t. 1 ≤ l < dep′(δ). Then, for all 
i ∈A and δi ∈ Ri(δ), (Ri(δ))

↓l = Ri(δ
↓l−1
i ).

Similarly, any K45nPC-satisfiable pc-canonical formula δ has the following properties. The first property means that for 
every agent i and every i-child δi of δ, there is an i-child δ′

i of δ such that any p-descendant of δi is either the world of δ′
i

or a p-descendant of δ′
i .

Proposition 30. Let δ be a K45nPC satisfiable pc-canonical formula where dep′(δ) ≥ 1. Then, for all i ∈ A and δi ∈ Ri(δ), we have 
RA(δi) = ⋃

δ′
i∈Ri(δ)

[{w(δ′
i)} ∪ RA(δ′

i)].

The second property means that for every agent i and every i-child δi and δ′
i of δ, the set of p-descendants of δi and 

that of δi are equal.

Proposition 31. Let δ be a K45nPC satisfiable pc-canonical formula where dep′(δ) ≥ 1. Then, for all i ∈A and δi, δ′
i ∈ Ri(δ), we have 

RA(δi) = RA(δ′
i).

Now, we extend the K45n lemma to K45nPC and KD45nPC.

Lemma 3 (The K45nPC/KD45nPC lemma). Let L be K45nPC or KD45nPC, and i ∈ A. Let δ be an L-satisfiable pc-canonical for-
mula where dep′(δ) ≥ 1. Let (M ′, s′) be an L-model of δp . Then there exists a multi-pointed L-model (M, T ) that is i-equivalent, 
Ri(δ)-complete and p-bisimilar to (M ′, R ′

i(s′)).

Proof. The proof combines the proofs of the K45n lemma and the KnPC/DnPC theorem. The main construction is the same 
as that of the K45n lemma except the base case as follows: In Step 1, since δi is not propositional, we create a world t s.t. 
V (t) |= w(δi). In Step 2, we cannot let (Mt, j, Tt, j) be a copy of (M ′, R ′

j(t
′)) due to the presence of common knowledge. As 

in the proof of the KnPC/DnPC theorem, we construct the worlds of Mt, j and the p-bisimulation ρt, j between the worlds 
of Mt, j and M ′ by possibly splitting a world into two copies according to the set RA(δi). Then, we let Tt, j = {u | u′ ∈ R ′

j(t
′)}, 

and let Rk = {(u, v) | u′R ′
k v ′} for k ∈ A, where t , u and v are copies of t′ , u′ and v ′ respectively. By the proofs of the K45n

lemma and the KnPC/DnPC theorem, we get that (M, T ) is transitive, Euclidean, i-equivalent and p-bisimilar to (M ′, R ′
i(s′)). 

It remains to prove that (M, T ) is Ri(δ)-complete. Here, we only prove for every t ∈ T , there exists δi ∈ Ri(δ) s.t. M, t |= δi . 
The back condition can be similarly proved. We prove by induction on dep′(δ).

Base case (dep′(δ) = 1): By the construction, there exist t′ ∈ S ′ and δi ∈ Ri(δ) s.t. tρt′ , M ′, t′ |= δ
p
i and M, t |= w(δi). Now, 

we prove that M, t |= ∇RA(δi). Here we only prove that for every v ∈ RA(t), there exists δA ∈ RA(δi) s.t. M, v |= δA .

1. v ∈ T : By the construction, there exist v ′ ∈ S ′ and δ′
i ∈ Ri(δ) s.t. vρv ′ , M ′, v ′ |= δ

′ p
i and V (v) |= w(δ′

i). By Proposition 30, 
we get that w(δ′

i) ∈ RA(δi). So w(δ′
i) is the desired δA .

2. v /∈ T : Since Ri is transitive and Euclidean and v /∈ T , v is a descendant of u where u ∈ T and v /∈ Ri(u). By the idea of 
possibly splitting the worlds into two copies, there exist v ′ ∈ S ′ and δA ∈ RA(δi) s.t. vρv ′ , M ′, v ′ |= δ

p
A , and V (v) |= δA . 

Since δA is propositional, M, v |= δA .

Induction step (dep′(δ) > 1): Similarly to the base case, there exist t′ ∈ S ′ and δi ∈ Ri(δ) s.t. tρt′ , M ′, t′ |= δ
p
i and 

V (t) |= w(δi). As in the proof of the K45n lemma, we get M, t |= ∧
j∈A ∇ j R j(δi) via the general identical-children prop-

erty (Proposition 29).
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Now, we prove M, t |= ∇RA(δi). Here we only prove that for every v ∈ RA(t), there exists η ∈ RA(δ) s.t. M, v |= η. The 
proof of the situation that v ∈ T is the same as that in the base case. It remains to verify the situation that v /∈ T .

Since v /∈ T and Ri is transitive and Euclidean, v is a descendant of u where u ∈ T . By the construction, there exists 
(Mu, j, Tu, j) that is R j(δ

′
i)-complete. Then, there exists δ′

i ∈ Ri(δ) s.t. Mu, j, u |= δ′
i . By the semantics of the ∇ modality, there 

exists δA ∈ RA(δ′
i) s.t. Mu, j, v |= δA . Since δA is propositional, M, v |= δA . By Propositions 30 and 31, we get δA ∈ RA(δ′

i) =
RA(δi). �
Theorem 8 (The K45nPC/KD45nPC theorem). Let L be K45nPC or KD45nPC, and δ an L-satisfiable pc-canonical formula. Then 
kforgetL(δ, p) ≡ δp .

Proof sketch. In the base case, we can construct a required model according to the proof of the KnPC/DnPC theorem. The 
proof of the induction step via Lemma 3 is the same as that of the K45n theorem except we acquire the submodels (Mi, Ti)

for i ∈A by the K45nPC lemma, and verify M, s |= RA(δ) by utilizing the proof of the KnPC/DnPC theorem and the K45nPC
lemma. �

Each model of S5nPC is reflexive, transitive and Euclidean, so any S5nPC satisfiable pc-canonical formula has the general 
reflexive, pc-reflexive and general identical children properties.

Recall the model construction method for S5n: based on the models constructed in the proofs of the K45n lemma and 
the K45n theorem, we add reflexive and symmetric edges. Similarly, Lemma 3 and Theorem 8 can be extended to S5nPC.

Lemma 4 (The S5nPC lemma). Let δ be an S5nPC-satisfiable pc-canonical formula where dep′(δ) ≥ 1. Let (M ′, s′) be an S5nPC
model of δp . Then for all i ∈A, there exists a multi-pointed S5nPC model (M, T ) that is i-equivalent, Ri(δ)-complete and p-bisimilar 
to (M ′, R ′

i(s′)).

Proof. The construction of a proper model is the same as that of the S5n lemma (Lemma 2) except we first acquire the 
multi-pointed K45nPC-model via the K45nPC lemma (Lemma 3). As in the proof of Lemma 2, (M, T ) is reflexive, Euclidean, 
i-equivalent and p-bisimilar to (M ′, R ′

i(s′)). It remains to prove that it is Ri(δ)-complete.
To distinguish the models before and after adding reflexive and symmetric edges, we let (M∗, T ∗) be the model acquired 

via Lemma 3 where M∗ = 〈S∗, R∗, V ∗〉, and (M, T ) be the model after adding edges where M = 〈S, R, V 〉, and ρ be the 
p-bisimulation between (M∗, s∗) and (M ′, s′). By Proposition 15, to prove (M, T ) is Ri(δ)-complete, it suffices to prove that 
(M, T )↔(M∗, T ∗). We construct the bisimulation ρ∗ between S and S∗ as follows:

1. Initialize ρ∗ = {(s, s∗) | s is a copy of s∗}.
2. Since we add reflexive and symmetric edges in Steps 2 and 3 of the construction illustrated in the S5n lemma respec-

tively, the forth condition of ρ∗ may not hold. For example, suppose that t R jt and tρt∗ where t ∈ T and t∗ ∈ T ∗ . It is 
possible that there does not exist u∗ ∈ S∗ s.t. t∗R∗

j u∗ and tρ∗u∗ . So it is necessary to add some pairs of worlds of M
and M∗ into the bisimulation ρ∗ for every t ∈ T . Let t∗ be the original world of t in S∗ .
Base case (dep′(δ) = 1): By the construction, there exist t′ ∈ S ′ and δi ∈ Ri(δ) s.t. t∗ρt′ , M ′, t′ |= δ

p
i and M∗, t∗ |= δi . Since 

M ′ is reflexive, t′ ∈ R ′
j(t

′) for any agent j 
= i. By the pc-reflexive property (Proposition 28), we have w(δi) ∈ RA(δi). By 
the construction, there exists u∗ ∈ S∗ s.t. u∗ ∈ R∗

j (t
∗) and M∗, u∗ |= w(δi). We let ρ∗(t, u∗).

Induction step (dep′(δ) > 1): Similarly to the base case, there exists t′ ∈ S ′ and δi ∈ Ri(δ) s.t. t∗ρt′ , M ′, t′ |= δ
p
i , M∗, t∗ |=

δi , and t′ ∈ R ′
j(t

′) for any agent j 
= i. By the general reflexive property (Proposition 27), δ↓
i ∈ R j(δi). By the construction 

of models of the induction step, there exists (M∗
t∗, j, T

∗
t∗, j) that is R j(δi)-complete. So there exists u∗ ∈ T ∗

t∗, j s.t. M∗, u∗ |=
δ
↓
i . We let ρ∗(t, u∗).

It is easy to check that most cases of the forth condition and the atom and back conditions hold. Here, we only prove 
the following cases of the forth condition due to adding reflexive and symmetric edges. Suppose that u, v ∈ S and u∗ ∈ S∗
s.t. uR j v and (u, u∗) ∈ ρ∗ .

1. u, v ∈ T and j 
= i: Since we only add a j-edge from u to itself, we get u = v . By the construction of ρ∗ , there exists 
w∗ ∈ S∗ s.t. w∗ ∈ R∗

j (u∗) and vρ∗w∗ .
2. u /∈ T and v ∈ T : In Step 3, we only add a j-edge from u to v where j 
= i and u ∈ T v, j . Let v∗ be the original world of v . 

Similarly to Case 1, there exists w∗ ∈ R∗
j (v∗) s.t. vρw∗ . Obviously, u∗ ∈ R∗

j (v∗). Since M∗ is Euclidean, w∗ ∈ R∗
j (u∗). �

Theorem 9 (The S5nPC theorem). Let δ be an S5nPC satisfiable pc-canonical formula. Then kforgetS5nPC(δ, p) ≡ δp .

Proof sketch. The proof is the same as that of the S5n theorem (Theorem 5) except the following: In the induction step, 
for every i ∈A, we acquire a multi-pointed model (Mi, Ti) and ρi : (Mi, Ti)↔p(M ′, R ′

i(s′)) by exploiting the S5nPC lemma 
(Lemma 2). As in the proof of Lemma 4, (M, s) is the required model. �
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Finally, by Propositions 23 and Theorems 6–9, we get

Corollary 5. KnPC, DnPC, TnPC, K45nPC, KD45nPC and S5nPC are closed under forgetting, and hence have uniform interpolation.

6. Related work

In addition to the works already discussed at length in the introductory section, let us now present some significant 
technical details in view of the specific results obtained in our own contribution. We will pay special attention to the 
definitions of forgetting, to the different methods for computing forgetting, and to the difference between canonical formulas 
and disjunctive formulas.

Definition of forgetting varies in terms of the following aspects: whether the result of forgetting is finitely representable, 
whether the definition is model-theoretic or via postulates, and how strong the definition is. Model-theoretic definitions 
of forgetting are based on various similarity relations between models. Basic requirements for forgetting, as expressed by 
the four forgetting postulates of Zhang and Zhou [48], are the following: the result of forgetting should be weaker than 
the original theory/formula, it should be irrelevant to the forgotten symbol, and it should have the same set of logical 
consequences irrelevant to the forgotten symbol. Lin and Reiter’s definition of forgetting in first-order logic does not require 
the result of forgetting to be finitely representable, it is a model-theoretic definition based on the identity relation between 
two models, and hence it results in a strong concept of forgetting. Zhang and Zhou [49] proposed the notion of weak 
forgetting for first-order logic using their four postulates. They showed that the result of weak forgetting a predicate P from 
a theory T is equivalent to the set of first-order logical consequences of T irrelevant to P . They gave a model-theoretic 
characterization of their definition: the models of the result of weak forgetting P from T are exactly those structures M ′
which are elementarily equivalent to a model M of T with exception on P , i.e., M and M ′ agree on every sentence irrelevant 
to P . Obviously, the elementary equivalence relation is weaker than the identity relation. Our definition of forgetting in 
multi-agent modal logics requires the result of forgetting to be finitely representable, it is a model-theoretic definition 
based on the bisimulation relation between two Kripke models, and it satisfies the four postulates of Zhang and Zhou. 
Hence our definition of forgetting is weaker than the direct application of Lin and Reiter’s definition to modal logics, and 
stronger than Zhang and Zhou’s postulate-based definition.

Two common approaches for computing forgetting are as follows: the first is based on conjunctive normal forms and 
uses resolution; the second is based on disjunctive normal forms and uses literal elimination. These issues were already 
summarily discussed in the introduction. Let us now discuss both methods in more detail.

Ackermann [1] proposed a resolution method for second-order quantifier elimination (SOQE), i.e., forgetting in first-order 
logic. As a refinement of Ackermann’s resolution method, Gabbay and Ohlbach [15] developed the SCAN algorithm for SOQE. 
For the expressive description logic ALC, Koopmann and Schmidt [26] presented a resolution-based method for computing 
forgetting for ALC ontologies. The method was further developed in [51,52]. For the modal logic K, Herzig and Mengin [23]
proposed a resolution-based method for computing forgetting for formulas in conjunctive normal form.

Janin and Walukiewicz [24] introduced the so-called disjunctive formulas for the μ-calculus, and showed that every 
formula in the μ-calculus is equivalent to a disjunctive formula. The disjunctive formulas for Kn are defined as follows: 1. If 
φ1 and φ2 are disjunctive formulas, then φ1 ∨ φ2 is a disjunctive formula; 2. If δ0 is a consistent conjunction of literals, 
and for each i ∈ B ⊆ A, �i is a finite set of disjunctive formulas, then δ0 ∧ ∧

i∈B ∇i�i is a disjunctive formula. D’Agostino 
and Lenzi [8] used literal elimination to compute forgetting for disjunctive formulas, and ten Cate et al. [6] presented a 
single-exponential algorithm for computing forgetting for ALC concepts (ALC corresponds to Kn): first put the concept 
into a form corresponding to disjunctive formulas, and then do literal elimination. The conversion to disjunctive form might 
involve a single exponential blowup.

The disjunctive normal formulas we use in this paper are disjunctions of satisfiable canonical formulas. Every modal 
formula is equivalent to such a formula of possibly non-elementary complexity. The canonical formulas of Moss [37] are 
similar to the normal forms of propositional modal logics by Fine [13]. However, both Moss and Fine used canonical formulas 
to construct finite Kripke models in order to prove completeness and decidability results for standard modal systems.

7. Conclusions and future work

In this paper, we have studied forgetting in multi-agent modal logics. We adopted the semantic definition of existential 
bisimulation quantifiers as that of forgetting. To investigate whether a modal system is closed under forgetting, we resorted 
to canonical formulas introduced by Moss. An arbitrary modal formula is equivalent to the disjunction of a unique set of 
satisfiable canonical formulas, and there is an algorithm to construct this set for any modal system whose satisfiability is 
decidable. We showed that for the logics of Kn , Dn , Tn , K45n , KD45n , and S5n , the result of forgetting an atom from a 
satisfiable canonical formula can be obtained by the simple method of literal elimination, i.e., substituting the literals of the 
atom with �. Therefore, with a uniform and constructive proof method, we showed that all these modal systems are closed 
under forgetting and hence have uniform interpolation. This also settles the open problems whether K45n and KD45n have 
uniform interpolation. Moreover, we generalized the above results to include propositional common knowledge. The results 
are summarized in Table 2, which contains an additional row for logics with (unrestricted) common knowledge. In the table, 
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Table 2
Summary of forgetting in multi-agent modal logics.

L K D T K4 S4 K45 KD45 S5

LK
n � � � ✕ ✕ � � �

LK
PC � � � ✕ ✕ � � �

LK
C ✕ ? ? ✕ ✕ ? ? ?

the symbol “�” denotes that the modal system is closed under forgetting, “✕” denotes that it is not, and “?” means that 
the issue remains open.

We give a model-theoretic proof that literal elimination generates the result of forgetting for satisfiable canonical formu-
las: given a model satisfying the formula obtained from a satisfiable canonical formula via literal elimination, we construct 
a model satisfying the original formula and p-similar to the given model. To this end, we analyze properties of satisfiable 
canonical formulas in different logics, use multi-pointed models to gain flexibility in model construction, and resort to mak-
ing multiple copies of a world or a sub-model. In Kn and Dn , we directly construct a desired model by induction on the 
modal depth of the canonical formula. In Tn , we first do the above construction, and then add reflexive edges for the root 
world. In K45n , we first construct a proper multi-pointed model (Mi, Ti) for each agent i, and then add an i-edge from the 
root world to each world of Ti . In S5n , we first do the construction of K45n , and then add a reflexive i-edge for the root 
world and add an symmetric i-edge from each world of Ti to the root world. Satisfiable canonical formulas of different 
systems have different properties, and we use these properties to prove that the constructed model satisfies the original 
canonical formula. For example, for Tn (resp. K45n), we make use of the reflexive (resp. identical-children) property. When 
we add propositional common knowledge, in the base case, we make multiple copies of a world if necessary.

We have focused on the issue whether a modal system is closed under forgetting. Our results suggest an algorithm for 
computing forgetting for each modal system we have considered: to forget an atom from an arbitrary modal formula, first 
transform the formula to a disjunction of canonical formulas, then remove all the ones unsatisfiable in the given logic, and 
lastly substitute any literal of the atom with �. However, the size of a canonical formula is non-elementary. So the proposed 
syntactic method of forgetting is obviously an unpractical one. Thus one topic for future research is to investigate more 
efficient approaches for computing forgetting. A possible approach is to identify more succinct disjunctive normal forms for 
different modal logics for which forgetting can be computed in polynomial time. For example, disjunctive formulas [24] are 
such normal forms for Kn; candidates for KD45n are alternating disjunctive formulas [20], which are disjunctive formulas such 
that modal operators of an agent do not directly occur inside those of the same agent. Another possibility is to identify 
conjunctive normal forms for different modal logics and use resolution to compute forgetting.

We have only considered common knowledge of propositional formulas. So another topic for future research is to ex-
plore forgetting for more general cases of common knowledge. Moss [37] defined canonical formulas for arbitrary common 
knowledge. As neither KC nor K4C has uniform interpolation [39], we might start with exploring under what conditions 
literal elimination produces the correct result of forgetting for satisfiable canonical formulas for KC and K4C.
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Appendix A. Proofs

In this section, we give proofs for results in the paper in the order they appear in the paper with one exception: 
Proposition 14 is a generalization of Proposition 5, so we prove them together.

Proposition 1. Let (M, s) be a Kripke model where M = 〈S, R, V 〉 and s ∈ S. Then, M, s |= ∇i� iff the following conditions hold:

Forth For all t ∈ Ri(s), there is φ ∈ � s.t. M, t |= φ;
Back For all φ ∈ �, there is t ∈ Ri(s) s.t. M, t |= φ .

Proof. Firstly, by Definition 5, we get that ∇i� ≡ Ki(
∨

�) ∧ (
∧

K̂i�).
(⇒) Let (M, s) be a model of ∇i�. Since M, s |= Ki(

∨
�), we get that for all t ∈ Ri(s), M, t |= ∨

�. By the semantics of 
disjunction, for all t ∈ Ri(s), there is φ ∈ � s.t. M, t |= φ. In addition, M, s |= ∧

K̂i�. It follows that for all φ ∈ �, there is 
t ∈ Ri(s) s.t. M, t |= φ.

(⇐) Let (M, s) be a model satisfying the RHS condition. Since for all t ∈ Ri(s), there is φ ∈ � s.t. M, t |= φ, we have 
for all t ∈ Ri(s), M, t |= ∨

�. Then, we get that M, s |= Ki(
∨

�). In addition, because for all φ ∈ �, there is t ∈ Ri(s) s.t. 
M, t |= φ, so we have for all φ ∈ �, M, s |= K̂iφ. Hence, M, s |= ∧

K̂i�. �
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Proposition 2. Suppose that φ is ⊥ when � is empty. Then

Kiφ ∧ (
∧

K̂i�) ≡ ∇icov(φ,�), where

cov(φ,�)
.=

{ ∅, if φ = ⊥;
{φ} ∪ {φ ∧ ψ | ψ ∈ �}, otherwise.

Proof. Firstly, suppose that � is empty. Then, cov(φ, �) = ∅ and φ = ⊥. So Kiφ ∧ (
∧

K̂i�) ≡ Ki⊥ ∧ (
∧

K̂i∅) ≡ Ki(
∨∅) ∧

(
∧

K̂i∅) ≡ ∇i∅ ≡ ∇icov(φ, �).
Now, consider the case that � is not empty.

1. It is easy to get that 
∨

cov(φ, �) ≡ φ ∨ ∨
ψ∈�(φ ∧ ψ). Since φ ∧ ψ |= φ for each ψ ∈ �, we have φ ∨ ∨

ψ∈�(φ ∧ ψ) ≡ φ. 
Hence, 

∨
cov(φ, �) ≡ φ.

2. For each ψ ∈ �, we have Kiφ ∧ K̂iψ ≡ Kiφ ∧ K̂iφ∧ K̂i(φ ∧ψ). Thus Kiφ ∧ (
∧

K̂i�) ≡ Kiφ ∧[∧ K̂i({φ} ∪{φ ∧ ψ | ψ ∈ �})] ≡
Ki(

∨
cov(φ, �)) ∧ [∧ K̂i(cov(φ, �))] ≡ ∇icov(φ, �). �

Proposition 3. Consider the context of a modal system L. Let δ ∈ E P
k (L) where k ∈ N and P ⊆ P be finite. Let φ ∈ LK

n s.t. dep(φ) ≤ k
and P(φ) ⊆ P . Then either δ |= φ or δ |= ¬φ .

Proof. We prove by induction on φ.
Case φ = p: Obviously, w(δ) is a minterm of P . Since p ∈ P , either w(δ) |= p or w(δ) |= ¬p.
Case φ = ¬φ′: By the induction hypothesis, if δ |= φ′ , then δ |= ¬φ; otherwise, δ |= φ.
Case φ = φ1 ∧φ2: If δ |= φ1 and δ |= φ2, then δ |= φ1 ∧φ2. Otherwise, we have δ |= ¬φ1 or δ |= ¬φ2. We get δ |= ¬φ1 ∨¬φ2, 

i.e., δ |= ¬(φ1 ∧ φ2).
Case φ = Kiφ

′: Let (M, s) be a model of δ. By the induction hypothesis, for every δi ∈ Ri(δ), we have either δi |= φ′ or 
δi |= ¬φ′ . We have two situations. Firstly, we assume that there exists δi ∈ Ri(δ) s.t. δi |= ¬φ′ . By the semantics of the cover 
modality, there exists t ∈ Ri(s) s.t. M, t |= δi . So M, t |= ¬φ′ and M, s |= K̂i(¬φ′), i.e., M, s |= ¬Kiφ

′ . Secondly, we assume that 
for every δi ∈ Ri(δ), δi |= φ′ . By the semantics of the cover modality, for every t ∈ Ri(s), there exists δi ∈ Ri(δ) s.t. M, t |= δi , 
and hence M, t |= φ′ . So M, s |= Kiφ

′ . �
Proposition 4. Consider the context of a modal system L. Let δ ∈ E P

k (L) where k ∈ N and P ⊆ P is finite. Let φ ∈ LK
n s.t. dep(φ) ≤ k

and P(φ) ⊆ P . Then we can check if δ |= φ recursively as follows:

• δ |= p iff p appears positively in w(δ);
• δ |= ¬φ iff δ 
|= φ;
• δ |= φ ∧ ψ iff δ |= φ and δ |= ψ ;
• δ |= φ ∨ ψ iff δ |= φ or δ |= ψ ;
• δ |= Kiφ iff for all δ′ ∈ Ri(δ), δ′ |= φ .

Proof. We only prove the cases of negation, disjunction and knowledge. The other two cases are trivial.

• Negation: By Proposition 3, δ |= ¬φ iff δ 
|= φ.
• Disjunction: (⇐) Trivial. (⇒) Assume that δ 
|= φ and δ 
|= ψ . By Proposition 3, δ |= ¬φ and δ |= ¬ψ . Thus δ |= ¬φ ∧¬ψ , 

i.e., δ |= ¬(φ ∨ ψ), contradicting δ |= φ ∨ ψ . So δ |= φ or δ |= ψ ;
• Knowledge: (⇐) Suppose for all δ′ ∈ Ri(δ), δ′ |= φ. Let M, s |= δ. We prove that M, s |= Kiφ. Let t ∈ Ri(s). Then there is 

δ′ ∈ Ri(δ) s.t. M, t |= δ′ . Since δ′ |= φ, M, t |= φ. So M, s |= Kiφ. Thus δ |= Kiφ.
(⇒) Suppose δ |= Kiφ. Let δ′ ∈ Ri(δ). We prove δ′ |= φ. Let M, s |= δ′ . Since δ is satisfiable, there exists a model (M0, s0)

of δ. Without loss of generality, we assume that M0 is disjoint from M . Since δ′ ∈ Ri(δ), there exists t ∈ Ri(s0) s.t. 
M, t |= δ′ . Now we let M ′

0 be the same as M0 except that we replace the i-edge from s0 to t by one from s0 to s. Then 
we have M ′

0, s0 |= δ. Since δ |= Kiφ, M ′
0, s0 |= Kiφ. Hence M, s |= φ. Thus δ′ |= φ. �

Proposition 6. Consider the context of a modal system L. Let φ ∈ LK
n , k ≥ dep(φ) and P = P(φ). Then there exists a unique set 

� ⊆ E P
k (L) s.t. φ ≡ ∨

�.

Proof. Existence: Let � = {δ | δ |= φ and δ ∈ E P
k (L)}. Since δ |= φ for δ ∈ �, we have 

∨
� |= φ. And for δ′ ∈ E P

k (L) \ �, 
δ′ |= ¬φ (Proposition 3). So φ ≡ ∨

δ∈E P
k (L)(φ ∧ δ) ≡ ∨

δ∈�(φ ∧ δ) ≡ ∨
�.

Uniqueness: Suppose that � and �′ are two different canonical formulas of E P
k (L) satisfying the requirement. There 

exists a δ ∈ (� \ �′) ∪ (�′ \ �). Without loss of generality, we assume δ ∈ � \ �′ . Since δ is satisfiable, there exists a model 
(M, s) of δ. Because φ ≡ ∨

�, so M, s |= φ. On the other hand, since δ /∈ �′ , we get that there does not exist a δ′ ∈ �′ s.t. 
M, s |= δ′ (Proposition 5), i.e., M, s 
|= ∨

�′ . Because φ ≡ ∨
�′ , so M, s 
|= φ. Contradiction! �



72 L. Fang et al. / Artificial Intelligence 266 (2019) 51–80
Proposition 7. Let δ be a canonical formula and l < dep(δ). Then for all i ∈A, we have Ri(δ
↓l) = (Ri(δ))

↓l .

Proof. Firstly, we prove the case where l = 1. Since dep(δ) > l = 1, we get δ↓ = w(δ) ∧ ∧
i∈A ∇i(Ri(δ))

↓ . Obviously,
Ri(δ

↓) = (Ri(δ))
↓ .

Now, we prove that (Ri(δ
↓l−k))↓k = (Ri(δ

↓l−k−1))↓k+1 for 0 ≤ k < l. By Definition 8, we can get that (Ri(δ
↓l−k))↓k =

[Ri((δ
↓l−k−1)↓)]↓k . Since dep(δ) > l, dep(δ↓l−k−1) > l − (l − k − 1) = k + 1 > 1. So Ri((δ

↓l−k−1)↓) = (Ri(δ
↓l−k−1))↓ . We get 

that (Ri(δ
↓l−k))↓k = [Ri((δ

↓l−k−1)↓)]↓k = [(Ri(δ
↓l−k−1))↓]↓k = (Ri(δ

↓l−k−1))↓k+1.
Hence, Ri(δ

↓l) = (Ri(δ
↓l−1))↓1 = · · · = (Ri(δ

↓1))↓l−1 = (Ri(δ))
↓l . �

Proposition 8. Let φ ∈LK
C wherein p does not appear. Then, (M, s)↔p(M ′, s′) implies that M, s |= φ iff M ′, s′ |= φ .

Proof. We prove by induction on φ. Let M = 〈S, R, V 〉, M ′ = 〈S ′, R ′, V ′〉, and ρ be the p-bisimulation between (M, s) and 
(M ′, s′). Here we only prove the only-if direction. The other direction can be similarly proved.

Case φ = q where q 
= p: Since (M, s)↔p(M ′, s′), we get V (s) ∼p V ′(s′). It is obvious that V (s) |= q iff V ′(s′) |= q.
Case φ = ¬φ′: By the assumption, we get that M, s |= ¬φ′ , i.e., M, s 
|= φ′ . Obviously, φ′ does not contain any occurrence 

of p. By the induction hypothesis, we get that M ′, s′ 
|= φ′ , i.e., M ′, s′ |= ¬φ′.
Case φ = φ1 ∧ φ2: By the assumption, we get that M, s |= φ1 and M, s |= φ2. Obviously, neither φ1 nor φ2 contains any 

occurrence of p. By the induction hypothesis, we get that M ′, s′ |= φ1 and M ′, s′ |= φ2. Hence, M ′, s′ |= φ1 ∧ φ2.
Case φ = Kiφ

′: By the assumption, for every t ∈ Ri(s), we have M, t |= φ′ . Obviously, φ′ does not contain any occurrence 
of p. Let t′ ∈ R ′

i(s′). By the back condition of Definition 11, there exists t ∈ Ri(s) s.t. tρt′ . So (M, t)↔p(M ′, t′). This, together 
with the induction hypothesis, implies that M ′, t′ |= φ′ . Hence, M, s |= Kiφ

′ .
Case φ = Cφ′: By the assumption, for every t ∈ RA(s), we have M, t |= φ′ . Obviously, φ′ does not contain any occurrence 

of p. Let t′ ∈ R ′
A(s′). By repeatedly applying the back condition of Definition 11, we find a world t ∈ RA(s) s.t. tρt′ . The rest 

of proof is the same as the above case. �
Proposition 9. Consider the context of a modal system L. If kforget(φ, p) ≡ ψ , then the following hold:

1. φ |= ψ ;
2. for any formula η wherein p does not appear, φ |= η iff ψ |= η.

Proof.

1. Let (M, s) be a model of φ. Obviously, (M, s)↔p(M, s). By the forth condition of Definition 12, we have M, s |= ψ .
2. (⇒) Let (M ′, s′) be a model of ψ . By the back condition of Definition 12, there exists a model (M, s) s.t. 

(M, s)↔p(M ′, s′) and M, s |= φ. Since φ |= η, we get that M, s |= η. Because (M, s)↔p(M ′, s′) and η is a formula 
wherein p does not appear, we have M ′, s′ |= η.
(⇐) Let (M, s) be a model of φ. By the first item, we get that M, s |= ψ . Since ψ |= η, we have M, s |= η. �

Proposition 10. Consider the context of a modal system L. The following hold:

1. If φ ∈Lpl and pforget(φ, p) ≡ ψ , then kforget(φ, p) ≡ ψ ;
2. kforget(φ1 ∨ φ2, p) ≡ kforget(φ1, p) ∨ kforget(φ2, p).

Proof.

1. Forth: Let (M, s) be a model of φ, and (M ′, s′) be a model s.t. (M, s)↔p(M ′, s′). By Definition 11, we get that V (s) ∼p

V ′(s′). Since φ ∈Lpl , by Definition 10, V ′(s′) |= ψ . Hence, M ′, s′ |= ψ .
Back: Let (M ′, s′) be a model of ψ . We get the valuation V ′(s′). By Definition 10, there exists a valuation V ∗ s.t. 
V ∗ ∼p V ′(s) and V |= φ. Now, we let the structure of M be a copy of that of M ′ , and let V (s) = V ∗ . Then we have 
M, s |= φ and (M, s)↔p(M ′, s′).

2. (⇒) Let (M ′, s′) be a model of kforget(φ1 ∨ φ2, p). By the back condition of Definition 12, there exists a model (M, s)
s.t. (M, s)↔p(M ′, s′) and M, s |= φ1 ∨ φ2. Without loss of generality, we assume that M, s |= φ1. By the forth condition 
of Definition 12, we have M ′, s′ |= kforget(φ1, p). Hence, M ′, s′ |= kforget(φ1, p) ∨ kforget(φ2, p).
(⇐) Let (M ′, s′) be a model of kforget(φ1, p) ∨ kforget(φ2, p). Without loss of generality, we assume that M ′, s′ |=
kforget(φ1, p). By the back condition of Definition 12, there exists a model (M, s) s.t. (M, s)↔p(M ′, s′) and M, s |= φ1. 
Moreover, M, s |= φ1 ∨ φ2. By the forth condition of Definition 12, we have M ′, s′ |= kforget(φ1 ∨ φ2, p). �

Proposition 11. If a modal system L is closed under forgetting, then L has uniform interpolation.
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Proof. Consider the context of a modal system L. Let φ be a formula and Q a set of variables. Firstly, we define the result 
of forgetting a set of variables as follows:

kforget(φ, Q ) =
⎧⎨
⎩

φ, if Q = ∅;
kforget(φ, p), if Q = {p};
kforget(kforget(φ, Q \ {p}), p), otherwise.

Let P ⊆P(φ) and define ψ ≡ kforget(φ, P(φ) \ P ) to be the uniform interpolant of φ w.r.t. P . Obviously, ψ contains only 
atoms of P . Now, we prove that for any η s.t. P(η) ⊆ P , we have φ |= η iff ψ |= η. We prove by induction on P .

Base case: Suppose that p ∈P(φ) and P =P(φ) \ {p}. By Proposition 9, we get that φ |= η iff ψ |= η.
Induction step: Suppose that P is non-empty. Let γ = kforget(φ, P(φ) \ P ). Assume that γ is a uniform interpolant of φ

w.r.t. P . Let p ∈ P and ψ = kforget(φ, (P(φ) \ P ) ∪{p}). We want to prove that ψ is a uniform interpolant of φ w.r.t. P \ {p}.
(⇒) Let (M ′, s′) be a model of ψ . By the back condition of Definition 12, we get a model (M, s) of γ s.t. (M, s)↔p(M ′, s′). 

Since φ |= η, P(η) ⊆ P \ {p} ⊂ P and the induction hypothesis, we have γ |= η. So M, s |= η. This, together with Proposi-
tion 8, implies that M ′, s′ |= η.

(⇐) By the induction hypothesis and Proposition 9, we have γ |= ψ . Hence, γ |= ψ |= η. �
Proposition 12. Let δ be a canonical formula and p an atom. Then, δ |= δp .

Proof. We prove by induction on dep(δ). Let (M, s) be a model of δ.
Base case: Suppose that δ = ∧

q∈ P̃ q ∧ ∧
q∈P\ P̃ ¬q where P̃ ⊆ P . Then, δp = ∧

q∈ P̃\{p} q ∧ ∧
q∈P\( P̃∪{p}) ¬q. Since M, s |= δ, 

for each q ∈ P̃ \ {p}, q ∈ V (s). Similarly, for each q ∈ P \ ( P̃ ∪ {p}), q /∈ V (s). So M, s |= δp .
Induction step: Now, we show that M, s |= w(δp) ∧∧

i∈A ∇i Ri(δ
p). Firstly, by the base case, we have w(δ) |= w(δp). Now, 

we prove that for any i ∈ A, M, s |= ∇i Ri(δ
p). We only prove the forth condition that for all t ∈ Ri(s), there is δp

i ∈ Ri(δ
p)

s.t. M, t |= δi . The back condition can be similarly proved. By the semantics of ∇i modality, there is δi ∈ Ri(δ) s.t. M, t |= δi . 
By the induction hypothesis, we get that δi |= δ

p
i , and hence M, t |= δ

p
i . Obviously, δp

i ∈ Ri(δ
p). �

Proposition 13. Let δ be a Tn satisfiable canonical formula where dep(δ) ≥ 1. Let l ∈N s.t. 1 ≤ l ≤ dep(δ). Then, for all i ∈A, we have 
δ↓l ∈ Ri(δ

↓l−1).

Proof. Let k = dep(δ), P = P(δ) and M, s |= δ. Obviously, M, s satisfies both δ↓l and δ↓l−1. Since M is reflexive, s ∈ Ri(s). 
By the semantics of the ∇i modality, there exists δi ∈ Ri(δ

↓l−1) s.t. M, s |= δi . Since δ ∈ E P
k , it is easily verified that δ↓l ∈

E P
k−l . Similarly, δ↓l−1 ∈ E P

k−l+1, and hence δi ∈ E P
k−l . So both δ↓l and δi are the depth k − l canonical formula of (M, s)

(cf. Proposition 5). Hence δ↓l = δi ∈ Ri(δ
↓l−1). �

Proposition 5. Let (M, s) be a Kripke model and k ∈N. Let P ⊆P be finite. Then, there exists a unique δ ∈ E P
k s.t. M, s |= δ.

Since Proposition 14 is a generalization of Proposition 5, below we prove them together.

Proposition 14. Let (M, T ) be a multi-pointed model and k ∈N. Let P ⊆P be finite. Then, there exists a unique set � ⊆ E P
k s.t. (M, T )

is �-complete.

Proof. Here we show Propositions 5 and 14 together.
Firstly, we prove that if Proposition 5 holds for the case E P

k , then Proposition 14 also holds for the same case.
Existence: Let � = {δ | δ ∈ E P

k and M, t |= δ and t ∈ T }. It is easy to check that (M, T ) is �-complete.
Uniqueness: Suppose that � and �′ are two different sets of E P

k . The multi-pointed model (M, T ) is both �-complete 
and �′-complete. Since � 
= �′ , there exists δ ∈ (� \�′) ∪ (�′ \�). Without loss of generality, we suppose that δ ∈ (� \�′). 
Since (M, T ) is �-complete, there exists t ∈ T s.t. M, t |= δ. Similarly, there exists δ′ ∈ �′ s.t. M, t |= δ′ . Obviously, δ and δ′
are k depth canonical formulas of (M, t). By Proposition 5, we get δ = δ′ . So δ ∈ �′ . Contradiction!

Secondly, we prove that Proposition 5 holds.
Base case: Suppose that M = 〈S, R, V 〉, we define δ = ∧

p∈P∩V (s) p ∧ ∧
p∈P\V (s) ¬p. Obviously, δ is the unique canonical 

formula of E P
0 s.t. M, s |= δ.

Induction step: Assume that Propositions 5 and 14 both hold for the case E P
k . Existence: By the base case, there exists 

a unique δ0 ∈ E P
0 s.t. M, s |= δ0. For each i ∈ A, there exists a unique set �i ⊆ E P

k s.t. (M, Ri(s)) is �i -complete. Let δ =
δ0 ∧ ∧

i∈A ∇i�i . Obviously, M, s |= δ. Uniqueness: Suppose that δ and δ′ are two different canonical formulas of E P
k+1. Let 

δ′ = δ′
0 ∧ ∧

i∈A ∇i�
′
i . So δ0 
= δ′

0, or there exists an agent i s.t. �i 
= �′
i . Since both δ0 and δ′

0 are satisfied by (M, s), by the 
uniqueness of the base case of Proposition 5, we get that δ0 = δ′

0. We consider the second situation that �i 
= �′
i for some 

agent i. Since M, s |= ∇i�i and M, s |= ∇i�
′
i , we get that (M, Ri(s)) is �i -complete and �′

i -complete. Because �i and �′
i are 

depth k canonical formula sets, so they are equal. Hence, both situations are impossible. Contradiction! �
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Proposition 15. Let � ⊆ LK
C such that � is finite and every φ ∈ � does not contain any occurrence of p. Then, (M, T )↔p(M ′, T ′)

implies that (M, T ) is �-complete iff (M ′, T ′) is �-complete.

Proof. Here, we only prove the only-if direction of the first condition of �-completeness (Definition 19). The other proofs 
are similar. Now, we prove that for every t′ ∈ T ′ , there exists φ ∈ � s.t. M ′, t′ |= φ. Let ρ be the p-bisimulation between the 
worlds of M and those of M ′ . There exists t ∈ T s.t. ρ(t, t′). Since (M, T ) is �-complete, there exists φ ∈ � s.t. M, t |= φ. 
Obviously, (M, t)↔p(M ′, t′). Hence, M ′, t′ |= φ. �
Proposition 16. Let δ be a K45n satisfiable canonical formula where dep(δ) ≥ 2. Let l ∈ N s.t. 1 ≤ l < dep(δ). Then, for all i ∈ A and 
δi ∈ Ri(δ), (Ri(δ))

↓l = Ri(δ
↓l−1
i ).

Proof. Let k = dep(δ) and M, s |= δ. Then there exists t ∈ Ri(s) s.t. M, t |= δi . Since M is transitive and Euclidean, Ri(s) =
Ri(t). Obviously, (M, Ri(s)) is Ri(δ)-complete and (M, Ri(t)) is Ri(δi)-complete. Then, (M, Ri(s)) is (Ri(δ))

↓l-complete and 
(M, Ri(t)) is Ri(δ

↓l−1
i )-complete. So (M, Ri(s)) is also Ri(δi)-complete. So both (Ri(δ))

↓l and Ri(δ
↓l−1
i ) are the depth k − l −1

canonical formula set of (M, Ri(s)) (cf. Proposition 14). Hence (Ri(δ))
↓l = Ri(δ

↓l−1
i ). �

Lemma 1 (The K45n lemma). Let δ be a K45n satisfiable canonical formula where dep(δ) ≥ 1. Let (M ′, s′) be a K45n model of δp . Then 
for all i ∈A, there exists a multi-pointed K45n model (M, T ) that is i-equivalent, Ri(δ)-complete and p-bisimilar to (M ′, R ′

i(s′)).

Proof. From now on, we let T ′ be R ′
i(s′). Here, we show that (M, T ), constructed in the main body of this paper, is 

i-equivalent, transitive, Euclidean, p-bisimilar to (M ′, T ′), and Ri(δ)-complete.
Firstly, we only let t1 Rit2 where t1, t2 ∈ T . So (M, T ) is i-equivalent.
Secondly, we show that M is transitive. Suppose that u, v, w ∈ S , uR j v and v R j w . We prove that uR j w in the following. 

Recall that for every t ∈ T and every agent k 
= i, we construct a submodel (Mt,k, Tt,k) where Mt,k = 〈St,k, Rt,k, Vt,k〉. For the 
base case, if u ∈ St,k , then we use u′ to denote the original world u of S ′ . Both v ′ and w ′ are similar.

1. u, v, w ∈ T : Since we only add i-edges between all worlds of T , we get that j = i. Also (M, T ) is i-equivalent, so uRi w .
2. u, v ∈ T and w ∈ St,k where t ∈ T and k ∈ A: Because we only add j-edges between v and all worlds of T v, j where 

j 
= i, so t = v and j = k 
= i. On the other hand, similarly to Case 1, we get that j = i since uR j v when j = i. Hence 
this case is impossible, i.e., uR j v and v R j w cannot hold simultaneously.

3. u ∈ S , v ∈ St,k and w ∈ T where t ∈ T and k ∈A: This case is impossible since we do not add any edge from the worlds 
of St,k to those of T , i.e., the assumption that v R j w does not hold.

4. u ∈ T , v ∈ St,k and w ∈ Sx,l where t, x ∈ T and k, l ∈ A: Similarly to Case 2, we get t = u and j = k 
= i. We get that 
x = t = u and l = k = j since we do not add any edge from the worlds of St,k to those of Sx,l where t 
= x or k 
= l. Since 
uR j v , there exists a submodel (Mu, j, Tu, j) s.t. v ∈ Tu, j . In the following, we prove by induction on dep(δ). Base case:
By the construction, (Mu, j, Tu, j) is a copy of (M ′, R ′

j(u′)). So we get that u′ R ′
j v ′ and v ′ R ′

j w ′ . These, together with the 
transitivity of M ′ , imply that u′ R ′

j w ′ . By the construction, we get that w ∈ Tu, j , and hence uR j w . Induction step: By 
the induction hypothesis, (Mu, j, Tu, j) is j-equivalent. Since v R j w , w ∈ Tu, j . By the construction, we get that uR j w .

5. u ∈ St,k , v ∈ T and w ∈ S where t ∈ T and k ∈A: Similarly to case 3, this case is impossible since uR j v does not hold.
6. u ∈ St,k , v ∈ Sx,l and w ∈ S y,m where t, x, y ∈ T and k, l, m ∈A: Similarly to Case 2, we get that t = x = y and k = l = m. 

There exists a submodel (Mt, j, Tt, j) where Mt, j = 〈St, j, Rt, j, Vt, j〉 s.t. u, v, w ∈ St, j . In the following, we prove v R j w
by induction on dep(δ). Base case: Similarly to Case 4, we get that u′R ′

j v ′ and v ′R ′
j w ′ since (Mt, j, Tt, j) is a copy of 

(M ′, R ′
j(t

′)). Because M ′ is transitive, so u′ R ′
j w ′ . Hence, we get that uR j w . Induction step: By the hypothesis induction, 

Mt,k is transitive. Since u, v, w ∈ St,k , we have uR j w if uR j v and v R j w both hold.

Thirdly, we show that M is Euclidean. Suppose that u, v, w ∈ S , uR j v and uR j w . We prove that v R j w in the following.

1. u, v, w ∈ T : Similarly to Case 1 of the transitivity property of M , we get j = i and v R j w .
2. u, v ∈ T and w ∈ St,k where t ∈ T and k ∈ A: Similarly to Case 2 of the transitivity property of M , we get that uR j v

and uR j w are inconsistent. This case is impossible.
3. u, w ∈ T and v ∈ St,k where t ∈ T and k ∈ A: Similarly to Case 2, this case is impossible.
4. u ∈ T , v ∈ St,k and w ∈ Sx,l where t, x ∈ T and k, l ∈A: Similarly to Case 4 of the transitivity property of M , there exists 

a submodel (Mu, j, Tu, j) where Mu, j = 〈Su, j, Ru, j, V u, j〉 s.t. v, w ∈ Tu, j . By the construction, we have v R j w .
5. u ∈ St,k , v ∈ T and w ∈ S where t ∈ T and k ∈ A: Similarly to Case 3 of the transitivity property of M , this case is 

impossible since uR j v does not hold.
6. u ∈ St,k , v ∈ S and w ∈ T where t ∈ T and k ∈A: Similarly to the above case, this case is impossible.
7. u ∈ St,k , v ∈ Sx,l and w ∈ S y,m where t, x, y ∈ T and k, l, m ∈A: The proof is similar to that of Case 6 of the transitivity 

property of M except we use that M ′ is Euclidean.
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Then, we show that ρ is a p-bisimulation between (M, T ) and (M ′, T ′). Obviously, for every t ∈ T , there exists t′ ∈ T ′ s.t. 
tρt′; and the other direction also holds.

Atom: Suppose that uρu′ . If u ∈ T , then u′ ∈ T ′ . By the construction, there exists a δi ∈ Ri(δ) s.t. u |= δi and u′ |= δ
p
i . 

So V (u) ∼p V ′(u′). Otherwise, we have u /∈ T . By the construction, there exists a p-bisimulation ρt, j s.t. (u, u′) ∈ ρt, j . So 
V (u) ∼p V ′(u′).

Forth: Suppose that u, v ∈ S and u′ ∈ S ′ s.t. uR j v and (u, u′) ∈ ρ .

1. u, v ∈ T : Similarly to Case 1 of the proof of the transitivity property of M , we get that j = i and uRi v . According to 
Step 1 of the construction, we have u′ ∈ T ′ , and there exists v ′ ∈ S ′ s.t. (v, v ′) ∈ ρ and u′ R ′

i v ′ .
2. u ∈ T and v /∈ T : Similarly to Case 1 of the transitivity property of M , we get that j 
= i. There exists a submodel 

(Mu, j, Tu, j) where Mu, j = 〈Su, j, Ru, j, V u, j〉 s.t. v ∈ Su, j . According to Step 1 of the construction, we have u′ ∈ T ′ . 
According to Step 2 of the construction, there exists a p-bisimulation ρu, j : (Mu, j, Tu, j)↔p(M ′, R ′

j(u′)). By the forth 
condition of ρu, j , there exists v ′ ∈ S ′ s.t. (v, v ′) ∈ ρu, j and u′ R ′

j v ′ . Hence (v, v ′) ∈ ρ .
3. u /∈ T and v ∈ T : Similarly to Case 2 of the transitivity property of M , this case is impossible.
4. u, v /∈ T : Similarly to Case 2, there exists a submodel (Mt, j, Tt, j) where t ∈ T and Mt, j = 〈St, j, Rt, j, Vt, j〉 s.t. u, v ∈ St, j . 

Also, there exists a p-bisimulation ρt, j : (Mt, j, Tt, j)↔p(M ′, R ′
j(t

′)) where tρt′. Similarly to Case 4, there exists v ′ ∈ S ′
s.t. (v, v ′) ∈ ρ and u′R ′

j v ′ .

Back: Suppose that u ∈ S and u′, v ′ ∈ S ′ s.t. u′R ′
j v ′ and (u, u′) ∈ ρ . Here, we only consider the case that u′, v ′ ∈ T ′ . The 

other cases can be similarly proved.
Obviously, u ∈ T or u ∈ St,k where t ∈ T and k ∈A. If u ∈ T and j = i, then by the Step 1 of the construction, there exists 

a v ∈ T s.t. (v, v ′) ∈ ρ and uRi v .
If u ∈ T and j 
= i, then there exists a submodel (Mu, j, Tu, j) where Mu, j = 〈Su, j, Ru, j, V u, j〉 and a p-bisimulation ρu, j :

(Mu, j, Tu, j)↔p(M ′, R ′
j(u′)). By the back condition of ρu, j , there exists v ∈ Su, j s.t. (v, v ′) ∈ ρu, j and uR j v . Hence (v, v ′) ∈ ρ

and v ∈ S .
If u /∈ T , then there exists a submodel (Mt,k, Tt,k) where Mt,k = 〈St,k, Rt,k, Vt,k〉 where t ∈ T and k ∈ A s.t. u ∈ St,k . Also, 

there exists a p-bisimulation ρt,k : (Mt,k, Tt,k)↔p(M ′, R ′
j(t

′)) where tρt′. Similarly to the above situation, there exists v ∈ S

s.t. (v, v ′) ∈ ρ and uR j v .
Finally, we prove (M, T ) is Ri(δ)-complete by induction on dep(δ).
Base case: By Step 1 of the construction, it is easy to verify that (M, T ) is Ri(δ)-complete.
Induction step: Let dep(δ) = k. We prove by induction on k − l that for all 0 ≤ l < k, (M, T ) is Ri(δ)

↓l-complete. Base 
case (l = k − 1): The set Ri(δ)

↓l is a set of propositional formulas. In Step 1, (M, T ) is Ri(δ)
↓l-complete. Induction step:

Assume that (M, T ) is (Ri(δ))
↓l-complete. We prove that it is also (Ri(δ))

↓l−1-complete. Let t ∈ T . By the construction,
there exists t′ ∈ T ′ and δi ∈ Ri(δ) s.t. tρt′ and M ′, t′ |= δ

p
i . It suffices to show that M, t |= δ

↓l−1
i . Since w(δ

↓l−1
i ) = w(δi), 

M, t |= w(δ
↓l−1
i ). By the identical-children property (Proposition 16), (Ri(δ))

↓l = Ri(δ
↓l−1
i ). By the induction hypothesis, 

(M, T ) is Ri(δ
↓l−1
i )-complete, so M, t |= ∇i Ri(δ

↓l−1
i ). For j 
= i, because (Mt, j, Tt, j) is R j(δi)-complete, R j(t) = Tt, j and 

M, t |= ∇ j R j(δi), hence M, t |= ∇ j R j(δi)
↓l−1. By Proposition 7, R j(δi)

↓l−1 = R j(δ
↓l−1
i ), so M, t |= ∇j R j(δ

↓l−1
i ). �

Proposition 17. Let δ be an S5n satisfiable canonical formula where dep(δ) ≥ 2. Let l ∈ N s.t. 2 ≤ l ≤ dep(δ). Then, for all i ∈ A and 
δi ∈ Ri(δ), δ↓l ∈ Ri(δ

↓l−2
i ).

Proof. By the reflexive property (Proposition 13), δ↓l ∈ R(δ↓l−1). By Propositions 7 and 16, we get that R(δ↓l−1) = Ri(δ
↓l−2
i ). 

Hence, δ↓l ∈ Ri(δ
↓l−2
i ). �

Lemma 2 (The S5n lemma). Let δ be an S5n satisfiable canonical formula where dep(δ) ≥ 1. Let (M ′, s′) be an S5n model of δp . Then 
for all i ∈A, there exists a multi-pointed S5n model (M, T ) that is i-equivalent, Ri(δ)-complete and p-bisimilar to (M ′, R ′

i(s′)).

Proof. To distinguish the models before and after adding reflexive and symmetric edges, we let (M∗, T ∗) be the former 
where M∗ = 〈S∗, R∗, V ∗〉, and (M, T ) be the latter where M = 〈S, R, V 〉.

Here, we show that (M, T ), constructed in the main body of this paper, satisfies the requirements. Obviously, (M, T )

is still i-equivalent since Steps 2 and 3 do not add any i-edge between a world of T and another one which is not in T . 
Moreover, it is obvious that M satisfies reflexivity since all submodels are reflexive, and Step 2 adds reflexive edges for all 
worlds of T . Note that it is not necessary to verify that M is transitive and symmetric. This is because a model, which is 
reflexive and Euclidean, is also transitive and symmetric.

According to the proof of the K45n lemma, we get that the model (M∗, T ∗) is Euclidean, p-bisimilar to (M ′, R ′
i(s′)), and 

Ri(δ)-complete. But we add reflexive and symmetric edges for the model M∗ and acquire the new model M . Hence, we 
need to verify that (M, T ) satisfies the above three conditions.

Firstly, we prove that M is Euclidean. Suppose that u, v, w ∈ S , uR j v and uR j w . We prove that v R j w in the following:
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1. u, v, w ∈ T : If j 
= i, then u = v = w and v R j w since we only add reflexive edges for the worlds of T . Otherwise, we 
can get that v Ri w since (M, T ) is i-equivalent.

2. u, v ∈ T and w ∈ St,k where t ∈ T and k ∈ A: By the construction, there exists only j-edges between u and all worlds 
of Tu, j where j 
= i. So t = u and j = k 
= i. Similarly to Case 1, if j 
= i, then u = v . By the assumption that uR j w , we 
get v R j w .

3. u, w ∈ T and v ∈ St,k where t ∈ T and k ∈A: As the proof in Case 2, we can get that w R j v , t = u = w and j = k. Since 
we add symmetric edges for the model, we have v R j w .

4. v, w ∈ T and u ∈ St,k where t ∈ T and k ∈A: Since we only add a j-edge from u to t , we get that t = v = w and k = j. 
Since we add reflexive edges for the world v and the agent j, we get that v R j v , i.e., v R j w .

5. u ∈ T , v ∈ St,k and w ∈ Sx,l where t, x ∈ T and k, l ∈ A: The proof of this case is the same as that of Case 4 of the 
Euclidean property of Lemma 1.

6. u ∈ St,k , v ∈ T and w ∈ Sx,l where t, x ∈ T and k, l ∈ A: Similarly to Case 2, we get that t = v and j = k 
= i since 
uR j v . By the construction, there exists a submodel (Mt, j, Tt, j) where Mt, j = 〈St, j, Rt, j, Vt, j〉 s.t. u, w ∈ St, j . In the 
following, we prove by induction on dep(δ). Base case: The model (Mt, j, Tt, j) is a copy of (M ′, R ′

j(t
′)). Let u′ and w ′

be the original world of u and w in S ′ . Since uR j v and uR j w , we get that u′ R ′
j v ′ and u′R ′

j w ′ . Since M ′ is Euclidean, 
v ′R ′

j w ′ . So w ∈ T v, j . By the construction, we get that v R j w . Induction step: By the induction hypothesis, (Mt, j, Tt, j) is 
j-equivalent. Since uR j w , so w ∈ Tt, j . By the construction, v R j w .

7. u ∈ St,k , v ∈ Sx,l and w ∈ T where t, x ∈ T and k, l ∈ A: As in the proof of Case 6, we get that w R j v and v ∈ T w, j . In 
Step 2 of the construction illustrated in the S5n lemma (Lemma 2), we add an j-edge from v to w . Hence, v R j w .

8. u ∈ St,k , v ∈ Sx,l and w ∈ S y,m where t, x, y ∈ T and k, l, m ∈A: This proof is the same as that of Case 7 of the Euclidean 
property of Lemma 1.

Then, we prove that (M, T )↔p(M ′, R ′
i(s′)). The proof of most cases of the forth condition and the atom and back con-

ditions are the same as those of Lemma 1. Here, we only prove the following cases of the forth condition since we add 
reflexive and symmetric edges. Suppose that u, v ∈ S and u′ ∈ S ′ s.t. uR j v and (u, u′) ∈ ρ .

1. u, v ∈ T and j 
= i: Since we only add a j-edge from u to itself, we have u = v . Let v ′ = u′ . Obviously, (v, v ′) ∈ ρ and 
u′R ′

j v ′ .
2. u /∈ T and v ∈ T : In Step 3, we only add an j-edge from u to v where j 
= i and u ∈ T v, j . Obviously, v R ju holds. 

Since v ∈ T , by the construction, there exists a submodel (Mv, j, T v, j) where Mv, j = 〈S v, j, R v, j, V v, j〉 s.t. u ∈ S v, j . In the 
following, we prove by induction on dep(δ) that the required v ′ exists.
Base case: The model (Mv, j, T v, j) is a copy of (M ′, R ′

i(v ′)) where vρv ′ . So u′ is a copy of u and v ′ R ′
ju

′ . Since M ′ is 
symmetric, we have u′R ′

j v ′ .
Induction step: In Step 1, we acquire the submodel (Mv, j, T v, j) and the p-bisimulation ρv, j : (Mv, j, T v, j)↔p(M ′, R ′

i(v ′))
by the induction hypothesis of this lemma. By the forth condition of ρv, j , there exists v ′ ∈ S ′ s.t. u′R ′

j v ′ and (v, v ′) ∈
ρv, j . Hence, (v, v ′) ∈ ρ .

Finally, we prove that (M, T ) is Ri(δ)-complete. Before we give a proof, we introduce some concepts as follows. Let 
m = dep(δ). For the model M , we define a path τ from a world s0 to a world sn of S to be 〈s0, i0, . . . , in−1, sn〉 where 
for 0 ≤ j ≤ n, s j ∈ S and for 0 ≤ j < n, i j ∈ A s.t. s j Ri j s j+1. We use len(τ ) to denote the length of τ and e(τ ) to denote 
the last world of τ . For example, let τ = 〈s0, i0, . . . , in, sn+1〉. Then, len(τ ) = n + 1 and e(τ ) = sn+1. Given two paths τ =
〈s0, i0, . . . in−1, sn〉 and τ ′ = 〈s0, i0, . . . in−1, sn, in, sn+1〉, we say τ ′ is an in-extension of τ by sn+1, denoted by τ + (in, sn+1).

Now, we recursively define a mapping from any path τ starting from a world t ∈ T with at most length m − 1 to a 
canonical formula δτ and prove that M∗, e(τ ) |= δτ as follows:

Base case: Let τ = 〈t〉 where t ∈ T , by the construction, there exists t′ ∈ T ′ and δi ∈ Ri(δ) s.t. tρt′ , M ′, t′ |= δ
p
i , and M∗ , 

t |= δi . We let δτ = δi .
Inductive case: Let τ = τ ′ + ( j, u). By the induction hypothesis, we get that M∗, e(τ ′) |= δτ ′ . If u /∈ T , then there exists 

δ j ∈ R j(δτ ′ ) s.t. M∗, u |= δ j . We let δτ = δ j . Otherwise, we have u ∈ T . We let δτ = δ
↓len(τ )
〈u〉 .

By Proposition 5, we get the following fact: for any two paths τ and τ ′ s.t. e(τ ) = e(τ ′) and len(τ ) ≥ len(τ ′), we have 
δτ = δ

↓len(τ )−len(τ ′)
τ ′ .

Now, we prove that after adding edges, for every path τ , M, e(τ ) |= δτ . Obviously, the above implies that (M, T ) is 
Ri(δ)-complete. We prove by induction on m − l that for every l < m and every path τ where len(τ ) ≤ l, we have M, e(τ ) |=
δ
↓l−len(τ )
τ .

Base case (l = m − 1): Let τ be a path where len(τ ) ≤ m − 1. Obviously, dep(δ
↓m−len(τ )−1
τ ) = 0, i.e., δ↓m−len(τ )−1

τ is proposi-
tional. Moreover, δ↓m−len(τ )−1

τ = w(δτ ). By the definition of δτ , M∗, e(τ ) |= δτ . So M∗, e(τ ) |= w(δτ ). Because neither Step 2 
nor 3 modifies the valuation on e(τ ), and w(δτ ) is propositional, so after Steps 2 and 3, M, e(τ ) |= w(δτ ).

Induction step: Assume that for every path τ where len(τ ) ≤ l, we have M, e(τ ) |= δ
↓l−len(τ )
τ . We want to prove that for 

every path τ where len(τ ) ≤ l −1, we have M, e(τ ) |= δ
↓l−len(τ )−1
τ . Let u = e(τ ). As in the proof of the base case, we get that 
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M, e(τ ) |= w(δτ ) and hence M, e(τ ) |= w(δ
↓l−len(τ )−1
τ ). In the following, we show that M, e(τ ) |= ∧

j∈A ∇j R j(δ
↓l−len(τ )−1
τ ). 

Here, we only prove that for every v ∈ R j(e(τ )), there exists δ j ∈ R j(δ
↓l−len(τ )−1
τ ) s.t. M, v |= δ j . The back condition can be 

similarly proved. Let τ ′ = τ + ( j, v). By the induction hypothesis, we get that M, v |= δ
↓l−len(τ ′)
τ ′ and hence δ↓l−len(τ ′)

τ ′ is the 
desired δ j . It remains to prove that δ↓l−len(τ ′)

τ ′ ∈ R j(δ
↓l−len(τ )−1
τ ). We analyze it by the following cases.

1. u, v ∈ T : Suppose that u = v . By the definition of δτ and δτ ′ , there exists δi ∈ Ri(δ) s.t. δτ = δ
↓len(τ )

i and δτ ′ = δ
↓
τ . By 

the reflexive property (Proposition 13), we have δτ ′ ∈ R j(δτ ) and hence δ↓l−len(τ ′)
τ ′ = δ

↓l−len(τ )−1
τ ′ ∈ R j(δτ )↓l−len(τ )−1.

Suppose that u 
= v . Clearly, len(τ ) ≥ 1 and hence l ≥ 1. By the construction, we get that j = i. By the definition of δτ
and δτ ′ , there exist δu, δv ∈ Ri(δ) s.t. δτ = δ

↓len(τ )
u and δτ ′ = δ

↓len(τ ′)
v . By the identical-children property (Proposition 16), 

we have δ↓l−len(τ ′)
τ ′ = δ

↓l
v ∈ (Ri(δ))

↓l = Ri(δ
↓l−1
u ) = Ri(δ

↓l−len(τ )−1
τ ).

2. u /∈ T and v ∈ T : It is obvious that i 
= j and v ∈ Tu, j since we only add j-edges from the worlds of Tu, j to u where
j 
= i. By the construction illustrated in the K45n lemma, there exist δi ∈ Ri(δ) and δi j ∈ R j(δi) s.t. M∗, v |= δi

and M∗, u |= δi j . By the definition of δτ ′ , we get that δτ ′ = δ
↓len(τ ′)
i . Since M∗, u |= δi j , by the definition of δτ and 

Proposition 5, we get that δτ = δ
↓len(τ )−1
i j . These, together with the symmetric property (Propositions 17), imply that 

δ
↓l−len(τ ′)
τ ′ = δ

↓l
i ∈ R j(δ

↓l−2
i j ) = R j(δ

↓l−len(τ )−1
τ ).

3. v /∈ T : By the definition of δτ , we get that δτ ′ ∈ R j(δτ ) and hence δ↓l−len(τ ′)
τ ′ ∈ (R j(δτ ))↓l−len(τ ′) . By Proposition 7 and 

len(τ ′) = len(τ ) + 1, we have δ↓l−len(τ ′)
τ ′ ∈ R j(δ

↓l−len(τ )−1
τ ). �

Proposition 18. Let (M, s) be a Kripke model where M = 〈S, R, V 〉 and s ∈ S. Then, M, s |= ∇� iff the following conditions hold:

Forth For all t ∈ RA(s), there is φ ∈ � s.t. M, t |= φ;
Back For all φ ∈ �, there is t ∈ RA(s) s.t. M, t |= φ .

Proof. The proof is similar to that of Proposition 1. �
Proposition 19. Consider the context of a modal system L. Let δ ∈ C P

k (L) where k ∈N and P ⊆P be finite. Let φ ∈LK
PC s.t. dep(φ) ≤ k

and P(φ) ⊆ P . Then either δ |= φ or δ |= ¬φ .

Proof sketch. The proof is similar to that of Proposition 3 except we consider one more case φ = Cφ0 whose proof is similar 
to that of the case φ = Kφ′ . �
Proposition 20. Consider the context of a modal system L. Let δ ∈ C P

k (L) where k ∈N and P ⊆P is finite. Let φ ∈LK
PC s.t. dep′(φ) ≤ k

and P(φ) ⊆ P . Then we can check if δ |= φ recursively as follows:

• δ |= p iff p appears positively in w(δ);
• δ |= ¬φ iff δ 
|= φ;
• δ |= φ ∧ ψ iff δ |= φ and δ |= ψ ;
• δ |= φ ∨ ψ iff δ |= φ or δ |= ψ ;
• δ |= Kiφ iff for all δ′ ∈ Ri(δ), δ′ |= φ .
• δ |= Cφ iff for all δ′ ∈ RA(δ), δ′ |= φ .

Proof. We only prove the case of common knowledge. The proofs of the other cases are similar to those for Proposition 4.
(⇐) Suppose for all δ′ ∈ RA(δ), δ′ |= φ. Let M, s |= δ. We prove that M, s |= Cφ. Let t ∈ RA(s). Then there is δ′ ∈ RA(δ)

s.t. M, t |= δ′ . Since δ′ |= φ, M, t |= φ. So M, s |= Cφ. Thus δ |= Cφ.
(⇒) Suppose δ |= Cφ. Let δ′ ∈ RA(δ). Since δ is satisfiable, there exists a model (M0, s0) of δ. Then there is t ∈ RA(s0)

s.t. M0, t |= δ′ . Since δ |= Cφ, M0, t |= φ. Since δ′ is a minterm of P and P(φ) ⊆ P , we have δ′ |= φ. �
Proposition 21. Let (M, s) be a Kripke model and k ∈N. Let P ⊆P be finite. Then, there exists a unique δ ∈ C P

k s.t. M, s |= δ.

Proposition 22. Let (M, T ) be a multi-pointed model and k ∈N. Let P ⊆P be finite. Then, there exists a unique set � ⊆ C P
k s.t. (M, T )

is �-complete.

Proof. Here we show Propositions 21 and 22 together.
Similarly to the proof of Propositions 5 and 14, we get that “if Proposition 21 holds for the case C P

k , then Proposition 22
also holds for the same case”.
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Now, we prove that Proposition 21 holds for the base case. The proof of the induction step is similar to that of Propo-
sition 5. By Propositions 5 and 14, there exists a unique δ0 ∈ E P

0 s.t. M, s |= δ0; and there exists a unique �0 ⊆ E P
0 s.t. 

(M, RA(s)) is �0-complete. We define δ = δ0 ∧ ∇�0. Obviously, M, s |= δ. Similarly to the proof of uniqueness of the induc-
tion step of Proposition 5, we can get that δ is the unique depth 0 pc-canonical formula of (M, s). �
Proposition 23. Consider the context of a modal system L. Let φ ∈ LK

PC , k ≥ dep′(φ) and P = P(φ). Then there exists a unique set 
� ⊆ C P

k (L) s.t. φ ≡ ∨
�.

Proof sketch. The proof is the same as that of Proposition 6 except we use C P
k (L) and Propositions 3 and 5 instead of E P

k (L)

and Propositions 19 and 21 respectively. �
Proposition 24. Let δ be a pc-canonical formula and l < dep′(δ). Then for all i ∈A, we have Ri(δ

↓l) = (Ri(δ))
↓l .

Proof sketch. The proof is the same as that of Proposition 7 except we use dep′(δ) instead of dep(δ). �
Proposition 25. Let δ be a pc-canonical formula and p an atom. Then, δ |= δp .

Proof sketch. The proof is similar to that of Proposition 12. �
Proposition 26. Let δ be a satisfiable pc-canonical formula where dep′(δ) ≥ 1. Then

RA(δ) =
⋃
i∈A

⋃
δi∈Ri(δ)

[{w(δi)} ∪ RA(δi)].

Proof. We use � to denote the right hand side of the equation. Let (M, s) be a model of δ. Any world reachable from s
is either an i-child of s, or a world reachable from an i-child of s for some i ∈ A, i.e., RA(s) = ⋃

i∈A
⋃

t∈Ri(s)[{t} ∪ RA(t)], 
which we denote by T . Obviously, (M, RA(s)) is RA(δ)-complete, and (M, T ) is �-complete. Since RA(s) = T , (M, T ) is 
also RA(δ)-complete. So both RA(δ) and � are the depth 0 pc-canonical formula set of (M, T ) (Proposition 22). Hence 
RA(δ) = �. �
Proposition 27. Let δ be a TnPC satisfiable pc-canonical formula where dep′(δ) ≥ 1. Let l ∈ N s.t. 1 ≤ l ≤ dep(δ). Then, for every 
i ∈A, we have δ↓l ∈ Ri(δ

↓l−1).

Proof sketch. The proof is the same as that of Proposition 13 except we use C P
k−1 and Proposition 21 instead of E P

k−1 and 
Proposition 5 respectively. �
Proposition 28. Let δ be a TnPC satisfiable pc-canonical formula. Then, we have w(δ) ∈ RA(δ).

Proof. The proof is similar to that of Proposition 13. �
Proposition 29. Let δ be a K45nPC satisfiable pc-canonical formula, where dep′(δ) ≥ 2. Let l ∈ N s.t. l < dep′(δ). Then, for all i ∈ A
and δi ∈ Ri(δ), (Ri(δ))

↓l = Ri(δ
↓l−1
i ).

Proof sketch. The proof is the same as that of Proposition 16 except we use Proposition 14 instead of Proposition 22. �
Proposition 30. Let δ be a K45nPC satisfiable pc-canonical formula where dep′(δ) ≥ 1. Then, for all i ∈ A and δi ∈ Ri(δ), we have 
RA(δi) = ⋃

δ′
i∈Ri(δ)

[{w(δ′
i)} ∪ RA(δ′

i)].

Proof. Let (M, s) be a model of δ. There exists a world t ∈ Ri(s) s.t. M, t |= δi . Let v ∈ RA(t). Since M is transitive and 
Euclidean, we have t ∈ Ri(t′) and t′ ∈ Ri(t) for all t′ ∈ Ri(s). If v ∈ Ri(t), then v is an i-child of t . Otherwise, we get that v
is a descendant of an i-child t′ of s since t′ ∈ Ri(s). Thus RA(t) = ⋃

t′∈Ri(s)[{t′} ∪ RA(t′)].
The rest of the proof is similar to that of the transitive closure property (Proposition 26). �

Proposition 31. Let δ be a K45nPC satisfiable pc-canonical formula where dep′(δ) ≥ 1. Then, for all i ∈A and δi, δ′
i ∈ Ri(δ), we have 

RA(δi) = RA(δ′
i).

Proof. By Proposition 30, we have RA(δi) ⊆ RA(δ′
i) and RA(δi) ⊇ RA(δ′

i). Hence, RA(δi) = RA(δ′
i). �
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