
Artificial Intelligence 301 (2021) 103562
Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

A general multi-agent epistemic planner based on

higher-order belief change ✩

Hai Wan, Biqing Fang, Yongmei Liu ∗

Dept. of Computer Science, Sun Yat-sen University, Guangzhou 510006, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 November 2020
Received in revised form 18 May 2021
Accepted 20 July 2021
Available online 29 July 2021

Keywords:
Epistemic planning
Multi-agent epistemic logic
Belief change

In recent years, multi-agent epistemic planning has received attention from both dynamic
logic and planning communities. Existing implementations of multi-agent epistemic
planning are based on compilation into classical planning and suffer from various
limitations, such as generating only linear plans, restriction to public actions, and
incapability to handle disjunctive beliefs. In this paper, we consider centralized multi-
agent epistemic planning from the viewpoint of a third person who coordinates all the
agents to achieve the goal. We treat contingent planning, resulting in nonlinear plans. We
model private actions and hence handle beliefs, formalized with the multi-agent KD45
logic. We handle static propositional common knowledge, which we call constraints. For
such planning settings, we propose a general representation framework where the initial
knowledge base (KB) and the goal, the preconditions and effects of actions can be arbitrary
KD45n formulas, and the solution is an action tree branching on sensing results. In this
framework, the progression of KBs w.r.t. actions is achieved through the operation of belief
revision or update on KD45n formulas, that is, higher-order belief revision or update. To
support efficient reasoning and progression, we make use of a normal form for KD45n

called alternating cover disjunctive formulas (ACDFs). We propose reasoning, revision and
update algorithms for ACDFs. Based on these algorithms, adapting the PrAO algorithm for
contingent planning from the literature, we implemented a multi-agent epistemic planner
called MEPK. Our experimental results show the viability of our approach.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, multi-agent epistemic planning (MEP) has received attention from both dynamic logic and planning
communities. Essentially, multi-agent epistemic planning is planning that involves multiple agents, actions with epistemic
preconditions and effects, and epistemic goals. For illustration, consider the following example from [31]. There is a corridor
of several rooms, and a number of boxes that are in some of the rooms. Two agents can move along this corridor, and sense
if a box is in a room. The task is to make the two agents collaborate via communication in finding out the positions of the
boxes. Here, the goal is epistemic, the sensing action has epistemic effects, and the communication action has epistemic
precondition and effect. In some cases, it is even necessary to reason about higher-order knowledge and beliefs, i.e., knowl-
edge and beliefs about other agents’ knowledge and beliefs. For example, agent a may wish to know a secret s with agent

✩ This article belongs to Special Issue: Epistemic Planning.

* Corresponding author.
E-mail addresses: wanhai@mail.sysu.edu.cn (H. Wan), fangbq3@mail3.sysu.edu.cn (B. Fang), ymliu@mail.sysu.edu.cn (Y. Liu).
https://doi.org/10.1016/j.artint.2021.103562
0004-3702/© 2021 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.artint.2021.103562
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artint.2021.103562&domain=pdf
mailto:wanhai@mail.sysu.edu.cn
mailto:fangbq3@mail3.sysu.edu.cn
mailto:ymliu@mail.sysu.edu.cn
https://doi.org/10.1016/j.artint.2021.103562

H. Wan, B. Fang and Y. Liu Artificial Intelligence 301 (2021) 103562
b knowing she knows s, or without b knowing she knows s, or even with b believing she does not know s. Now consider a
more practical application scenario: after an earthquake, two robots collaborate via communication in locating trapped peo-
ple. In such a scenario, like in the above example, multi-agent epistemic planning is necessary, while propositional planning
is not sufficient.

There are earlier works on single-agent epistemic planning. Herzig et al. [26] proposed a framework for epistemic plan-
ning where knowledge bases (KBs) are expressed as positive epistemic formulas, and showed how progression, regression
and plan generation can be achieved in their framework. Bienvenu et al. [9] identified two normal forms of epistemic for-
mulas called S5-CNFCNF,DNF and S5-DNFDNF,CNF, and showed that progression and entailment are tractable when the KB is
in S5-DNFDNF,CNF and the query is in S5-CNFCNF,DNF. Petrick and Bacchus [39,40] presented a first-order epistemic planning
system PKS based on the idea of progression. The kinds of knowledge they consider include literal knowledge, knowing-
whether knowledge, and exclusive-or knowledge. However, their progression and reasoning algorithms are both incomplete,
and hence their planner is incomplete. Wan et al. [47] presented a complete epistemic planner without the epistemic closed
world assumption. They proposed normal forms for epistemic formulas which support tractable reasoning and progression,
and adapted the Pruning AND/OR forward search (PrAO) algorithm for contingent planning [45].

Many efforts have gone into the theoretic studies of multi-agent epistemic planning (MEP). Bolander and Andersen [10]
and Löwe et al. [34] were the first to propose to formalize MEP based on dynamic epistemic logic (DEL) [19]. In the DEL-
based formalization, states are represented as Kripke models, actions are represented as action models, which are Kripke
models of actions, describing agents’ abilities to distinguish among actions, and by the product update operation, action
models are used to update Kripke models. Bolander and Andersen showed that the solvability of such epistemic planning
problems is undecidable in general. Further, Aucher and Bolander [5] showed that MEP is undecidable in the presence of
only purely epistemic actions, and Charrier et al. [12] proved that the above holds even if the actions have preconditions of
modal depth bounded by two. Very recently, Cong et al. [13] showed that MEP is undecidable even for two-agent S5 models,
a fixed action, and a fixed goal. Nonetheless, Yu et al. [49] identified two important decidable fragments of multi-agent
epistemic planning. The first one is MEP with propositional actions and goal not involving common knowledge, and the
second one is MEP with a wide variety of special types of propositional purely epistemic actions. In contrast to centralized
planning considered in the above works, Engesser et al. [20] investigated decentralized planning with implicit coordination.
To investigate decidable fragments of MEP, Cooper et al. [14] formalized MEP based on a simple logic of knowledge that is
grounded on the visibility of propositional variables and showed that it is decidable (PSPACE-complete). Meanwhile, Cooper
et al. [15] studied a typical example of MEP, the so-called gossip problem [25], and showed that it is polynomial time
while it becomes NP-complete in the presence of negative goals. When it comes to the specification of MEP domains, Baral
et al. [7] proposed an action language mA, whose semantics is based on DEL, and Son et al. [42] investigated finitary
S5-theories, which can be characterized by finitely many finite Kripke models.

There are mainly two approaches for implementing multi-agent epistemic planning. Kominis and Geffner [31], and Muise
et al. [38] showed how to exploit classical planning to solve restricted versions of MEP problems. By resorting to classical
planning, both methods can only generate linear plans, doing conformant planning. Moreover, Kominis and Geffner assumed
all actions are public, and hence dealt with knowledge. In contrast, Muise et al. focused on beliefs; however, they can
only handle bounded-depth belief literals, disallowing disjunctive beliefs. Based on earlier works on the action language
mA and finitary S5-theories, Le et al. [32] presented two multi-agent epistemic forward search planners: one uses simple
breadth-first search, and the other employs heuristic search via an epistemic planning graph. The initial state is specified
by a finitary S5-theory, which is an S5-theory containing only formulas of the following forms: φ, C Kiφ, C(Kiφ ∨ Ki¬φ),
and C(¬Kiφ ∧¬Ki¬φ), where C is the common knowledge operator, Ki is the knowledge operator, and φ is a propositional
formula.

Belief change studies how an agent modifies her beliefs on receiving new information. However, so far research on belief
change focuses on beliefs represented as formulas in propositional logic. Two main types of belief change are revision and
update: revision concerns belief change about static environments due to partial and possibly incorrect information, whereas
update concerns belief change about dynamic environments due to the performance of actions. Various guidelines for belief
change have been proposed, and the most popular ones are the AGM postulates for belief revision [1], the KM postulates
for belief update [30], and the DP postulates for iterated belief revision [17]. Katsuno and Mendelzon [30] briefly discussed
how belief revision and update can be used for reasoning about actions: if a condition φ is found true, the KB is revised
with φ; if an action with postcondition ψ is performed, the KB is updated with ψ . There have been preliminary works
extending belief change from propositional logic to epistemic logic. Aucher [3] gave a semantic study of multi-agent belief
revision incurred by private announcements. Aucher [4] explored the progression of KBs with respect to actions, where both
KBs and actions are represented as canonical formulas in modal logics, which capture Kripke models up to certain depths
[37]. Recently, Caridroit et al. [11] investigated several measures of distances between KD45n Kripke models, and use them
to define the revision of beliefs represented by such models. Miller and Muise [36] studied belief update for KBs consisting
of belief literals. Finally, Van Benthem [8] integrated belief revision into DELs, and Baltag and Smets [6] further presented a
general framework for this integration: in line with the AGM approach of giving priority to new information, they proposed
the action priority update operation: when updating a plausibility model by an action plausibility model, give priority to
the action plausibility order.

In this paper, we consider centralized multi-agent epistemic planning from the viewpoint of a third person who coordi-
nates all the agents to achieve the goal. We treat contingent rather than conformant planning, resulting in nonlinear plans.
2

H. Wan, B. Fang and Y. Liu Artificial Intelligence 301 (2021) 103562
We model private actions and hence handle beliefs, formalized with the multi-agent modal logic KD45n [21]. We do not
support arbitrary common knowledge, but we handle static propositional common knowledge, which we call constraints.
For such planning settings, we propose a general representation framework where the initial KB and the goal, the precondi-
tions and effects of actions can be arbitrary KD45n formulas, and the solution is an action tree branching on sensing results.
In this framework, the progression of KBs w.r.t. actions is achieved through the operation of belief revision or update on
KD45n formulas, i.e., higher-order belief revision or update. To support efficient reasoning and progression, we make use of
a normal form for KD45n called alternating cover disjunctive formulas (ACDFs) [24]. We propose reasoning, revision and up-
date algorithms for ACDF formulas. Based on these algorithms, adapting the PrAO algorithm, we implemented a multi-agent
epistemic planner called MEPK. Our experimental results show the viability of our approach.

A preliminary version of this paper was published in IJCAI-2017 [28]. The main differences between this version and the
conference paper are as follows:

• We revise the definition of progression w.r.t. deterministic actions (Definition 12) to resolve issues with conditional
effects: a KB might be split into multiple copies, for which we apply all applicable effects.

• We revise the definition of progression w.r.t. sensing actions (Definition 14) to let the progression be false in the
presence of impossible sensing results. Accordingly, we revise the definition of multi-agent epistemic solutions (Defini-
tion 17) to allow branches of impossible sensing results.

• We give semantic characterizations for our higher-order belief change operators for proper ACDFs, a fragment of ACDFs
disallowing negative or disjunctive beliefs (Section 4.3.3). We define the concept of tree models and show that a proper
ACDF has a model iff it has a tree model. By restricting attention to tree models, we show that for proper ACDFs, the
semantic characterizations for propositional belief change nicely carry over to higher-order belief change.

Besides, in this version, we have extended and improved the presentation, added detailed complexity analysis, full proofs
of all propositions, and illustrating examples, and updated the experimental results. We remark that Liu and Liu [33] have
extended the work of this conference paper with the support of common knowledge.

The paper is organized as follows. In the next section, we introduce preliminaries, including ACDFs. Section 3 covers
our modeling framework for multi-agent epistemic planning. In Section 4, we describe our reasoning and belief change
algorithms. Section 5 is devoted to our implementation and experimentation results. Finally, we discuss related work and
conclude the paper.

2. Preliminaries

In this section, we introduce the background work of our paper, i.e., the multi-agent modal logic KD45n , alternating cover
disjunctive formulas, and belief revision and update.

2.1. Multi-agent modal logic KD45n

Consider a finite set of agents A and a finite set of atoms P . We use φ and ψ for formulas, � and � for sets of formulas.

Definition 1. The language LK C of multi-agent modal logic with common knowledge is generated by the BNF:

ϕ ::= p | ¬φ | (φ ∧ ψ) | Kaφ | Cφ, where

p ∈P , a ∈A, φ, ψ ∈LK C . We use LK for the language without the C operator, and L0 for the propositional language.

As usual, “∨” and “→” are treated as abbreviations. To reduce the use of parentheses in formulas, we specify the
following order of precedence for connectives: C , Ka , ¬, ∧, ∨, and →.

Intuitively, Kaφ means that agent a knows φ holds, and Cφ means φ is common knowledge among all agents, i.e., every-
body knows φ, everybody knows everybody knows φ, everybody knows everybody knows everybody knows φ, and so on.
In this paper, we restrict our attention to the case of propositional common knowledge, i.e., Cφ where φ ∈ L0, and we call
φ a constraint. We use C∗φ to denote φ ∧ Cφ.

We let Laφ stand for ¬Ka¬φ. We let � and ⊥ represent true and f alse respectively. We let
∨

� (resp.
∧

�) denote the
disjunction (resp. conjunction) of members of �; and we use La� to represent the conjunction of Laφ where φ ∈ �. The
length of a formula φ, denoted by |φ|, is the number of atoms, logical connectives, and modal operators in φ. The modal
depth of a formula φ in LK , denoted by md(φ), is the depth of nesting of modal operators in φ.

Definition 2. A frame is a pair (W , R), where W is a non-empty set of possible worlds; for each agent a ∈ A, Ra is a binary
relation on W , called the accessibility relation for a.

We say Ra is serial if for any w ∈ W , there is w ′ ∈ W s.t. w Ra w ′; we say Ra is Euclidean if whenever w Ra w1 and
w Ra w2, we get w1 Ra w2. A KD45n frame is a frame whose accessibility relations are serial, transitive and Euclidean.
3

H. Wan, B. Fang and Y. Liu Artificial Intelligence 301 (2021) 103562
Definition 3. A Kripke model is a triple M = (W , R, V), where (W , R) is a frame, and V is a valuation map, which maps
each w ∈ W to a subset of P . A pointed Kripke model is a pair s = (M, w), where M is a Kripke model and w is a world
of M , called the actual world.

Definition 4. Let s = (M, w) be a Kripke model where M =(W , R, V). We interpret formulas in LK C by induction:

• M, w |= p iff p ∈ V (w);
• M, w |= ¬φ iff M, w � φ;
• M, w |= φ ∧ ψ iff M, w |= φ and M, w |= ψ ;
• M, w |= Kaφ iff for all v s.t. w Ra v , M, v |= φ;
• M, w |= Cφ iff for all v s.t. w RAv , M, v |= φ, where RA is the transitive closure of the union of Ra for a ∈A.

A model of φ is a KD45n Kripke model (M, w) s.t. M, w |= φ. We say φ is satisfiable if φ has a model. We say φ entails
ψ , written φ |= ψ , if any model of φ is also a model of ψ . We say φ and ψ are equivalent, written φ ⇔ ψ , if φ |= ψ and
ψ |= φ. Note that we have Kaφ |= Laφ, Ka⊥ ⇔ ⊥, and La� ⇔ �.

We say that φ is satisfiable w.r.t. constraint γ ∈ L0 if φ ∧ C∗γ is satisfiable; we say that φ entails ψ w.r.t. constraint γ ,
written φ |=γ ψ , if φ ∧ C∗γ |= ψ ∧ C∗γ .

2.2. Alternating cover disjunctive formulas

In this section, we introduce alternating cover disjunctive formulas (ACDFs), which we use to support efficient reasoning
and progression. We show that every multi-agent epistemic formula can be transformed to an equivalent ACDF whose length
is singly exponential in the length of the original formula. Also, we show that it is tractable to check the satisfiability of
ACDFs.

2.2.1. Cover disjunctive formulas
Janin and Walukiewicz [29] introduced the notion of disjunctive formulas for modal μ-calculus and showed that every

formula is equivalent to a disjunctive formula. D’Agostino and Lenzi [16] gave the definition of disjunctive formulas for
modal logics, using a cover modality. Ten Cate et al. [2006] showed that every formula in the multi-agent modal logic Kn
is equivalent to a disjunctive formula whose length is at most singly exponential in the length of the original formula. We
slightly vary the definition, and use the name cover disjunctive formulas.

We first introduce the cover modality. Intuitively, ∇a� means that each world considered possible by agent a satisfies
an element of �, and each element of � is satisfied by some world considered possible by agent a.

Definition 5. Let a ∈A, and � a finite set of formulas. The cover modality is defined as follows:

∇a�
.= Ka(

∨
�) ∧ La�.

The following are useful properties about the cover modality, which can help us to convert an arbitrary multi-agent
epistemic formula to an ACDF. We use � ∧ ψ to denote the set {φ ∧ ψ | φ ∈ �}.

Proposition 1.

1. ∇a{�} ⇔ �;
2. Kaψ ∧ La� ⇔ ∇a({ψ} ∪ (� ∧ ψ));
3. ∇a� ∧ ∇a�

′ ⇔ ∇a[� ∧ (
∨

�′) ∪ �′ ∧ (
∨

�)].

Proof. 1. ∇a{�} ⇔ Ka� ∧ La� ⇔ �.
2. ∇a({ψ} ∪ (� ∧ ψ)) ⇔ Kaψ ∧ Laψ ∧ La(� ∧ ψ) ⇔ Kaψ ∧ La�, since Kaψ |= Laψ , and Kaψ ∧ Laφ |= La(φ ∧ ψ) for φ ∈ �.
3. ∇a[� ∧ (

∨
�′) ∪ �′ ∧ (

∨
�)]

⇔ Ka{∨[� ∧ (
∨

�′)] ∨ ∨[�′ ∧ (
∨

�)]} ∧ La[� ∧ (
∨

�′)] ∧ La[�′ ∧ (
∨

�)]
⇔ Ka[(∨�) ∧ (

∨
�′)] ∧ La� ∧ La�

′ ⇔ Ka(
∨

�) ∧ La� ∧ Ka(
∨

�′) ∧ La�
′

⇔ ∇a� ∧ ∇a�
′. �

Definition 6. The set of cover disjunctive formulas (CDFs) is inductively defined as follows:

1. A propositional term, i.e., a conjunction of propositional literals, is a CDF.
2. If φ0 is a propositional CDF, and for each a ∈ B ⊆ A, �a is a finite set of CDFs, then φ0 ∧ ∧

a∈B∇a�a is a CDF, called a
CDF term.

3. If � is a non-empty finite set of CDF terms, then
∨

� is a CDF, called a disjunctive CDF.
4

H. Wan, B. Fang and Y. Liu Artificial Intelligence 301 (2021) 103562
In this paper, we use DNF to mean propositional disjunctive normal form, i.e., a DNF formula is a disjunction of proposi-
tional terms. So a propositional CDF is in DNF.

Moss [37] introduced the concept of canonical formulas, very similar to formulas introduced by Fine [22], and showed
that every formula in Kn is equivalent to a disjunction of a finite set of canonical formulas. However, in the definition of
canonical formulas, no disjunction is allowed. As a result, the conversion may cause a non-elementary blowup in size [37],
as compared to a single exponential blowup for CDFs.

The following result shows that every formula in Kn is equivalent to a CDF whose length is singly exponential in the
length of the original formula. The transformation part was first shown by Janin and Walukiewicz [29] in the context of
modal μ-calculus, and the complexity part was first shown by ten Cate et al. [43] in the context of the ALC description
logic. Since this result is the foundation for our compilation result concerning ACDFs, and the paper by ten Cate et al.
doesn’t include a detailed complexity analysis, we include a proof in the appendix.

Proposition 2 (Janin and Walukiewicz [29], ten Cate et al. [43]). In Kn, every formula φ in LK can be transformed to an equivalent
CDF whose length is O (2|φ|2).

The idea of the proof is as follows: If φ is a propositional term, no transformation is needed. Otherwise, let
Ka1φ1, . . . , Kan φn be the modal atoms that appear in φ but not within the scope of any modal operator. Firstly, we treat
Ka1φ1, . . . , Kan φn as atoms and put φ into DNF. Each disjunct of the resulting DNF is of the form η = φ0 ∧ ∧

a∈B(Ka
∧

�a ∧
La�a), where B ⊆A, and φ0 is a propositional term. By Proposition 1 (2), η ⇔ φ0 ∧∧

a∈B ∇a({∧�a} ∪{∧�a ∧ψ | ψ ∈ �a}).
We repeat the process on each formula of

∧
�a and

∧
�a ∧ ψ .

We illustrate the transformation with the following example. To improve readability, we use brackets “[]” or “{}” in place
of “()”.

Example 1. K1[q ∧ K2(p ∨ q) ∧ L2r ∨ p] ∧ L1 K2¬q
⇔ (by Proposition 1 (2))∇1{q ∧ K2(p ∨ q) ∧ L2r ∨ p, (q ∧ K2(p ∨ q) ∧ L2r ∨ p) ∧ K2¬q}
⇔ (by converting to DNF) ∇1{q ∧ K2(p ∨ q) ∧ L2r ∨ p,q ∧ K2(p ∨ q) ∧ L2r ∧ K2¬q ∨ p ∧ K2¬q}
⇔ (by combining two K2 atoms) ∇1{q ∧ K2(p ∨ q) ∧ L2r ∨ p,q ∧ K2(p ∧ ¬q) ∧ L2r ∨ p ∧ K2¬q}
⇔ (by Proposition 1 (2)) ∇1{q ∧ ∇2{p ∨ q, (p ∨ q) ∧ r} ∨ p,q ∧ ∇2{p ∧ ¬q, p ∧ ¬q ∧ r} ∨ p ∧ ∇2{¬q}}.

2.2.2. Alternating cover disjunctive formulas
Hales et al. [24] introduced the notion of alternating cover disjunctive formulas (ACDFs), and showed that in KD45n ,

every formula in LK is equivalent to such a formula. In this section, we introduce the definition of ACDFs, and present the
compilation result together with a complexity analysis of the resulting formula, via introducing the notion of non-alternating
factor.

Definition 7. The non-alternating factor of a formula φ, denoted by na(φ), is the number of modal operators of an agent
which directly occur inside those of the same agent. We say that a formula is alternating if its non-alternating factor is 0.

Definition 8. We call an alternating CDF an ACDF (alternating cover disjunctive formula).

For example, ∇a{�, q} ∧ ∇b{�, ∇a{�, ¬q}} is an ACDF; but the CDF ∇a{¬p ∧ q, ∇b{p, q}, ∇a{¬p ∧ q}} is not, and its non-
alternating factor is 1.

The compilation result by Hales et al. makes use of the following proposition. To make the paper self-contained, we
include a proof of the proposition in the appendix.

Proposition 3 (van der Hoek and Meyer [27]). The following hold in KD45n:

1. Ka(π ∨ α ∧ Kaβ) ⇔ Ka(π ∨ α) ∧ Kaβ ∨ Kaπ ∧ ¬Kaβ;
2. Ka(π ∨ α ∧ Laβ) ⇔ Ka(π ∨ α) ∧ Laβ ∨ Kaπ ∧ ¬Laβ .

The following result was proved by Hales et al. Here we enrich the result with a complexity analysis, and include a proof
in the appendix.

Proposition 4 (Hales et al. [24]). In KD45n, every formula φ in LK can be transformed to an equivalent alternating formula whose
length is bounded by 2na(φ)|φ|.

The idea of proof is as follows: from the outside in, iteratively apply the two equivalences from Proposition 3.
We illustrate the transformation with the following example.
5

H. Wan, B. Fang and Y. Liu Artificial Intelligence 301 (2021) 103562
Example 2. K1[q ∧ K2(p ∨ q) ∧ L2¬p ∨ p ∧ K1(p ∨ L1¬p) ∧ L1(p ∧ ¬q)] ⇔ (by Proposition 3(2))
K1[q ∧ K2(p ∨ q) ∧ L2¬p ∨ p ∧ K1(p ∨ L1¬p)] ∧ L1(p ∧ ¬q) ∨ K1[q ∧ K2(p ∨ q) ∧ L2¬p] ∧ ¬L1(p ∧ ¬q), where
K1[q ∧ K2(p ∨ q) ∧ L2¬p ∨ p ∧ K1(p ∨ L1¬p)] ⇔ (by Proposition 3(1))
K1[q ∧ K2(p ∨ q) ∧ L2¬p ∨ p] ∧ K1(p ∨ L1¬p) ∨ K1[q ∧ K2(p ∨ q) ∧ L2¬p] ∧ ¬K1(p ∨ L1¬p), where
K1(p ∨ L1¬p) ⇔ (by Proposition 3(2)) L1¬p ∨ K1 p ∧ ¬L1¬p.

Finally, we show the compilation result by Hales et al., enriched with a complexity analysis.

Theorem 1 (Hales et al. [24]). In KD45n, every formula φ in LK can be transformed to an equivalent ACDF whose length is O (24nl2)

where n = na(φ) and l = |φ|.

Proof. We first apply Proposition 4 to convert φ into an equivalent alternating formula φ′ whose length is bounded by 2nl.
Then we apply Proposition 2 to convert φ′ into an equivalent CDF, which remains to be alternating and whose length is
O (24nl2). �

So the length of the resulting formula is singly exponential in the size of φ, but doubly exponential in the non-alternating
factor of φ.

2.2.3. Satisfiability checking of alternating cover disjunctive formulas
A modal term is a conjunction of propositional formulas and modal atoms of the form Kaφ or Laφ, where φ ∈ LK . We

call a modal term with the alternating agent modality property an alternating modal term. In the following, we present a
result concerning how to check the satisfiability of alternating modal terms.

Proposition 5. An alternating modal term δ = φ0 ∧ ∧
a∈B(Kaφa ∧ La�a) is satisfiable w.r.t. constraint γ iff the following hold:

1. φ0 ∧ γ is propositionally satisfiable;
2. for each a ∈B, φa is satisfiable w.r.t. γ ;
3. for each a ∈B, for each ψ ∈ �a, φa ∧ ψ is satisfiable w.r.t. γ .

Proof. The only-if direction is easy. Since δ is satisfiable w.r.t. γ , i.e., δ ∧ C∗γ is satisfiable, let (M, w) be a model of it.
Then w satisfies δ ∧ γ . Now let a ∈ B. Since Ra is serial, there exists wa s.t. w Ra wa . Since M, w |= Kaφa ∧ C∗γ , M, wa |=
φa ∧ C∗γ . Thus φa is satisfiable w.r.t. γ . Now let ψ ∈ �a . Since M, w |= Kaφa ∧ Laψ ∧ C∗γ , there exists wψ s.t. w Ra wψ and
M, wψ |= φa ∧ ψ ∧ C∗γ . Thus φa ∧ ψ is satisfiable w.r.t. γ .

We now prove the if direction. Since La� ⇔ �, without loss of generality, we assume that for each a ∈ B, �a is not
empty. Construct a model (M, w) as follows. By condition 1, create a new world w satisfying φ0 ∧ γ . By condition 3, for
each a ∈ B, for each ψ ∈ �a , there is a KD45n model (Mψ, wψ) satisfying φa ∧ ψ ∧ C∗γ , add a new copy of (Mψ, wψ)

into M , and let w Ra wψ ; then add a-edges between all the a-children of w . Thus (M, w) is a KD45n model. Since δ is an
alternating modal term, φa and ψ ∈ �a do not use Ka or La as outmost modalities. So we get M, wψ |= φa ∧ ψ . Also, all
worlds of M satisfy γ . Thus M, w |= δ ∧ C∗γ . Hence δ is satisfiable w.r.t. γ . �

The following are two easy corollaries of Proposition 5, which will be used later in our paper. The first characterizes
whether an alternating modal term entails another, and the second characterizes the satisfiability of an ACDF.

Proposition 6. Let δ = φ0 ∧ ∧
a∈A(Kaφa ∧ La�a) and δ′ = φ′

0 ∧ ∧
a∈A(Kaφ

′
a ∧ La�

′
a) be two alternating modal terms satisfiable

w.r.t. constraint γ . Then δ |=γ δ′ iff the following hold:

1. φ0 ∧ γ |= φ′
0 propositionally;

2. for each a ∈A, φa |=γ φ′
a;

3. for each a ∈A, for every ψ ′ ∈ �′
a there is a ψ ∈ �a s.t. φa ∧ ψ |=γ ψ ′ .

Proof. We have δ |=γ δ′ iff δ ∧ ¬δ′ , which is δ ∧ [¬φ′
0 ∨ ∨

a∈A(La¬φ′
a ∨ ∨

ψ ′∈�′
a

Ka¬ψ ′)], is not satisfiable w.r.t. γ iff the
following hold:

1. δ ∧ ¬φ′
0 is not satisfiable w.r.t. γ ;

2. for each a ∈A, δ ∧ La¬φ′
a is not satisfiable w.r.t. γ ;

3. for each a ∈A, for every ψ ′ ∈ �′
a , δ ∧ Ka¬ψ ′ is not satisfiable w.r.t. γ .

Since we know δ and δ′ are satisfiable w.r.t. γ , by Proposition 5, we have:

1. δ ∧ ¬φ′ is not satisfiable w.r.t. γ iff φ0 ∧ ¬φ′ ∧ γ is not propositional satisfiable iff φ0 ∧ γ |= φ′ propositionally;
0 0 0

6

H. Wan, B. Fang and Y. Liu Artificial Intelligence 301 (2021) 103562
2. δ ∧ La¬φ′
a is not satisfiable w.r.t. γ iff φa ∧ φ′

a is not satisfiable w.r.t. γ iff φa |=γ φ′
a;

3. δ ∧ Ka¬ψ ′ is not satisfiable w.r.t. γ iff there is a ψ ∈ �a s.t. φa ∧ ¬ψ ′ ∧ ψ is not satisfiable w.r.t. γ , i.e., φa ∧ ψ |=γ ψ ′ .

Thus the proposition is proved. �
Proposition 7. An ACDF term δ = φ0 ∧ ∧

a∈B∇a�a is satisfiable w.r.t. a constraint γ iff the following hold:

1. φ0 ∧ γ is propositionally satisfiable;
2. for each a ∈B, �a is not empty;
3. for each a ∈B, for each φ ∈ �a, φ is satisfiable w.r.t. γ .

Proof. By Proposition 5, φ0 ∧∧
a∈B∇a�a , which is φ0 ∧∧

a∈BKa(
∨

�a) ∧ La�a , is satisfiable w.r.t. γ iff the following hold:

1. φ0 ∧ γ is propositionally satisfiable;
2. for each a ∈ B,

∨
�a is satisfiable w.r.t. γ ;

3. for each a ∈ B, for each φ ∈ �a , (
∨

�a) ∧ φ is satisfiable w.r.t. γ .

The above 3 conditions are equivalent to the conditions given in the proposition. �
The above proposition gives us a polynomial-time recursive algorithm to check the satisfiability of an ACDF, since the

modal depth of φ is less than that of δ.

Proposition 8. Whether an ACDF φ is satisfiable w.r.t. a DNF constraint γ can be checked in time O (|φ| · |γ |).

Proof. We prove by induction on φ.

1. φ is a propositional term. Let γ = t1 ∨ . . . tn . Then φ is satisfiable w.r.t. γ iff there is a term ti of γ s.t. φ ∧ ti is
satisfiable iff there is a term ti of γ s.t. φ ∧ ti does not contain complementary literals. This can be checked in time
O (n

i=1(|φ| + |ti |)), and hence in time O (|φ| · |γ |).
2. φ = φ0 ∧ ∧

a∈B∇a�a . By induction, whether φ0 ∧ γ is propositionally satisfiable can be checked in time O (|φ0| · |γ |);
for each a ∈ B, for each φa ∈ �a , whether φa is satisfiable w.r.t. γ can be checked in time O (|φa| · |γ |). Thus by
Proposition 7, whether φ is satisfiable w.r.t. γ can be checked in time O (|φ0| · |γ | + a∈Bφa∈�a |φa| · |γ |), and hence
in time O (|φ| · |γ |).

3. φ = ∨
�. Let � = {φ1, . . . , φn}. Then φ is satisfiable w.r.t. γ iff there is φi which is satisfiable w.r.t. γ . By induction, this

can be checked in time O (n
i=1|φi| · |γ |), and hence in time O (|φ| · |γ |). �

2.3. Belief revision and update

In our framework, we describe the world with KBs, and the progression of KBs w.r.t. actions is achieved through the
operation of belief revision and update. In this section, we review propositional belief revision and update, which are the
bases of higher-order belief revision and update proposed in Section 4.3.

We use ◦ to denote a revision operator, and � an update operator. Let ψ be the original formula, and μ the revision
or update formula. Both revision and update are guided by the principle of minimal change. To formalize the distinction
between revision and update, Katsuno and Mendelzon [30] presented model-theoretic definitions of them: intuitively, ψ ◦μ
selects from the models of μ those that are closest to models of ψ , while ψ � μ selects, for each model M of ψ , the set of
models of μ that are closest to M . As easy properties of the definitions: when ψ ∧ μ is satisfiable, ψ ◦ μ is equivalent to
ψ ∧ μ; update is distributive over the initial formula, i.e., (ψ1 ∨ ψ2) � μ is equivalent to (ψ1 � μ ∨ ψ2 � μ).

Let’s illustrate the difference between revision and update with an example. Take the notion of closeness based on set
inclusion, i.e., a model I is closer to a model M than a model J if Diff(I, M) ⊆ Diff(J , M), where Diff(I, M) is the set of
atoms where I and M assign different truth values. Then the above model-theoretic definitions give us Satoh’s revision
operator ◦s [41] and Winslett’s update operator �w [48]. For example, let ψ = (a ∧ b ∧ c) ∨ (a ∧¬b ∧¬c), and μ = a ∧ c. The
models of ψ are M1 = {a, b, c} and M2 = {a, ¬b, ¬c}; the models of μ are M1 and M3 = {a, ¬b, c}. Then ψ ◦s μ = a ∧ b ∧ c,
equivalent to ψ ∧ μ, since M1 is closet to models of ψ . On the other hand, ψ �w μ = a ∧ c, since M1 is closest to M1, but
M3 is closest to M2.

Del Val [46] provided syntactic characterizations of belief change operators and algorithms based on them. Our higher-
level belief change algorithms are recursive ones which as a basis resort to propositional belief change algorithms. To lay
the foundation for complexity analysis of our high-level belief change algorithms, below we present his syntactic charac-
terizations of Satoh’s revision and Winslett’s update operators (Propositions 9 and 11), and analyze the complexity of the
algorithms based on these characterizations. The complexity analysis results (Propositions 10 and 12) are simple results not
7

H. Wan, B. Fang and Y. Liu Artificial Intelligence 301 (2021) 103562
included in the original paper. We include the results here since they will be used later in Section 4.3, in the proofs of
Propositions 5 and 7.

We begin with some notation. A DNF formula is treated as the set of its disjuncts, and a term is treated as the set of its
literals. We assume that ψ and μ are both in DNF; we use ψ with subscripts to denote the disjuncts of ψ , and similarly
for μ. For two terms t1 and t2, we use Dif (t1, t2) to denote the set of literals in t1 whose complement occurs in t2. For
a formula φ, we use Prop(φ) to denote the set of atoms occurring in φ. For a set S and a partial order ≤ on S , we use
Min(S, ≤) for the set of elements of S minimal under ≤.

First, define

revise(ψi,μ j) =
∧

((ψi − Dif (ψi,μ j)) ∪ μ j);
S ynMinDi f (ψ,μ) = Min({Prop(Dif (ψi,μk)) | ψi ∈ ψ,μk ∈ μ},⊆);

MinPairs(ψ,μ) = {〈ψi,μ j〉 | ψi ∈ ψ,μ j ∈ μ, Prop(Dif (ψi,μ j)) ∈ S ynMinDi f (ψ,μ)}.
The following two propositions show the propositional revision operation and its computational complexity.

Proposition 9 (Theorem 7 in del Val [46]).

ψ ◦s μ ⇔
∨

〈ψi ,μ j〉∈MinPairs(ψ,μ)

revise(ψi,μ j).

Proposition 10. Let ψ and μ be two DNF formulas. Then ψ ◦s μ can be computed in time O (|ψ |2 · |μ|2), and the resulting formula is
of size O (|ψ | · |μ|).

The following two propositions show the propositional update operation and its computational complexity.

patchψi (μ j) =
∧

μk∈μ,Dif (μ j ,ψi)�μk

¬
∧

(μk − (ψi ∪ μ j)).

Then we have:

Proposition 11 (Theorem 1 in del Val [46]).

ψ �w μ ⇔
∨

μ j∈μ,ψi∈ψ

revise(ψi,μ j) ∧ patchψi (μ j)

Proposition 12. Let ψ and μ be two DNF formulas. The DNF formula of ψ �w μ can be computed in time O (|ψ | · 2|μ|), and the
resulting formula is of size O (|ψ | · 2|μ|).

3. Our modeling framework

In this section, we present our modeling framework for multi-agent epistemic planning (MEP), which is adapted from
that for single-agent epistemic planning by Wan et al. [47].

We illustrate our framework with the collaboration via communication example from the introduction.

Example 3. As shown in Fig. 1, there is a corridor of three rooms p1, p2 and p3. Two boxes b1 and b2 are located in some
of the rooms. Two agents 1 and 2 can move back and forth along this corridor. When an agent gets into a room, she can
see if a box is in the room. An agent can communicate information to another agent. Initially, the two agents are in p2 and
the two boxes are not there. The goal is for agent 1 to know the position of b1, and for agent 2 to know the position of b2.

We begin with the definition of MEP problems, then give the definition of different kinds of actions and the associated
progression operations, and end with the definition of MEP solutions. The actions we consider include ontic, communication
and sensing actions. The first two kinds share the same representation, and we call them deterministic actions.

3.1. Multi-agent epistemic planning problems

Definition 9. A multi-agent epistemic planning problem Q is a tuple 〈A, P, D, S, I , G, γ 〉, where A is a set of agents; P
is a set of atoms; D is a set of deterministic actions; S is a set of sensing actions; I ∈LK is the initial KB; G ∈LK is the
goal; and γ ∈L0 is the constraint.
8

H. Wan, B. Fang and Y. Liu Artificial Intelligence 301 (2021) 103562
Fig. 1. Illustration for Example 3.

Note that we have I ∈LK and G ∈LK . I and G actually describe the beliefs of a third person. Thus the propositional
parts of I and G describe the third person’s beliefs about the world. Since we model beliefs rather than knowledge, the
subjective parts of I and G might not agree with the propositional parts.

The main reason we consider constraints in this paper is for natural modeling of planning domains: we use constraints
to express static propositional common knowledge, as will be illustrated in our formalization of Example 3.

We now formalize Example 3.

• The atoms are: at(i, p), meaning agent i is in room p; and in(b, p), meaning box b is in room p.
• The ontic actions are: left(i), agent i moves left; and right(i), i moves right.
• The communication actions are: tell(i, j, b, p), agent i tells j whether b is in p.
• The sensing actions are: find(i, b, p): i sees if b is in p.
• The initial KB is at(1, p2) ∧at(2, p2) ∧¬in(b1, p2) ∧¬in(b2, p2) ∧ K1(at(1, p2) ∧¬in(b1, p2) ∧¬in(b2, p2)) ∧ K2(at(2, p2) ∧

¬in(b1, p2) ∧ ¬in(b2, p2));
• The goal is

∧2
i=1(Ki in(bi, p1) ∨ Ki in(bi, p2) ∨ Ki in(bi, p3)), meaning agent 1 knows the position of box b1, and agent 2

knows the position of box b2.
• The constraint is γ1 ∧ γ2, where γ1 = ∧2

i=1(at(i, p1) ∧ ¬at(i, p2) ∧ ¬at(i, p3) ∨ ¬at(i, p1) ∧ at(i, p2) ∧ ¬at(i, p3) ∨
¬at(i, p1) ∧ ¬at(i, p2) ∧ at(i, p3)), meaning each agent is at exactly one room, and γ2 is similar, representing each
box is in exactly one room.

The reason that we have in the initial KB at(1, p2) ∧ K1at(1, p2) instead of simply K1at(1, p2) is that we model beliefs
rather than knowledge.

3.2. Actions and progression

Definition 10. A deterministic action is a pair 〈pre, eff〉, where pre ∈ LK is the precondition; eff is a set of conditional
effects, each of which is a pair 〈con, cef〉, where con, cef ∈ LK indicate the condition and the effect, respectively. Let eff =
{〈c1, e1〉, . . . , 〈cn, en〉}. We require that eff should be consistent w.r.t. constraint γ , i.e., for any non-empty I ⊆ {1, . . . , n}, if ∧

i∈I ei is unsatisfiable w.r.t. γ , so is
∧

i∈I ci .

Similarly to Definition 9, pre, con, cef ∈ LK , and they thus may contain propositional parts, which actually model the
beliefs of a third person about the world.

For example, left(i) = 〈pre, {eff1, eff2}〉, where pre = ¬at(i, p1) ∧ Ki¬at(i, p1), eff1 = 〈at(i, p2), at(i, p1) ∧ Kiat(i, p1)〉, and
eff2 = 〈at(i, p3), at(i, p2) ∧ Kiat(i, p2)〉. Here {eff1, eff2} is consistent w.r.t. γ1 ∧ γ2, since at(i, p2) ∧ at(i, p3) is unsatisfiable
w.r.t. γ1 ∧ γ2.

For another example, tell(i, j, b, p) = 〈pre, {eff1, eff2}〉, where pre = Ki in(b, p) ∨ Ki¬in(b, p), eff1 = 〈Ki in(b, p), K jin(b, p)〉,
and eff2 = 〈Ki¬in(b, p), K j¬in(b, p)〉. Here {eff1, eff2} is consistent, since Ki in(b, p) ∧ Ki¬in(b, p) is unsatisfiable.

Actually, when Ki in(b, p), tell(i, j, b, p) should result in common knowledge of in(b, p) between the two agents. Since
we do not support arbitrary common knowledge, we have to approximate common knowledge with higher-order knowl-
edge. For example, we can express the conditional effect with K jin(b, p) ∧ Ki K j in(b, p) ∧ K j Ki in(b, p) ∧ Ki K j Ki in(b, p) ∧
K j Ki K j in(b, p).

Definition 11. A sensing action is a triple 〈pre, pos, neg〉 of LK formulas, where pre, pos, and neg indicate the precondition,
the positive result, and the negative result, respectively. We require that pos ∧ neg should be unsatisfiable w.r.t. γ .

Similarly to Definition 9, pos, neg ∈ LK . The fact that pos and neg may have propositional parts does not mean that
sensing actions may change the world, but means that they may change the beliefs of a third person about the world.

For the example of find(i, b, p), pre = at(i, p) ∧ Kiat(i, p), pos = in(b, p) ∧ Ki in(b, p), and neg = ¬in(b, p) ∧ Ki¬in(b, p).
This is an example of an accurate sensing action, since beliefs agree with ground truth. If pos = Ki in(b, p), and neg =
Ki¬in(b, p), we have a possibly noisy sensing action.
9

H. Wan, B. Fang and Y. Liu Artificial Intelligence 301 (2021) 103562
An action a is executable w.r.t. a KB φ ∈ LK if φ |=γ pre(a). This means that a is executable in each model of φ. For
example, left(1) is executable w.r.t. I , since I |=γ pre(left(1)), which is ¬at(1, p1) ∧ K1¬at(1, p1). Suppose a is executable
w.r.t. φ. The progression of φ w.r.t. a is defined by resorting to a revision operator ◦γ and an update operator �γ (where γ
is a constraint) for LK . Here, both ◦γ and �γ are generic higher-order belief change operators. We will formally define our
specific higher-order belief change operators in Section 4.3.

We use update for ontic actions, and revision for communication and sensing actions. We justify this as follows. It is well-
accepted that propositional revision concerns belief change about static environments due to partial and possibly incorrect
information, whereas propositional update concerns belief change about dynamic environments due to the performance of
actions. Propositional belief revision and update are actually revision and update of first-order beliefs, i.e., beliefs about the
objective world. Thus, it is natural to expect Kiφ • Kiμ ⇔ Ki(φ • μ), where • is ◦ or �, φ and μ are propositional formulas.
Note that when we write Kiφ • Kiμ, we make the assumption that φ is all agent i knows. In general, it is natural to reduce
higher-order belief revision and update to lower-order ones. Thus eventually, higher-order belief revision and update reduce
to first-order ones. So higher-order belief revision and update concern belief change about static and dynamic environments
(here by environments, we mean worlds), respectively. Thus we use update for ontic actions, and revision for communication
and sensing actions.

Nonetheless, it might be controversial whether to use revision or update for communication or sensing actions. One
argument is as follows: In our framework, a formula φ ∈ LK represents the belief of a third person. When sensing or
communication actions happen, the belief states of the involved agents change, and hence the environment of the third
person changes. Thus we should use update for sensing and communication actions. There is also an argument that both
revision and update should be involved in communication: Suppose agent i is told φ. Then i should revise her beliefs, while
other agents, including the third person, have to update their beliefs about what i believes. So it is a subtle and tricky issue
of whether to use revision or update for communication or sensing actions. We will leave a more thorough exploration of
this issue as future work.

We begin with progression of deterministic actions. Let φ ∈ LK , and a be a deterministic action where eff(a) = {〈c1, e1〉,
. . . , 〈cn, en〉}. We follow To et al.’s way to process conditional effects [44]. There are two ideas behind our definition of
progression of φ w.r.t. a. Firstly, we conjoin all applicable effects, and revise or update with the result. Secondly, to decide
if effect ei is applicable, we consider three cases:

1. if φ |=γ ci , then ei is applicable, since ei is applicable in each model of φ;
2. if φ |=γ ¬ci , then ei is not applicable, since ei is applicable in none model of φ;
3. otherwise, we split φ into φ ∧ ci , where ei is applicable, and φ ∧ ¬ci , where ei is not applicable.

Let I = {1, . . . , n}. We use I+ to denote the set of those i s.t. φ |=γ ci , and I− the set of i s.t. φ |=γ ¬ci . For each I ′ ⊆ I∗ =
I − I+ − I− , we get a splitting of φ by conjoining ci for i ∈ I ′ and ¬ci for i ∈ I∗ − I ′ . Thus we have the following definition.

Definition 12. Let φ ∈ LK , and a be a deterministic action where eff(a) = {〈c1, e1〉, . . . , 〈cn, en〉}. Let I = {1, . . . , n}, I+ = {i ∈
I | φ |=γ ci}, I− = {i ∈ I | φ |=γ ¬ci}, and I∗ = I − I+ − I− .

1. A splitting of φ w.r.t. I ′ ⊆ I∗ is φs = φ ∧ ∧{ci | i ∈ I ′} ∧ ∧{¬ci | i ∈ I∗ − I ′} s.t. φs is satisfiable w.r.t. γ .
2. The progression of φs is φs •γ

∧{ei | i ∈ I+ ∪ I ′}, where • is � if a is ontic, and • is ◦ if a is a communication action.
3. The progression of φ w.r.t. a is the disjunction of progressions of all splittings of φ.

For example, let φ = r, and eff(a) = {〈p, q〉, 〈¬p, q〉}. Then the progression of φ w.r.t. a is ((r ∧ p) �γ q) ∨ ((r ∧ ¬p) �γ q).
In the above definition, in the worst case, I∗ = I , so there are 2n splitting of φ, where n is the number of conditional

effects. However, in our experimental domains, usually, for each i ∈ I , either φ |=γ ci or φ |=γ ¬ci , hence I∗ = ∅, and there
is no splitting of φ. Also, in our experimental domains, normally, I+ is small, so a small number of conditional effects are
applicable.

We now turn to sensing actions. Given a KB φ ∈LK , and a sensing action a, a certain sensing result of a might be impos-
sible. For example, let φ = ¬in(b, p), and a = find(i, b, p). Then pos(a) is impossible, since it is contradictory to knowledge
about the objective world. However, if φ = Ki¬in(b, p), then pos(a) is possible, since the current belief of agent i might be
false. Whether pos(a) is possible can be detected via checking if φ ∧ pos(a) is propositionally satisfiable, i.e., the proposi-
tional part of φ ∧ pos(a) is satisfiable. When pos(a) is impossible, we let the progression of φ w.r.t. pos(a) be ⊥, otherwise,
we let it be φ ◦γ pos(a). Thus we have

Definition 13. Let φ ∈LK . Then φ can be equivalently transformed to an ACDF formula φ′ . In φ′ , we replace any occurrence
of the ∇a� formula by �. We say φ is propositionally satisfiable if the resulting propositional formula is satisfiable.

Definition 14. Let φ ∈LK , and a a sensing action. Then the progression of φ w.r.t. a with positive result is

φ+ =
{

⊥ if φ ∧ pos(a) is propositionally unsatisfiable w.r.t. γ

φ ◦γ pos(a) otherwise.
10

H. Wan, B. Fang and Y. Liu Artificial Intelligence 301 (2021) 103562
Fig. 2. A solution to an example with impossible sensing results.

The progression of φ w.r.t. a with negative result is similarly defined.

Note that by the above definition, the cases of impossible objective sensing results are handled properly. However, we
are not able to handle impossible subjective sensing results. For example, in our framework, it is possible for agent i to first
sense that j believes p, and then (immediately afterwards) that j doesn’t believe p.

Definition 15. The progression of φ w.r.t. a sequence of actions (with sensing results for sensing actions) is inductively
defined as follows: prog(φ, ε) = φ, where ε represents the empty sequence; prog(φ, (a; σ)) = prog(prog(φ, a), σ) if φ |=
pre(a), and undefined otherwise.

3.3. Multi-agent epistemic planning solutions

A solution of an MEP problem is an action tree branching on sensing results such that the progression of the initial KB
w.r.t. each branch in the tree entails the goal.

Definition 16. Let Q be an MEP problem 〈A, P, D, S, I, G, γ 〉. The set T of action trees is inductively defined:

1. ε is in T , here ε represents the empty tree;
2. if ad ∈D and T ∈ T , then ad; T is in T ;
3. if as ∈ S , T +, T − ∈ T , then as; (T + | T −) is in T .

Definition 17. Let Q be an MEP problem 〈A, P, D, S, I, G, γ 〉. Let T be an action tree. We say a branch σ of T achieves
the goal if prog(I, σ) is defined, and prog(I, σ) |=γ G; and if prog(I, σ) is not ⊥, we say σ properly achieves the goal.
We say T is a solution of Q if each branch of T achieves the goal, and at least one branch properly achieves the goal.

Intuitively, we use a KB to model an epistemic state. When an action is performed, we revise or update the current KB
with the action’s effects. The problem is solved if for each possible sequence of actions (with sensing results for sensing
actions), the final KB entails the goal.

Our definition is inspired by the PKS approach [39] to first-order epistemic planning. In the paper, the authors state
that “The intuition behind our approach is that a planning agent operating under conditions of incomplete knowledge (and
without a model of uncertainty) can only build plans based on what it knows and on how its knowledge will change as
it executes actions – it has access to no other information at plan time.” PKS uses a database collection DB to represent
the agent’s incomplete knowledge. When an action is chosen, its effects are applied to update DB. When branching on
Kα ∨ K¬α, the formula is removed from DB, and either α or ¬α is added to DB. A plan is found, if along each branch, the
resulting DB satisfies the goal.

Note that since ⊥ |= φ for any φ, if a branch ends with an impossible sensing result, it achieves the goal. For example,
there are two agents, and action sense(i) senses the truth value of atom p. Suppose the initial KB is �, and the goal is
K1 p ∧ K2 p ∨ K1¬p ∧ K2¬p. Then Fig. 2 shows a solution, where impossible sensing results are marked with ×.

Note that our definition of an MEP solution is a solution of centralized planning from the viewpoint of a third person who
coordinates all the agents to achieve the goal. That is, with our MEP framework, a solution is computed offline, and then
a third person monitors the execution of the plan, and instructs the agents to perform actions according to the execution
states: if the currently executed action is a deterministic one, when it is done, the third person instructs the next action to
be performed; if the currently executed action is a sensing action, according to the sensing result, the third-person instructs
one of the successor actions to be performed. We illustrate this with an example below.

Fig. 3 shows a solution for Example 3. First, agent 1 is instructed to move left, and sense if b1 is in p1. If b1 is in p1,
agent 2 is instructed to move right, and sense if b2 is in p3. If b1 is not in p1, agent 1 knows b1 is in p3, and she is
instructed to sense if b2 is in p1, and tell the result to agent 2.

Finally, for illustration purpose, we present another example, which formalizes an instance of the classic Gossip problem
[2].
11

H. Wan, B. Fang and Y. Liu Artificial Intelligence 301 (2021) 103562
Fig. 3. A solution to Example 3.

Example 4. There are three agents 1, 2, and 3. Each of them has her own secret s1, s2, and s3. Instead of sharing in public,
they are only allowed to make a call to each other. In each call, they exchange all the secrets they know. The goal is that
everyone knows all the secrets.

• The atoms are: s(i), meaning the secret of agent i.
• The communication actions are: share(i, j, k) = 〈pre, {eff1, eff2, eff3}〉, agent i calls agent j to exchange all the secrets

they know, where
– pre = Ki(si ∧ ¬K j si) ∨ Ki(sk ∧ ¬K j sk), meaning that i knows some secret that j does not know;
– eff1 = 〈�, Ki si ∧ K j s j〉, meaning that each of i and j gets to know the secret of the other agent;
– eff2 = 〈Ki sk, K j sk〉, meaning that j gets to know k’s secret if i knows k’s secret;
– eff3 = 〈K j sk, Ki sk〉, meaning that i gets to know k’s secret if j knows k’s secret.

• The initial KB is

s1 ∧ s2∧s3 ∧ ¬K1s2 ∧ ¬K1s3 ∧ ¬K2s1 ∧ ¬K2s3 ∧ ¬K3s1 ∧ ¬K3s2∧
K1(s1 ∧ ¬K2s1 ∧ ¬K3s1) ∧ K2(s2 ∧ ¬K1s2 ∧ ¬K3s2) ∧ K3(s3 ∧ ¬K1s3 ∧ ¬K2s3),

meaning that initially each agent knows her own secret and knows that the other agents do not know her secret.
• The goal is

∧3
i=1 Ki(s1 ∧ s2 ∧ s3), meaning that each agent knows all secrets.

• The constraint is �.

3.4. Conformant vs contingent planning

Our framework can model both conformant and contingent planning problems. In contingent planning, we need sensing
actions to generate branching plans. In conformant planning, the action that agent i senses the truth value of p is modeled
as a deterministic action α = 〈pre, {〈p, Ki p〉, 〈¬p, Ki¬p〉}〉. The progression of a KB w.r.t. α is a single KB. The progression
of a KB w.r.t. a sensing action results in different KBs for different sensing results.

3.5. Coincidence with propositional conformant planning

In this section, we show that for the fragment of propositional conformant planning, our MEP solution concept coincides
with the standard one.

We first review propositional conformant planning, following the formal representations presented in [44]. A planning
problem is a tuple P = 〈F , A, I, G〉 where F is a set of atoms, A is a set of actions, I is an initial condition, and G is a goal
condition. Each action a ∈ A is a pair 〈pre(a), eff(a)〉 where pre(a) is the precondition, and eff(a) is a set of conditional effects.
Each conditional effect is a pair (c, e) where c is the condition and e is the effect. Each of the preconditions, conditions and
effects is a set of literals. A literal is an atom p or its negation ¬p, which are complements to each other.

A state s can be treated as the set of literals holding in s. Action a is applicable in state s if s |= pre(a), and the resulting
set of triggered effects, written eff (s, a), is the union of e such that (c, e) ∈ eff(a) and s |= c. The result of applying a in s is
a new state θ(s, a) = s/¬eff (s, a) ∪ eff (s, a), i.e., the state obtained from s as follows: for each literal l ∈ eff (s, a), first delete
from s the complement of l and then add l.

A belief state S is a set of states. A formula φ represents S if S coincides with the set of all states satisfying φ. Action
a is applicable in belief state S if it is applicable in every state in S . The result of applying a in S is a new belief state
�(S, a) = {θ(s, a) | s ∈ S}.

A solution for a planning problem P is an action sequence π = 〈a1, ..., an〉 that induces a belief state sequence
〈S0, S1, ..., Sn〉 such that S0 is the set of all states satisfying I , every state in Sn satisfies G , and for each i such that
1 ≤ i ≤ n, ai is applicable in Si−1 and Si = �(Si−1, ai).
12

H. Wan, B. Fang and Y. Liu Artificial Intelligence 301 (2021) 103562
Proposition 13. Let s be a state, and t a subset of a state. Then s �w t = s/¬t ∪ t; and if s |= φ , then s �w t |= φ �w t.

Proof. These follow from the model-theoretic definition of �w . �
Proposition 14. Suppose that the higher-order belief update operator coincides with Winslett’s update operator on propositional
formulas. Let a be an action. If a DNF formula φ represents a belief state S, then prog(φ, a) represents �(S, a).

Proof. As in Definition 12, let eff(a) = {〈c1, e1〉, . . . , 〈cn, en〉}, I = {1, . . . , n}, I+ = {i ∈ I | φ |=γ ci}, I− = {i ∈ I | φ |=γ ¬ci},
and I∗ = I − I+ − I− .

We first prove that for any s ∈ S , θ(s, a) |= prog(φ, a). Let I ′ = {i ∈ I − I+ | s |= ci}. Since s |= φ, for i ∈ I+ , we have s |= ci .
Then eff(s, a) = ∧{ei | i ∈ I+ ∪ I ′}. Let φs be the splitting of φ w.r.t. I ′ , i.e., φs = φ ∧ ∧{ci | i ∈ I ′} ∧ ∧{¬ci | i ∈ I∗ − I ′}. Then
s |= φs . Then θ(s, a) = s �w eff(s, a) |= φs �w

∧{ei | i ∈ I+ ∪ I ′}. Thus θ(s, a) |= prog(φ, a).
We now prove that for any s′ |= prog(φ, a), there exists s ∈ S s.t. s′ = θ(s, a). Since s′ |= prog(φ, a), there exists a splitting

φs = φ ∧ ∧{ci | i ∈ I ′} ∧ ∧{¬ci | i ∈ I∗ − I ′} s.t. s′ |= φs �w
∧{ei | i ∈ I+ ∪ I ′}. Thus there exists s |= φs s.t. s′ = s �w

∧{ei | i ∈
I+ ∪ I ′}. Since s |= φs , eff(s, a) = ∧{ei | i ∈ I+ ∪ I ′}. Thus s′ = s �w eff(s, a) = θ(s, a). �

For the fragment of propositional conformant planning, an MEP solution is an action sequence π = 〈a1, ..., an〉 that
induces a formula sequence 〈φ0, φ1, ..., φn〉 such that φ0 is the initial KB, φn |= G , and for each i such that 1 ≤ i ≤ n,
φi−1 |= pre(ai), and φi = prog(φi−1, ai). Thus, by the above proposition, we have

Theorem 2. Suppose that the higher-order belief update operator coincides with Winslett’s update operator on propositional formulas.
Then for the fragment of propositional conformant planning, our MEP solution concept coincides with the standard one.

4. Our algorithms

In this section, we present our reasoning and belief change algorithms.
To support efficient reasoning and belief change, we represent KBs as ACDFs, queries as the negation of ACDFs, revision

or update formulas as ACDFs, and constraints as DNF formulas. Thus, for a planning problem, our planner first compiles the
initial KB, the effects of conditional effects of deterministic actions, and the positive and negative results of sensing actions
into ACDFs, the preconditions of actions, the conditions of conditional effects, and the goal into the negation of ACDFs, and
finally the constraint into DNF formula. When progressing w.r.t. deterministic actions (see Definition 12), we compile each
splitting of KB and each conjunction of applicable effects into ACDFs.

For Example 3, after compilation, we get

• I = at(1, p2) ∧ at(2, p2) ∧ ¬in(b1, p2) ∧ ¬in(b2, p2)∧
∇1{at(1, p2) ∧ ¬in(b1, p2) ∧ ¬in(b2, p2)} ∧ ∇2{at(2, p2) ∧ ¬in(b1, p2) ∧ ¬in(b2, p2)};

• pre(left(i)) = ¬(at(i, p1) ∨ ∇i{�, at(i, p1)}); note this is the negation of an ACDF;
• cef(eff1(left(i))) = at(i, p1) ∧ ∇i{at(i, p1)};
• pos(find(i, b, p)) = in(b, p) ∧ ∇i{in(b, p)};
• G = ¬

∨2
i=1 ∇i{�, ¬in(bi, p1), ¬in(bi, p2), ¬in(bi, p3)};

• γ is a DNF formula of 81 terms.

4.1. Strong entailment and equivalence

Our planner searches through the space of KBs, represented as ACDFs, and performs loop detection during search to
avoid generating duplicate KBs. Unfortunately, it is not tractable to check the equivalence of two ACDFs. Thus we introduce
a stronger notion of equivalence which is computationally less demanding. When doing loop detection, we check if two
ACDFs are strongly equivalent. In this way, we reduce the search space to a limited degree.

Our notion of strong equivalence is defined via defining the notion of strong entailment.

Definition 18. Let φ and φ′ be two ACDFs, γ a DNF formula. The strong entailment relation φ �→γ φ′ is recursively defined:

1. For propositional terms φ and φ′ , φ �→γ φ′ if φ ∧ γ |= φ′ .
2. When φ = φ0 ∧ ∧

a∈A∇a�a and φ′ = φ′
0 ∧ ∧

a∈A∇a�
′
a , φ �→γ φ′ if the following hold:

(a) φ0 �→γ φ′
0;

(b) for each a ∈A, for each φa ∈ �a there exists φ′
a ∈ �′

a s.t. φa �→γ φ′
a;

(c) for each a ∈A, for each φ′
a ∈ �′

a there exists φa ∈ �a s.t. φa �→γ φ′
a .

3. When φ = ∨
� and φ′ = ∨

�′ , φ �→γ φ′ if for all φi ∈ � there exists φ′
j ∈ �′ s.t. φi �→γ φ′

j .

The following proposition shows the difference between strong entailment and entailment, which lies with Items 2(b)
and 3.
13

H. Wan, B. Fang and Y. Liu Artificial Intelligence 301 (2021) 103562
Proposition 15. Let φ and φ′ be two ACDFs, γ a DNF formula.

1. When φ and φ′ are propositional terms, φ |=γ φ′ iff φ ∧ γ |= φ′ .
2. When φ = φ0 ∧ ∧

a∈A∇a�a and φ′ = φ′
0 ∧ ∧

a∈A∇a�
′
a, φ |=γ φ′ iff the following hold:

(a) φ0 |=γ φ′
0;

(b) for each a ∈A, for every φa ∈ �a, φa |=γ
∨

�′
a;

(c) for each a ∈A, for every φ′
a ∈ �′

a there is φa ∈ �a s.t. φa |=γ φ′
a.

3. When φ = ∨
� and φ′ = ∨

�′ , φ |=γ φ′ iff for all φi ∈ �, φi |=γ
∨

�′ .

Proof. (1) and (3) are easy. We prove (2). Recall ∇a� = Ka(
∨

�) ∧ La�. By Proposition 6, φ |=γ φ′ iff the following hold:

1. φ0 |=γ φ′
0;

2. for each a ∈A,
∨

�a |=γ
∨

�′
a , i.e., for every φa ∈ �a , φa |=γ

∨
�′

a;
3. for each a ∈A, for every φ′

a ∈ �′
a there is φa ∈ �a s.t. φa |=γ φ′

a . �
By induction, it is easy to prove:

Proposition 16. The strong entailment relation is reflexive and transitive.

Proposition 17. Let φ and φ′ be two ACDFs, and γ a DNF formula. If φ �→γ φ′ , then φ |=γ φ′ .

Proof. We prove by induction.

1. φ and φ′ are propositional terms. By Definition 18, φ ∧ γ |= φ′ . Hence φ ∧ C∗γ |= φ′ , i.e., φ |=γ φ′ .
2. φ = φ0 ∧ ∧

a∈A∇a�a and φ′ = φ′
0 ∧ ∧

a∈A∇a�
′
a . By Definition 18,

(a) φ0 �→γ φ′
0, i.e., φ0 ∧ γ |= φ′

0.
(b) for each a ∈A, for each φa ∈ �a there exists φ′

a ∈ �′
a s.t. φa �→γ φ′

a . By induction, φa |=γ φ′
a . Hence φa |=γ

∨
�′

a .
(c) for each a ∈A, for each φ′

a ∈ �′
a there exists φa ∈ �a s.t. φa �→γ φ′

a . By induction, φa |=γ φ′
a .

Thus the 3 conditions of Proposition 15(2) are satisfied. Hence φ |=γ φ′ .
3. φ = ∨

� and φ′ = ∨
�′ . By Definition 18, for all φ ∈ � there exists φ′ ∈ �′ s.t. φ �→γ φ′ . By induction, φ |=γ φ′ . Hence

φ |=γ
∨

�′ . So
∨

� |=γ
∨

�′ . �
The definition of strong entailment gives us a recursive algorithm to check strong entailment. As shown below, the

complexity of the algorithm is exponential in md(φ ∨ φ′), i.e., the maximal modal depth of φ and φ′ , which is usually small.

Theorem 3. Let φ and φ′ be two ACDFs, γ a DNF formula. The strong entailment relation φ �→γ φ′ can be checked in time O (2md(φ∨φ′) ·
|φ| · |φ′| · |γ |).

Proof. We prove by induction.

1. φ and φ′ are propositional terms. Then φ �→γ φ′ iff φ∧γ |= φ′ iff for each term t of γ , φ∧t |= φ′ iff for each term t of γ
and for each literal l of φ′ , l is contained in φ∧t . This can be checked in time O (q), where q = tl(|φ| ·|t|) ≤ |φ| ·|φ′| ·|γ |.

2. φ = φ0 ∧ ∧
a∈A∇a�a and φ′ = φ′

0 ∧ ∧
a∈A∇a�

′
a . By induction, whether φ �→γ φ′ can be checked in time O (q), where

q = |φ|·|φ′|·|γ | + 2aφa∈�aφ′
a∈�′

a
2md(φa∨φ′

a) ·|φa| · |φ′
a| · |γ |

≤ |φ|·|φ′|·|γ | + 2md(φ∨φ′)aφa∈�aφ′
a∈�′

a
|φa| · |φ′

a| · |γ |
≤ |φ|·|φ′|·|γ | + 2md(φ∨φ′)a|∇a�a| · |∇a�

′
a| · |γ |

≤ 2md(φ∨φ′) ·|φ| · |φ′| · |γ |.
3. φ = ∨

� and φ′ = ∨
�′ . By induction, whether φ �→γ φ′ can be checked in time O (q), where q=φ1∈�φ′

1∈�′ 2md(φ1∨φ′
1)·

|φ1| · |φ′
1| · |γ | ≤ 2md(φ∨φ′) ·|φ| · |φ′| · |γ |. �

Definition 19. We say that two ACDFs φ and φ′ are strongly equivalent w.r.t. constraint γ , written φ �γ φ′ , if both φ �→γ φ′
and φ′ �→γ φ.

The following proposition gives a characterization of the concept of strong equivalence. Essentially, two ACDFs are
strongly equivalent if they can be made identical by removing redundant formulas from disjunctions and cover operations:
for a disjunction

∨
�, an element is redundant if it strongly entails another one; for a cover formula ∇a�, an element is

redundant if it lies between two other elements in the order of strong entailment.
14

H. Wan, B. Fang and Y. Liu Artificial Intelligence 301 (2021) 103562
Proposition 18. Let φ and φ′ be two ACDFs, γ a DNF formula.

1. For propositional terms φ and φ′ , φ �γ φ′ iff φ ∧ γ ⇔ φ′ ∧ γ .
2. When φ = φ0 ∧ ∧

a∈A∇a�a and φ′ = φ′
0 ∧ ∧

a∈A∇a�
′
a, φ �γ φ′ iff the following hold:

(a) φ0 �γ φ′
0;

(b) for each a ∈A, for each φa ∈ �a there exist φ′
a1, φ

′
a2 ∈ �′

a and φa1, φa2 ∈ �a s.t. φa1 �→γ φ′
a1 �→γ φa �→γ φ′

a2 �→γ φa2 .
(c) for each a ∈A, for each φ′

a ∈ �′
a there exists φa ∈ �a s.t. φa �γ φ′

a or there exist φ′
a1, φ

′
a2 ∈ �′

a −{φ′
a} s.t. φ′

a1 �→γ φ′
a �→γ φ′

a2 .
(d) for each a ∈A, for each φ′

a ∈ �′
a there exist φa1, φa2 ∈ �a and φ′

a1, φ
′
a2 ∈ �a s.t. φ′

a1 �→γ φa1 �→γ φ′
a �→γ φa2 �→γ φ′

a2 .
3. When φ = ∨

� and φ′ = ∨
�′ , φ �γ φ′ iff for all φi ∈ � there exist φ′

j ∈ �′ and φk ∈ � s.t. φi �→γ φ′
j �→γ φk, and for all

φ′
j ∈ �′ there exist φi ∈ � and φ′

k ∈ �′ s.t. φ′
j �→γ φi �→γ φ′

k.

Proof. This follows straightforwardly from Definitions 18 and 19. �
For example, p ∧ q ∨ p � p, and ∇a{p, p ∧ q, p ∨ q} �∇a{p ∧ q, p ∨ q}.

Proposition 19. Suppose that φ ∈ � and φ1, φ2 ∈ � − {φ} s.t. φ1 �→γ φ �→γ φ2 . Then ∇a� ⇔γ ∇a(� − {φ}).

Proof. By Proposition 17, φ1 |=γ φ |=γ φ2. We have ∇a� = Ka(
∨

�) ∧ La�. Since φ |=γ φ2, φ can be removed from � in
Ka(

∨
�). Since φ1 |=γ φ, φ can be removed from � in La�. Hence ∇a� ⇔γ ∇a(� − {φ}). �

By Proposition 16,

Proposition 20. Strong equivalence is an equivalence relation.

By Proposition 17,

Proposition 21. Two strongly equivalent ACDFs are equivalent.

However, two equivalent ACDFs might not be strongly equivalent, as shown in the following example.

Example 5.

1. Let φ = p ∨ ¬p, and φ′ = q ∨ ¬q. Then φ ⇔ φ′ but φ ��→ φ′ and φ′ ��→ φ′ .
2. Let φ = ∇a{p, q, p ∨ q}, and φ′ = ∇a{p, q}. Then φ ⇔ φ′ . However, φ ��→ φ′ , since p ∨ q ��→ p and p ∨ q ��→ q.

4.2. Reasoning

As mentioned earlier, to support efficient reasoning, we represent KBs as ACDFs, and queries as the negation of ACDFs.
The following result gives us a recursive algorithm to check if an ACDF entails the negation of another, or to check if the
conjunction of two ACDFs is unsatisfiable. The proof is by applying Propositions 1(3) and 7.

Proposition 22. Let φ and φ′ be two ACDFs, γ a DNF formula.

1. If φ and φ′ are propositional terms, then φ |=γ ¬φ′ iff for each term t in γ , φ ∧ t ∧ φ′ has complementary literals.
2. If φ = φ0 ∧ ∧

a∈A∇a�a and φ′ = φ′
0 ∧ ∧

a∈A∇a�
′
a, then φ |=γ ¬φ′ iff one of the following holds:

(a) φ0 |=γ ¬φ′
0;

(b) there exists a ∈A s.t. �a or �′
a is empty;

(c) there exist a ∈A and φi ∈ �a s.t. for all φ′
j ∈ �′

a, φi |=γ ¬φ′
j ;

(d) there exist a ∈A and φ′
j ∈ �′

a s.t. for all φi ∈ �a, φi |=γ ¬φ′
j .

3. If φ = ∨
� and φ′ = ∨

�′ , then φ |=γ ¬φ′ iff for all φi ∈ � and φ′
j ∈ �′ , φi |=γ ¬φ′

j .

Proof. We prove by induction.

1. φ and φ′ are propositional terms. Then φ |=γ ¬φ′ iff φ ∧ φ′ ∧ γ is unsatisfiable iff for each term t in γ , φ ∧ t ∧ φ′ is
unsatisfiable iff for each term t in γ , φ ∧ t ∧ φ′ has complementary literals.

2. φ = φ0 ∧ ∧
a∈A∇a�a and φ′ = φ′

0 ∧ ∧
a∈A∇a�

′
a . We have φ ∧ φ′ ⇔ φ0 ∧ φ′

0 ∧ ∧
a∈A∇a�a ∧ ∇a�

′
a ⇔ φ0 ∧ φ′

0 ∧∧
a∈A∇a[�a ∧ (

∨
�′

a) ∪ �′
a ∧ (

∨
�a)], by Proposition 1(3). Then φ |=γ ¬φ′ iff φ ∧ φ′ is unsatisfiable w.r.t. γ iff by

Proposition 7, one of the following holds:
15

H. Wan, B. Fang and Y. Liu Artificial Intelligence 301 (2021) 103562
(a) φ0 ∧ φ′
0 ∧ γ is propositionally unsatisfiable, i.e., φ0 |=γ ¬φ′

0;
(b) there exists a ∈A s.t. �a or �′

a is empty;
(c) there exist a ∈A and φ ∈ �a ∧ (

∨
�′

a) ∪�′
a ∧ (

∨
�a) s.t. φ is unsatisfiable w.r.t. γ , i.e., there exist a ∈A and φ ∈ �a

s.t. φ ∧ (
∨

�′
a) is unsatisfiable w.r.t. γ , or there exist a ∈A and φ′ ∈ �′

a s.t. φ′ ∧ (
∨

�a) is unsatisfiable w.r.t. γ , i.e.,
there exist a ∈ A and φ ∈ �a s.t. for all φ′ ∈ �′

a , φ ∧ φ′ is unsatisfiable w.r.t. γ , or there exist a ∈ A and φ′ ∈ �′
a

s.t. for all φ ∈ �a , φ ∧ φ′ is unsatisfiable w.r.t. γ , i.e., there exist a ∈ A and φ ∈ �a s.t. for all φ′ ∈ �′
a , φ |=γ ¬φ′ , or

there exist a ∈A and φ′ ∈ �′
a s.t. for all φ ∈ �a , φ |=γ ¬φ′ .

3. φ = ∨
� and φ′ = ∨

�′ . Then φ |=γ ¬φ′ iff (
∨

�) ∧ (
∨

�′) is unsatisfiable w.r.t. γ iff for all φ ∈ � and φ′ ∈ �′ , φ ∧ φ′
is unsatisfiable w.r.t. γ iff for all φ ∈ � and φ′ ∈ �′ , φ |=γ ¬φ′ . �

Theorem 4. Let φ and φ′ be two ACDFs, γ a DNF formula. Whether φ |=γ ¬φ′ can be checked in time O (2md(φ∨φ′) ·|φ| · |φ′| · |γ |).

Proof. The proof is the same as that of Proposition 3. �
For Example 3, to check if I |=γ pre(left(1)), by Rule 3, we check if both I |=γ ¬at(1, p1) and I |=γ ¬∇1{�, at(1, p1)}

hold. By Rule 1, the former holds. By Rule 2.a, the latter holds, since at(1, p2) |=γ ¬at(1, p1).

4.3. Higher-order belief change

In this section, we present our syntactic higher-order belief change operators, and we give semantic characterizations for
our operators for a fragment of ACDFs called proper ACDFs. Intuitively, proper ACDFs only allow negation and disjunction
for propositional formulas, i.e., they disallow negative or disjunctive beliefs. A proper ACDF is equivalent to a formula of the
form

∧
p∈P K pφp , where P is a set of paths of agents, Ka1a2...an abbreviates for Ka1 Ka2 . . . Kan , and each φp is a propositional

formula. We show that for proper ACDFs, higher-order belief change nicely reduces to propositional belief change along each
path. As a special case, we have Kiφ • Kiμ ⇔ Ki(φ •μ), where • is ◦ or �, φ and μ are propositional formulas. Based on the
reduction result, we show that semantic characterizations for propositional belief change nicely carry over to higher-order
belief change.

We do not yet have general semantic definitions of higher-order belief change operators. On the one hand, these are hard
to come up with. As introduced in Section 2.3, Katsuno and Mendelzon’s semantic definitions of propositional belief opera-
tors rely on the notion of closeness between two models. However, it is more complicated to define the distance between
two Kripke models than that of two propositional models. Please refer to Caridroit et al. [11] for a comprehensive study of
distances between Kripke models. On the other hand, our work on multi-agent epistemic planning tries to simulate the way
humans do epistemic planning, and we think for humans to do higher-order belief change, which is more complicated than
propositional belief change, the principle of efficient computability is more important than the principle of minimal change.
So the principle of efficient computability guides our definition of higher-order belief change operators. We will leave for
future work the hard issue of a general model-theoretic study of higher-order belief change.

The basic idea behind our belief change operators is to reduce the change of epistemic formulas to that of lower-order
epistemic formulas, and as a basis we resort to change of propositional formulas. The essential difference between revision
and update is: revision satisfies the conjunction property that when φ ∧ φ′ is satisfiable, φ ◦ φ′ ⇔ φ ∧ φ′ , while update
satisfies the distribution property that when both φ1 and φ2 are satisfiable, (φ1 ∨ φ2) � φ′ ⇔ (φ1 � φ′ ∨ φ2 � φ′).

To approximate the principle of minimal change, we mimic the definition of MinPairs from Section 2.3 as follows.

Definition 20. Let � and �′ be sets of formulas, γ a DNF formula.

1. For φ ∈ � and φ′ ∈ �′ ,

dist(φ,φ′) =
{

0 if φ ∧ φ′ is satisfiable w.r.t. γ

1 otherwise.

2. dist(�, �′) = min{dist(φ, φ′) | φ ∈ �, φ′ ∈ �′}.
3. The set of closest pairs of formulas from � and �′ w.r.t. γ , denoted � ∗γ �′ , is the set {(φ, φ′) | φ ∈ �, φ′ ∈

�′, dist(φ, φ′) = dist(�, �′)}.

Intuitively, whenever possible, � ∗γ �′ restricts our attention to those consistent pairs of formulas. We let � ◦ φ′ denote
the set {φ ◦ φ′ | φ ∈ �}, and similarly for �.

4.3.1. Revision
We first present the formal definition of our revision operator, and then give the intuitive explanation.

Definition 21. Let φ and φ′ be ACDFs, γ a DNF formula. The revision of φ with φ′ under γ , denoted φ ◦γ φ′ , is recursively
defined as follows:
16

H. Wan, B. Fang and Y. Liu Artificial Intelligence 301 (2021) 103562
1. When φ and φ′ are propositional, the result is φ ◦s (φ′ ∧ γ), where ◦s is Satoh’s revision operator.
2. When φ = φ0 ∧ ∧

a∈B∇a�a, φ′ = φ′
0 ∧ ∧

a∈B′∇a�
′
a , and φ ∧ φ′ is satisfiable w.r.t. γ , φ ◦γ φ′ is defined as:

(φ0 ◦γ φ′
0) ∧

∧
a∈B−B′∇a�a ∧

∧
a∈B′−B∇a�

′
a ∧

∧
a∈B∩B′∇a[(�a ◦γ

∨
�′

a) ∪ (�′
a ◦γ

∨
�a)].

3. When φ = φ0 ∧ ∧
a∈B∇a�a , φ′ = φ′

0 ∧ ∧
a∈B′∇a�

′
a , and φ ∧ φ′ is unsatisfiable w.r.t. γ , φ ◦γ φ′ is defined as:

(φ0 ◦γ φ′
0) ∧

∧
a∈B−B′∇a�a ∧

∧
a∈B′−B∇a�

′
a ∧

∧
a∈B∩B′∇a[�∗

a ∪ (�′
a − �′′

a)],
where �∗

a = {φ ◦γ φ′ | (φ, φ′) ∈ �a ∗γ {∨�′
a}}, �′′

a = {φ′ ∈ �′
a | there exists a φ ∈ �∗

a s.t. φ �→γ φ′}.
4. (

∨
�) ◦γ (

∨
�′) = ∨{φ ◦γ φ′ | (φ, φ′) ∈ � ∗γ �′}.

Rule 2 is for the purpose of the conjunction property: recall that by Proposition 1(3), ∇a� ∧ ∇a�
′ ⇔ ∇a[� ∧ (

∨
�′) ∪

�′ ∧ (
∨

�)]. Rule 4 is to approximate the principle of minimal change: when there are consistent pairs of formulas φ and
φ′ , we ignore those that are not. The intuition behind Rule 3 is as follows. Recall that ∇a�a ⇔ Ka(

∨
�) ∧ La�, hence

∨
�a

is the belief of agent a, and each φ ∈ �a is a possibility for agent a. To explain the definition of �∗
a , when there exist old

possibilities that are consistent with the new belief
∨

�′
a , we just keep these possibilities and revise them with the new

belief, otherwise we revise each old possibility with the new belief. Also, among all the new possibilities, we remove those
which are strongly entailed by an element of �∗

a , getting �′
a − �′′

a . This is because we would like to get a revision result as
strong as possible. For example, suppose �∗

a = {p ∧ q}, and �′
a = {p}; then we obtain ∇a{p ∧ q}, which is strictly stronger

than ∇a{p ∧ q, p}.
Our definition of revision relies on satisfiability checking. To complete the operation efficiently, we present the following

recursive algorithm to check for satisfiability and return the revision result at the same time.

Definition 22. Let φ and φ′ be ACDFs, γ a DNF formula. Procedure Sat-revγ (φ, φ′) returns a pair (s, ψ), where s ∈ {�, ⊥},
which is recursively defined as follows:

1. φ and φ′ are propositional terms. Let s denote whether φ ∧ φ′ ∧ γ is satisfiable, and ψ = φ ◦s (φ′ ∧ γ).
2. φ = φ0 ∧ ∧

a∈B∇a�a , and φ′ = φ′
0 ∧ ∧

a∈B′∇a�
′
a . Let (s0, ψ0) = Sat-revγ (φ0, φ′

0).
For each a ∈ B ∩ B′ , for each φai ∈ �a , let (sai, ψai) = Sat-revγ (φai,

∨
�′

a); for each φ′
aj ∈ �′

a , let (s′
aj, ψ

′
aj) =

Sat-revγ (φ′
aj,

∨
�a). If s0 = �, and for each a ∈ B ∩ B′ , for each φai ∈ �a and each φ′

aj ∈ �′
a , sai = � and s′

aj = �,
then let s = � and

ψ =ψ0 ∧
∧

a∈B−B′∇a�a ∧
∧

a∈B′−B∇a�
′
a ∧

∧
a∈B∩B′∇a[{ψai | φai ∈ �a} ∪ {ψ ′

aj | φ′
aj ∈ �′

a}].
Otherwise, let s = ⊥. If there exists φai ∈ �a s.t. sai = �, let �∗

a = {ψai | φai ∈ �a, sai = �}, otherwise let �∗
a = {ψai |

φai ∈ �a}. Let �′′
a = {φ′ ∈ �′

a | there exists a φ ∈ �∗
a s.t. φ �→γ φ′}. Now let

ψ = ψ0 ∧
∧

a∈B−B′∇a�a ∧
∧

a∈B′−B∇a�
′
a ∧

∧
a∈B∩B′∇a[�∗

a ∪ (�′
a − �′′

a)].
3. φ = ∨m

i=1 φi and φ′ = ∨n
j=1 φ′

j . For each i and j, let (si j, ψi j) = Sat-revγ (φi, φ′
j). If there exist i and j s.t. si j = �, let

s = � and ψ = ∨{ψi j | si j = �}; otherwise, let s = ⊥ and ψ = ∨
ψi j .

Theorem 5. Let φ and φ′ be two ACDFs, γ a DNF formula. Sat-revγ (φ, φ′) can be computed in time O (4md(φ∨φ′) ·|φ|2 · |φ′|2 · |γ |2)
and the resulting formula is of size O (2md(φ∨φ′) ·|φ| · |φ′| · |γ |).

Proof. We prove by induction on |φ| + |φ′|.

1. φ and φ′ are propositional. Since φ, φ′ and γ are all in DNF, whether φ ∧ φ′ ∧ γ is satisfiable can be checked in time
O (|φ| · |φ′| · |γ |). By Proposition 10, φ ◦s (φ′ ∧γ) can be computed in time O (|φ|2 · |φ′|2 · |γ |2), and the resulting formula
is of size O (|φ| · |φ′| · |γ |). Hence Sat-revγ (φ, φ′) can be computed in time O (|φ|2 · |φ′|2 · |γ |2).

2. φ = φ0 ∧ ∧
a∈B∇a�a , and φ′ = φ′

0 ∧ ∧
a∈B′∇a�

′
a . Suppose that s = �. By induction, it is easy to prove that ψ can be

computed in time O (2 · 4md(φ∨φ′)−1 ·|φ|2 · |φ′|2 · |γ |2), and ψ is of size O (2md(φ∨φ′) ·|φ| · |φ′| · |γ |). Now suppose s = ⊥.
We have each ψai is of size O (2md(φ∨φ′)−1 ·|φai | · | ∨�′

a| · |γ |). By Proposition 3, for φ′
aj ∈ �′

a , whether ψai �→γ φ′
aj can

be checked in time O (4md(φ∨φ′)−1 ·|φai| · | ∨�′
a| · |φ′

aj| · |γ |2). Thus �′′
a can be computed in time O (4md(φ∨φ′)−1 ·| ∨�a| ·

| ∨�′
a|2 · |γ |2). So the total time is O (4md(φ∨φ′) ·|φ|2 · |φ′|2 · |γ |2). Also, ψ is of size O (2md(φ∨φ′) ·|φ| · |φ′| · |γ |).

3. φ = ∨m
i=1 φi and φ′ = ∨n

j=1 φ′
j . By induction, Sat-revγ (φi, φ′

j) can be computed in time O (4md(φi∨φ′
j) ·|φi |2 · |φ′

j |2 · |γ |2)
and the resulting formula is of size O (2md(φi∨φ′

j) · |φi| · |φ′
j| · |γ |). Hence Sat-revγ (φ, φ′) can be computed in time

O (4md(φ∨φ′) ·|φ|2 · |φ′|2 · |γ |2) and the resulting formula is of size O (2md(φ∨φ′) ·|φ| · |φ′| · |γ |). �

17

H. Wan, B. Fang and Y. Liu Artificial Intelligence 301 (2021) 103562
In the following, we analyze the properties of our revision operator. For an ACDF, we need a notion stronger than that
of satisfiability. We say that an ACDF φ is disjunct-wise satisfiable if not only φ is satisfiable, but also for any disjunction in
φ, each disjunct is satisfiable. We formally define the notion as follows:

Definition 23. We say that an ACDF φ is disjunct-wise satisfiable (d-satisfiable for short) w.r.t. γ if one of the following
holds:

1. φ is a propositional term which is satisfiable w.r.t. γ .
2. φ = φ0 ∧ ∧

a∈A∇a�a , for each a ∈A, each φ′ ∈ �a is d-satisfiable w.r.t. γ , and φ is satisfiable w.r.t. γ .
3. φ = ∨

�, and each φ′ ∈ � is d-satisfiable w.r.t. γ .

It is easy to prove by induction that if an ACDF φ is d-satisfiable w.r.t. γ , then it is satisfiable w.r.t. γ . The following
result states the properties of our revision operator.

Theorem 6. Let φ and φ′ be ACDFs d-satisfiable w.r.t. γ . Let φ∗ = φ ◦γ φ′ . Then φ∗ is d-satisfiable w.r.t. γ , and φ∗ |=γ φ′ . Moreover,
when φ ∧ φ′ is satisfiable w.r.t. γ , φ∗ ⇔γ φ ∧ φ′ .

Proof. We prove by induction on |φ| + |φ′|.
1. φ and φ′ are propositional. The properties follow from the definition of Satoh’s revision.
2. φ = φ0 ∧∧

a∈B∇a�a , φ′ = φ′
0 ∧∧

a∈B′∇a�
′
a , φ ∧φ′ is satisfiable w.r.t. γ . Let a ∈ B∩B′ . Since φ ∧φ′ is satisfiable w.r.t.

γ , by Proposition 5, for each φa ∈ �a , φa ∧ ∨
�′

a is satisfiable w.r.t. γ . By induction, φa ◦γ
∨

�′
a is d-satisfiable w.r.t. γ , and

φa ◦γ
∨

�′
a ⇔γ φa ∧ ∨

�′
a . Similarly, for each φ′

a ∈ �′
a , φ′

a ◦γ
∨

�a is d-satisfiable w.r.t. γ , and φ′
a ◦γ

∨
�a ⇔γ φ′

a ∧ ∨
�a .

By Proposition 1 (3), φ ◦γ φ′ ⇔γ φ ∧ φ′ . It follows that φ ◦γ φ′ is satisfiable w.r.t. γ and φ ◦γ φ′ |=γ φ′ . Hence φ ◦γ φ′ is
d-satisfiable w.r.t. γ .

3. φ = φ0 ∧∧
a∈B∇a�a , φ′ = φ′

0 ∧∧
a∈B′∇a�

′
a , φ ∧φ′ is unsatisfiable w.r.t. γ . By induction, φ0 ∧φ′

0 is satisfiable w.r.t. γ .
Let a ∈ B ∩B′ . By induction, for each φa ∈ �a , φa ◦γ

∨
�′

a is d-satisfiable w.r.t. γ , hence each element of �∗
a is d-satisfiable

w.r.t. γ . Thus φ ◦γ φ′ is satisfiable w.r.t. γ . Hence φ ◦γ φ′ is d-satisfiable w.r.t. γ . By induction, φ0 ◦γ φ′
0 |=γ φ′

0, and for each
φ∗

a ∈ �∗
a , φ∗

a |=γ
∨

�′
a . Also, by the definition of �′′

a , for each φ′
a ∈ �′

a , there exists φ∗
a ∈ �∗

a ∪ (�′
a − �′′

a) s.t. φ∗
a |=γ φ′

a . By
Proposition 6, φ ◦γ φ′ |=γ φ′ .

4. φ = ∨
�, φ′ = ∨

�′ , φ ∧ φ′ is satisfiable w.r.t. γ . Then � ∗γ �′ = {(φ1, φ′
1) | φ1 ∈ �1, φ′

1 ∈ �′
1, φ1 ∧ φ′

1 is satisfiable
w.r.t. γ }. By induction, for each (φ1, φ′

1) ∈ � ∗γ �′ , φ1 ◦γ φ′
1 is d-satisfiable w.r.t. γ , and φ1 ◦γ φ′

1 ⇔γ φ1 ∧φ′
1. Thus φ ◦γ φ′ is

d-satisfiable w.r.t. γ , and φ ◦γ φ′ = ∨{φ1 ◦γ φ′
1 | (φ1, φ′

1) ∈ � ∗γ �′} ⇔γ
∨{φ1 ∧φ′

1 | (φ1, φ′
1) ∈ � ∗γ �′} ⇔γ φ ∧φ′ . It follows

that φ ◦γ φ′ |=γ φ′ .
5. φ = ∨

�, φ′ = ∨
�′ , φ ∧ φ′ is unsatisfiable w.r.t. γ . Then � ∗γ �′ = {(φ1, φ′

1) | φ1 ∈ �1, φ′
1 ∈ �′

1}. Since both φ and
φ′ are d-satisfiable w.r.t. γ , for each (φ1, φ′

1) ∈ � ∗γ �′ , both φ1 and φ′
1 are d-satisfiable w.r.t. γ . By induction, φ1 ◦γ φ′

1 is
d-satisfiable w.r.t. γ , and φ1 ◦γ φ′

1 |=γ φ′
1. Hence φ ◦γ φ′ is d-satisfiable w.r.t. γ , and φ ◦γ φ′ |= φ′ . �

4.3.2. Update
We now present the formal definition of our update operator, followed by the intuitive explanation.

Definition 24. Let φ and φ′ be ACDFs, γ a DNF formula. The update of φ with φ′ under γ , denoted φ �γ φ′ , is recursively
defined as follows:

1. When φ and φ′ are propositional, the result is φ �w (φ′ ∧ γ), where �w is Winslett’s update operator.
2. When φ = φ0 ∧ ∧

a∈B∇a�a and φ′ = φ′
0 ∧ ∧

a∈B′∇a�
′
a , φ �γ φ′ is defined as follows:

(φ0 �γ φ′
0) ∧

∧
a∈B−B′∇a�a ∧

∧
a∈B′−B∇a�

′
a ∧

∧
a∈B∩B′∇a[�∗

a ∪ (�′
a − �′′

a)],
where �∗

a = �a �γ
∨

�′
a , �′′

a = {φ′ ∈ �′
a | there exists a φ ∈ �∗

a s.t. φ �→γ φ′}.
3. (

∨
�) �γ φ′ = ∨

φ∈� φ �γ φ′ .
4. When φ is a CDF term, φ �γ (

∨
�′) = ∨{φ �γ φ′ | (φ, φ′) ∈ {φ} ∗γ �′}.

Rule 3 and the definition of �∗
a in Rule 2 are for the purpose of the distribution property. Rule 4 is to approximate the

principle of minimal change: when there is φ′ ∈ �′ s.t. φ′ is consistent with φ, we simply ignore those which are not.

Theorem 7. Let φ and φ′ be two ACDFs, γ a DNF formula. The time to compute φ �γ φ′ is O (2md(φ∨φ′) · 2|φ′|·|γ | · |φ| · |φ′| · |γ |), and
the resulting formula is of size O (2|φ′|·|γ | · |φ|).

Proof. We prove by induction on |φ| + |φ′|.
18

H. Wan, B. Fang and Y. Liu Artificial Intelligence 301 (2021) 103562
1. φ and φ′ are propositional. By Proposition 12, φ �w (φ′ ∧ γ) can be computed in time O (2|φ′ |·|γ | · |φ|), and the resulting
formula is of size O (2|φ′ |·|γ | · |φ|).

2. φ = φ0 ∧ ∧
a∈B∇a�a , and φ′ = φ′

0 ∧ ∧
a∈B′∇a�

′
a . By induction, for each φai ∈ �a , ψai = φai �γ

∨
�′

a can be com-

puted in time O (2md(φ∨φ′)−1 · 2|∨�′
a|·|γ | · |φai | · | ∨�′

a| · |γ |, and the resulting formula is of size O (2|∨�′
a|·|γ | · |φai |). By

Proposition 3, for φ′
aj ∈ �′

a , whether ψai �→γ φ′
aj can be checked in time O (2md(φ∨φ′)−1 · 2|∨�′

a|·|γ | · |φai| · |φ′
aj| · |γ |).

Thus both �∗
a and �′′

a can be computed in time O (2md(φ∨φ′)−1 · 2|∨�′
a |·|γ | · | ∨�a| · | ∨�′

a| · |γ |). So the total time is
O (2md(φ∨φ′) · 2|φ′|·|γ | · |φ| · |φ′| · |γ |). The resulting formula is of size O (2|φ′ |·|γ | · |φ|).

3. φ = ∨
i φi . By induction, φi �γ φ′ can be computed in time O (2md(φi∨φ′) ·2|φ′|·|γ | · |φi| · |φ′| · |γ |), and the resulting formula

is of size O (2|φ′|·|γ | · |φi |). Thus φ �γ φ′ can be computed in time O (2md(φ∨φ′) · 2|φ′|·|γ | · |φ| · |φ′| · |γ |), and the resulting
formula is of size O (2|φ′ |·|γ | · |φ|).

4. φ is a CDF term, and φ′ = ∨
φ′

i . By Proposition 4, whether φ and φ′
i are consistent w.r.t. γ can be checked in time

O (2md(φ∨φ′
i) · |φ| · |φ′

i | · |γ |). By induction, φ �γ φ′
i can be computed in time O (2md(φ∨φ′

i) · 2|φ′
i |·|γ | · |φ| · |φ′

i | · |γ |), and the
resulting formula is of size O (2|φ′

i |·|γ | · |φ|). Thus φ �γ φ′ can be computed in time O (2md(φ∨φ′) · 2|φ′|·|γ | · |φ| · |φ′| · |γ |),
and the resulting formula is of size O (2|φ′ |·|γ | · |φ|). �

The complexity of the algorithm is exponential in the size of φ′ , which is an action effect and hence usually small.
The following result states the properties of our update operator.

Theorem 8. Let φ and φ′ be ACDFs d-satisfiable w.r.t. γ . Let φ∗ = φ �γ φ′ . Then φ∗ is d-satisfiable w.r.t. γ , and φ∗ |=γ φ′ . Moreover,
(φ1 ∨ φ2) �γ φ′ ⇔γ (φ1 �γ φ′ ∨ φ2 �γ φ′).

Proof. We prove by induction on |φ| + |φ′|.
1. φ and φ′ are propositional. The properties follow from the definition of Winslett’s update.
2. φ = φ0 ∧∧

a∈B∇a�a , φ′ = φ′
0 ∧∧

a∈B′∇a�
′
a . By induction, φ0 ∧φ′

0 is satisfiable w.r.t. γ . Let a ∈ B∩B′ . By induction, for
each φa ∈ �a , φa �γ

∨
�′

a is d-satisfiable w.r.t. γ , hence each element of �∗
a is d-satisfiable w.r.t. γ . Thus φ�γ φ′ is satisfiable

w.r.t. γ . So φ �γ φ′ is d-satisfiable w.r.t. γ . By induction, φ0 �γ φ′
0 |=γ φ′

0, and for each φ∗
a ∈ �∗

a , φ∗
a |=γ

∨
�′

a . Also, by the
definition of �′′

a , for each φ′
a ∈ �′

a , there exists φ∗
a ∈ �∗

a ∪ (�′
a − �′′

a) s.t. φ∗
a |=γ φ′

a . By Proposition 6, φ �γ φ′ |=γ φ′ .
3. φ = ∨

�. Clearly, the disjunction property holds. Since φ is d-satisfiable (w.r.t. γ), each φ1 ∈ � is d-satisfiable. By in-
duction, for each φ1 ∈ �, φ1 �γ φ′ is d-satisfiable and φ1 �γ φ′ |=γ φ′ . Thus φ �γ φ′ is d-satisfiable w.r.t. γ and φ �γ φ′ |=γ φ′ .

4. φ is a CDF term, φ′ = ∨
�′ . Since φ′ is d-satisfiable (w.r.t. γ), each φ′

1 ∈ �′ is d-satisfiable. By induction, for each
φ′

1 ∈ �′ , φ �γ φ′
1 is d-satisfiable and φ �γ φ′

1 |=γ φ′
1. Thus φ �γ φ′ is d-satisfiable w.r.t. γ and φ �γ φ′ |=γ φ′ . �

For Example 3, after doing action left(1), we get I �γ cef(eff1(left(1)), equivalent to φ1 under γ :
φ1 = at(1, p1) ∧ at(2, p2) ∧ ¬in(b1, p2) ∧ ¬in(b2, p2)∧

∇1{at(1, p1) ∧ ¬in(b1, p2) ∧ ¬in(b2, p2)} ∧ ∇2{at(2, p2) ∧ ¬in(b1, p2) ∧ ¬in(b2, p2)}.
Now after doing find(1, b1, p1) with a positive result, we get φ1 ◦γ pos(find(1, b1, p1)), equivalent to φ2 under γ :
φ2 = at(1, p1) ∧ at(2, p2) ∧ in(b1, p1) ∧ ¬in(b2, p2)∧

∇1{at(1, p1) ∧ in(b1, p1) ∧ ¬in(b2, p2)} ∧ ∇2{at(2, p2) ∧ ¬in(b1, p2) ∧ ¬in(b2, p2)}.
4.3.3. Semantic characterizations for proper ACDFs

We now give semantic characterizations for our higher-order belief change operators for a fragment of ACDFs which we
call proper ACDFs. Intuitively, proper ACDFs disallow negative or disjunctive beliefs. We define the concept of tree models:
a tree model is a special KD45n model with an underlying tree structure such that each world has a unique a-successor for
each agent a. Thus a tree model cannot represent negative or disjunctive beliefs. It is easy to show that a proper ACDF has
a model iff it has a tree model. Hence for semantic characterizations for proper ACDFs, we can restrict our attention to tree
models. Because tree models have a simple form, we are able to show that for proper ACDFs, the semantic characterizations
for propositional belief change nicely carry over to higher-order belief change. For simplicity of the presentation, we ignore
the constraint γ .

Definition 25. We say that an ACDF φ is proper if in any ∇a�a subformula, �a must be a singleton, and in φ disjunction
can only be used for propositional formulas.

Proposition 23. ∇a{φ} ⇔ Kaφ .

Proof. ∇a{φ} ⇔ Kaφ ∧ Laφ ⇔ Kaφ ∧ La� ⇔ Kaφ. �
Let p be a path of agents a1, a2, . . . , an . We use K pφ to abbreviate for Ka1 Ka2 . . . Kan φ. We call K p a path knowledge

operator. In case p is the empty path ε , K pφ simply represents φ. We let Lpφ stand for ¬K p¬φ. We call p an alternating
path if any adjacent agents on the path are different.
19

H. Wan, B. Fang and Y. Liu Artificial Intelligence 301 (2021) 103562
Proposition 24. Any proper ACDF can be equivalently transformed to formula of the form
∧

p∈P K pφp , where P is a set of alternating
paths, and each φp is in DNF. We call such a formula an alternating path knowledge term.

Proof. Let φ be a proper ACDF. We prove by induction on φ.
1. φ is a propositional term. The claim obviously holds.
2. φ = ∨

�. By the definition of proper ACDFs, φ is a DNF.
3. φ = φ0 ∧ ∧

a∈B∇a{φa}. By the definition of proper ACDFs, each φa is a proper ACDF. By induction, each φa can be
equivalently transformed to an alternating path knowledge term

∧
p∈Pa

K pφap . Thus φ ⇔ φ0 ∧ ∧
a∈B,p∈Pa Kapφap , which is

an alternating path knowledge term. �
Without loss of generality, we can assume an alternating path knowledge term

∧
p∈P K pφp of modal depth k takes the

form of
∧

p K pφp , where p ranges over all alternating paths of length ≤ k, since for p /∈ P , we can let φp be �.
In the following, we show that for proper ACDFs, higher-order belief change nicely reduces to propositional belief change

along each path. For each operator, we first prove a proposition which is used to prove the reduction result.

Proposition 25. Let φ and φ′ be proper ACDFs. We have φ ◦ φ′ �→ φ′ , and

1. When φ and φ′ are propositional, we have φ ◦ φ′ = φ ◦s φ′ , and if φ ∧ φ′ is satisfiable, then φ ◦ φ′ ⇔ φ ∧ φ′ , and φ ◦ φ′ �→ φ .
2. When φ = φ0 ∧ ∧

a∈B∇a{φa}, φ′ = φ′
0 ∧ ∧

a∈B′∇a{φ′
a}, and φ ∧ φ′ is satisfiable, we have φ ◦ φ′ ⇔ φ ∧ φ′ , and φ ◦ φ′ �→ φ .

3. When φ = φ0 ∧ ∧
a∈B∇a{φa}, φ′ = φ′

0 ∧ ∧
a∈B′∇a{φ′

a}, and φ ∧ φ′ is unsatisfiable, we have

φ ◦ φ′ = (φ0 ◦ φ′
0) ∧

∧
a∈B−B′∇a{φa} ∧

∧
a∈B′−B∇a{φ′

a} ∧
∧

a∈B∩B′∇a{φa ◦ φ′
a}.

Proof. We prove by induction on |φ| + |φ′|.
1. φ and φ′ are propositional. By definition, φ ◦ φ′ is φ ◦s φ′ . By Proposition 9,

φ ◦s φ′ =
∨

〈φi ,φ
′
j〉∈MinPairs(φ,φ′)

revise(φi, φ
′
j).

Recall that for a DNF φ, we use φ with subscripts to denote disjuncts of φ. Also recall that revise(φi, φ′
j) is the result

of revising term φi by term φ′
j . Thus for each term t of φ ◦s φ′ , t |= φ′

j for some j. By definition of strong entailment,
φ ◦s φ′ �→ φ′ .

When φ ∧ φ′ is satisfiable, we have

φ ◦s φ′ =
∨

φi∈φ,φ′
j∈φ′,φi∧φ′

j is satisfiable

φi ∧ φ′
j.

Thus φ ◦ φ′ ⇔ φ ∧ φ′ , and we also have φ ◦ φ′ �→ φ.
2. φ = φ0 ∧ ∧

a∈B∇a{φa}, φ′ = φ′
0 ∧ ∧

a∈B′∇a{φ′
a}, and φ ∧ φ′ is satisfiable. By definition,

φ ◦ φ′ = (φ0 ◦ φ′
0) ∧

∧
a∈B−B′∇a{φa} ∧

∧
a∈B′−B∇a{φ′

a} ∧
∧

a∈B∩B′∇a{φa ◦ φ′
a, φ

′
a ◦ φa}.

Since φ ∧φ′ is satisfiable, by Proposition 5, φ0 ∧φ′
0 is satisfiable, and for each a ∈ B∩B′ , φa ∧φ′

a is satisfiable. By induction,
φ0 ◦ φ′

0 strongly entails both φ0 and φ′
0, both φa ◦ φ′

a and φ′
a ◦ φa strongly entail both φa and φ′

a . Thus by definition of strong
entailment, φ ◦φ′ �→ φ′ and φ ◦φ′ �→ φ. Also, by induction, φ0 ◦φ′

0 ⇔ φ0 ∧φ′
0, φa ◦φ′

a ⇔ φa ∧φ′
a , and φ′

a ◦φa ⇔ φa ∧φ′
a . Thus

φ ◦ φ′ ⇔ (φ0 ∧ φ′
0) ∧

∧
a∈B−B′∇a{φa} ∧

∧
a∈B′−B∇a{φ′

a} ∧
∧

a∈B∩B′∇a{φa ∧ φ′
a}.

So φ ◦ φ′ ⇔ φ ∧ φ′ .
3. φ = φ0 ∧ ∧

a∈B∇a{φa}, φ′ = φ′
0 ∧ ∧

a∈B′∇a{φ′
a}, and φ ∧ φ′ is unsatisfiable. By induction, φ0 ◦ φ′

0 �→ φ′
0, and for each

a ∈ B ∩B′ , φa ◦ φ′
a �→ φ′

a . Thus by definition,

φ ◦ φ′ = (φ0 ◦ φ′
0) ∧

∧
a∈B−B′∇a{φa} ∧

∧
a∈B′−B∇a{φ′

a} ∧
∧

a∈B∩B′∇a{φa ◦ φ′
a}.

So by definition of strong entailment, φ ◦ φ′ �→ φ′ . �
Note that in Section 3.2, we stated that we would like to have Kiφ ◦ Kiμ ⇔ Ki(φ ◦ μ), where φ and μ are propositional

formulas. Below, we prove a general version of this claim.
20

H. Wan, B. Fang and Y. Liu Artificial Intelligence 301 (2021) 103562
Theorem 9. Let φ ⇔ ∧
p∈P K pφp and φ′ ⇔ ∧

p∈P ′ K pφ′
p be proper ACDFs. Then

φ ◦ φ′ ⇔
∧

p∈P−P ′
K pφp ∧

∧
p∈P ′−P

K pφ′
p ∧

∧
p∈P∩P ′

K p[φp ◦s φ′
p].

Proof. We prove by induction on |φ| + |φ′|.
1. φ and φ′ are propositional. The claim obviously holds.
2. φ = φ0 ∧ ∧

a∈B∇a{φa}, φ′ = φ′
0 ∧ ∧

a∈B′∇a{φ′
a}, and φ ∧ φ′ is satisfiable. By Proposition 5, for each p ∈ P ∩ P ′ , φp ∧ φ′

p
is satisfiable. Thus by Proposition 25,

φ ◦ φ′ ⇔ φ ∧ φ′ ⇔
∧

p∈P−P ′
K pφp ∧

∧
p∈P ′−P

K pφ′
p ∧

∧
p∈P∩P ′

K p[φp ∧ φ′
p]

⇔
∧

p∈P−P ′
K pφp ∧

∧
p∈P ′−P

K pφ′
p ∧

∧
p∈P∩P ′

K p[φp ◦s φ′
p]

3. φ = φ0 ∧ ∧
a∈B∇a{φa}, φ′ = φ′

0 ∧ ∧
a∈B′∇a{φ′

a}, and φ ∧ φ′ is unsatisfiable. By Proposition 25,

φ ◦ φ′ = (φ0 ◦ φ′
0) ∧

∧
a∈B−B′ Kaφa ∧

∧
a∈B′−BKaφ

′
a ∧

∧
a∈B∩B′ Ka[φa ◦ φ′

a].
By induction, for each a ∈ B ∩B′ ,

φa ◦ φ′
a ⇔

∧
p∈Pa−P ′

a

K pφap ∧
∧

p∈P ′
a−Pa

K pφ′
ap ∧

∧
p∈Pa∩P ′

a

K p[φap ◦s φ′
ap].

Thus

φ ◦ φ′ ⇔ (φ0 ◦ φ′
0) ∧

∧
a∈B−B′ Kaφa ∧

∧
a∈B′−BKaφ

′
a∧∧

a∈B∩B′,p∈Pa−P ′
a

Kapφap ∧
∧

a∈B∩B′,p∈P ′
a−Pa

Kapφ′
ap ∧

∧
a∈B∩B′,p∈Pa∩P ′

a
Kap[φap ◦s φ′

ap]
⇔

∧
p∈P−P ′

K pφp ∧
∧

p∈P ′−P

K pφ′
p ∧

∧
p∈P∩P ′

K p[φp ◦s φ′
p] �

Proposition 26. Let φ and φ′ be proper ACDFs. We have φ � φ′ �→ φ′ , and

1. When φ and φ′ are propositional, φ � φ′ is φ �w φ′ .
2. When φ = φ0 ∧ ∧

a∈B∇a{φa} and φ′ = φ′
0 ∧ ∧

a∈B′∇a{φ′
a}, φ � φ′ is

(φ0 � φ′
0) ∧

∧
a∈B−B′∇a{φa} ∧ ∧

a∈B′−B∇a{φ′
a} ∧

∧
a∈B∩B′∇a{φa � φ′

a}.

Proof. We prove by induction on |φ| + |φ′|.
1. φ and φ′ are propositional. By definition, φ � φ′ is φ �w φ′ . By Proposition 11,

φ �w φ′ =
∨

φ′
j∈φ′,φi∈φ

revise(φi, φ
′
j) ∧ patchφi (φ

′
j).

Thus for each term t of φ �w φ′ , t |= φ′
j for some j. By definition, φ �w φ′ �→ φ′ .

2. φ = φ0 ∧ ∧
a∈B∇a{φa} and φ′ = φ′

0 ∧ ∧
a∈B′∇a{φ′

a}. By induction, φ0 � φ′
0 �→ φ′

0, and for each a ∈ B ∩B′ , φa � φ′
a �→ φ′

a .
Thus by definition,

φ � φ′ = (φ0 � φ′
0) ∧

∧
a∈B−B′∇a{φa} ∧

∧
a∈B′−B∇a{φ′

a} ∧
∧

a∈B∩B′∇a{φa � φ′
a}.

So by definition of strong entailment, φ � φ′ �→ φ′ . �
In the following, we prove a general version of the claim Kiφ � Kiμ ⇔ Ki(φ � μ), where φ and μ are propositional

formulas.

Theorem 10. Let φ ⇔ ∧
p∈P K pφp and φ′ ⇔ ∧

p∈P ′ K pφ′
p be proper ACDFs. Then

φ � φ′ ⇔
∧

′
K pφp ∧

∧
′

K pφ′
p ∧

∧
′
K p[φp �w φ′

p].

p∈P−P p∈P −P p∈P∩P

21

H. Wan, B. Fang and Y. Liu Artificial Intelligence 301 (2021) 103562
Fig. 4. An example tree model.

Proof. We prove by induction on |φ| + |φ′|.
1. φ and φ′ are propositional. The claim obviously holds.
2. φ = φ0 ∧ ∧

a∈B∇a{φa} and φ′ = φ′
0 ∧ ∧

a∈B′∇a{φ′
a}. By Proposition 26,

φ � φ′ = (φ0 � φ′
0) ∧

∧
a∈B−B′ Kaφa ∧

∧
a∈B′−BKaφ

′
a ∧

∧
a∈B∩B′ Ka[φa � φ′

a].
By induction, for each a ∈ B ∩B′ ,

φa � φ′
a ⇔

∧
p∈Pa−P ′

a

K pφap ∧
∧

p∈P ′
a−Pa

K pφ′
ap ∧

∧
p∈Pa∩P ′

a

K p[φap �w φ′
ap].

Thus

φ � φ′ ⇔ (φ0 � φ′
0) ∧

∧
a∈B−B′ Kaφa ∧

∧
a∈B′−BKaφ

′
a∧∧

a∈B∩B′,p∈Pa−P ′
a

Kapφap ∧
∧

a∈B∩B′,p∈P ′
a−Pa

Kapφ′
ap ∧

∧
a∈B∩B′,p∈Pa∩P ′

a
Kap[φap �w φ′

ap]
⇔

∧
p∈P−P ′

K pφp ∧
∧

p∈P ′−P

K pφ′
p ∧

∧
p∈P∩P ′

K p[φp �w φ′
p] �

We now show that for proper ACDFs, the semantic characterization for propositional belief change operators can nicely
carry over to higher-order belief change operators. For this purpose, we consider specially designed KD45n models with an
underlying tree structure such that each world has a unique a-successor for each agent a. We call such models tree models.

Definition 26. A tree model of depth k ≥ 0 is a pointed Kripke model t = (M, w) such that

1. After removal of loops at worlds, the underlying graph of t is a tree of depth k rooted at w .
2. w has a unique a-child for each agent a ∈ A.
3. For each world v of t , if it is at level j < k and it is the a-child of its parent, then there is an a-loop at v , and v has a

unique b-child for each agent b �= a.
4. For each leaf v of t , there is an a-loop at v for each agent a ∈A.

For example, Fig. 4 shows a tree model of depth 2 where there are three agents a, b, c and three atoms p, q, r.
A tree model has the following properties:

Proposition 27. A tree model is a KD45n model such that each world has a unique a-successor for each agent a, and each world at
level j ≥ 0 is reachable from the root via a unique alternating path of length j.

Proof. Let a ∈A. By Definition 26, obviously, each world has a unique a-successor. Now let w Rau and w Ra v . Then we must
have u = v . If w = u, uRa v . If w �= u, by Condition 3 of Definition 26, uRau, i.e., uRa v . Hence Ra is Euclidean. Now suppose
w Rau and uRa v . By Definition 26, w = u or u = v , hence w Ra v . So Ra is transitive.

Finally, we prove by induction on j that each world at level j ≥ 0 is reachable from the root via a unique alternating
path of length j. Basis: j = 0. The path is the empty path. Induction: j > 0. Suppose that w is the a-child of some world v
at level j − 1 for some agent a. By induction, v is reachable from the root by a unique alternating path p of length j − 1.
By Condition 3, a must be different from the last agent of p. Thus w is reachable from the root via the unique alternating
path pa of length j. �
22

H. Wan, B. Fang and Y. Liu Artificial Intelligence 301 (2021) 103562
Thus we have the following properties of tree models:

Proposition 28. Let t = (M, w) be a tree model. Let p be a path of agents, φ, ψ ∈ LK . Then we have t |= K pφ ⇔ Lpφ; t |= K p(φ ∨
ψ) ⇔ K pφ ∨ K pψ .

Proof. By Proposition 27, let v be the unique world of t reachable from w via p. Then we have t |= K pφ iff M, v |= φ iff
t |= Lpφ; t |= K p(φ ∨ ψ) iff M, v |= φ ∨ ψ iff M, v |= φ or M, v |= ψ iff t |= K pφ or t |= K pψ iff t |= K pφ ∨ K pψ . �

The above properties say that tree models cannot represent negative beliefs in the form of L pφ ∧ ¬K pφ or disjunctive
beliefs in the form of K p(φ ∨ ψ) ∧ ¬(K pφ ∨ K pψ). Since proper ACDFs disallow negative or disjunctive beliefs, we will be
able to easily show that if a proper ACDF has a model, then it has a tree model.

By Proposition 27, for a tree model, each world at level j ≥ 0 is reachable from the root via a unique alternating path of
length j. Thus a tree model of depth k can be represented as a tuple of valuations �V where for each alternating path p of
length ≤ k, there is a valuation V p .

Proposition 29. Let φ = ∧
p∈P K pφp be an alternating path knowledge term of modal depth k. Let �V be a tree model of depth ≥ k.

Then �V |= φ iff for each p ∈ P , V p |= φp .

Proof. In the tree model �V , for each path p, the root has a unique p-descendant, and its associated valuation is V p . �
For example, the tree model in Fig. 4 is a model of

p ∧ q ∧ r ∧ Kc(p ∧ q ∨ p ∧ r ∨ q ∧ r) ∧ Kab(p ∨ q ∨ r) ∧ Kbc(p ∨ q ∨ r).

Theorem 11. Let φ = ∧
p∈P K pφp be an alternating path knowledge term. Then φ is satisfiable iff it has a tree model.

Proof. We only need to prove the only-if direction. By Proposition 5, an alternating modal term φ0 ∧∧
a∈B Kaφa is satisfiable

iff φ0 is propositionally satisfiable and for each a ∈ B, φa is satisfiable. Now suppose that φ is satisfiable. By iteratively
applying the above result, φp is satisfiable for each p ∈ P . Let V p |= φp for each p ∈ P . We construct a tree model �V from
these V p ’s. By Proposition 29, �V |= φ. �

Because of the above property, for a proper ACDF, we can treat its tree models as its canonical models. Hence for
semantic characterizations for proper ACDFs, we can restrict our attention to tree models.

Let φ be a DNF. We use Mod(φ) to denote the set of valuations that satisfy φ. Let φ be a proper ACDF of depth ≤ k. We
use TModk(φ) to denote the set of tree models of depth k which are models of φ.

In the following, we define order relations between tree models. Since a tree model can be represented as a tuple of
valuations, we can easily define order relations between tree models as bitwise order relations between valuations.

Let ≤ be a binary relation on a set U . We say that ≤ is a partial preorder if it is reflexive and transitive. Let ≤ be a
partial preorder on U . We write x < y if x ≤ y but not y ≤ x. Let S ⊆ U . We use Min(S, ≤) for the set of elements of S
minimal under ≤.

Definition 27.

1. Let V and V ′ be two valuations. The difference of V and V ′ , written Diff(V , V ′), is defined as (V − V ′) ∪ (V ′ − V).
2. A difference tree of depth k is a tuple �D where for each alternating path p of length ≤ k, D p is a subset of P .
3. Let �V and �V ′ be two tree models of depth k. We define Diff(�V , �V ′) as �D where for each alternating path p of length

≤ k, D p = Diff(V p, V ′
p).

Definition 28.

1. Let V , V 1, V 2 be valuations. We define V 1 ≤V V 2 if Diff(V 1, V) ⊆ Diff(V 2, V).
2. Let �D and �D ′ be two different trees of depth k. We write �D ≤b �D ′ if for each path p, D p ⊆ D ′

p .

3. Let �V , �V 1, �V 2 be tree models of depth k. We define �V 1 ≤�V �V 2 if Diff(�V 1, �V) ≤b Diff(�V 2, �V).

The following Proposition is easy to prove.

Proposition 30. ≤V , ≤b, and ≤� are all partial preorders.
V

23

H. Wan, B. Fang and Y. Liu Artificial Intelligence 301 (2021) 103562
Definition 29.

1. Let φ0 and φ′
0 be two DNFs. We define Diff(φ0, φ′

0) = {Diff(V , V ′) | V ∈Mod(φ0), V ′∈ Mod(φ′
0)}, and let MinDiff(φ0, φ′

0) =
Min(Diff(φ0, φ′

0), ⊆).
2. Let φ and φ′ be two proper ACDFs of modal depth ≤ k. We define Diffk(φ, φ′) = {Diff(�V , �V ′) | �V ∈ TModk(φ), �V ′ ∈

TModk(φ
′)}, and let MinDiffk(φ, φ′) = Min(Diffk(φ, φ′), ≤b).

The following proposition shows that the set of minimal differences of two proper ACDFs is the Cartesian product of the
minimal differences of path formulas.

Let �V be a tree model of depth k. Let p be an alternating path of length ≤ k, and let V ′ be a valuation. We use �V [V ′/V p]
to denote the tree model which is the same as �V except that the valuation associated with p is V ′ .

Proposition 31. Let φ ⇔ ∧
p K pφp , and φ′ ⇔ ∧

p K pφ′
p , where p ranges over all alternating paths of length ≤ k. Let �V ∈ TModk(φ)

and �V ′ ∈ TModk(φ
′). Then Diff(�V , �V ′) ∈ MinDiffk(φ, φ′) iff for each p, Diff(V p, V ′

p) ∈ MinDiff(φp, φ′
p).

Proof. We prove Diff(�V , �V ′) /∈ MinDiff(φ, φ′) iff there exists p s.t. Diff(V p, V ′
p) /∈ MinDiff(φp, φ′

p). ⇒: Suppose that
there exist �V 1 ∈ TModk(φ) and �V 2 ∈ TModk(φ

′) s.t. Diff(�V 1, �V 2) <b Diff(�V , �V ′). Then there exists p s.t. Diff(V 1p, V 2p) ⊂
Diff(V p, V ′

p). Thus Diff(V p, V ′
p) /∈ MinDiff(φp, φ′

p). ⇐: Suppose that there is p and there exist V 1p |= φp and V 2p |= φ′
p s.t.

Diff(V 1p, V 2p) ⊂ Diff(V p, V ′
p). Now let �V 1 = �V [V 1p/V p] and �V 2 = �V [V 2p/V p]. Then Diff(�V 1, �V 2) <b Diff(�V , �V ′). By Proposi-

tion 29, �V 1 |= φ and �V 2 |= φ′ . Thus Diff(�V , �V ′) /∈ MinDiff(φ, φ′). �
The following is a semantic characterization for our higher-order revision operator. Like propositional revision, φ ◦ φ′

selects from the tree models of φ′ those that are closest to tree models of ψ .

Theorem 12. Let φ and φ′ be proper ACDFs of modal depth ≤ k. Then TModk(φ ◦ φ′) =
{ �V ′ ∈ TModk(φ

′) | ∃ �V ∈ TModk(φ) s.t. Diff(�V , �V ′) ∈ MinDiffk(φ,φ′)}.
Proof. Let φ ⇔ ∧

p K pφp , and φ′ ⇔ ∧
p K pφ′

p , where p ranges over all alternating paths of length ≤ k. By Theorem 9,
φ ◦ φ′ ⇔ ∧

p K p[φp ◦s φ′
p]. Thus �V ′ ∈ TModk(φ ◦ φ′) iff for each path p, V ′

p |= φp ◦s φ′
p iff (by the definition of ◦s) for each p,

V ′
p |= φ′

p and there exists V p |= φp s.t. Diff(V p, V ′
p) ∈ MinDiff(φp, φ′

p) iff (by Proposition 31) �V ′ |= φ′ and there exists �V |= φ

s.t. Diff(�V , �V ′) ∈ MinDiffk(φ, φ′). �
The following proposition shows that the set of minimal elements under ≤�V is the Cartesian product of the set of

minimal elements under ≤V p for each path p.

Proposition 32. Let φ ⇔ ∧
p K pφp , where p ranges over all alternating paths of length ≤ k. Let �V and �V ′ be tree models of depth k.

Then �V ′ ∈ Min(TModk(φ), ≤�V) iff for each path p, V ′
p ∈ Min(Mod(φp), ≤V p).

Proof. We prove that �V ′ /∈ Min(TModk(φ), ≤�V) iff there is p s.t. V ′
p /∈ Min(Mod(φp), ≤V p). ⇒: Suppose there is �V ′′ ∈

TModk(φ) s.t. �V ′′ < �V �V ′ . Then there exists path p s.t. V ′′
p <V p V ′

p . Thus V ′
p /∈ Min(Mod(φp), ≤V p). ⇐: Suppose that

there exist p and V ′′
p |= φp s.t. V ′′

p <V p V ′
p . Let �V ′′ = �V ′[V ′′

p/V ′
p]. Then �V ′′ |= φ (by Proposition 29) and �V ′′ < �V �V ′ . Thus

�V ′ /∈ Min(TModk(φ), ≤�V). �
The following is a semantic characterization for our higher-order update operator. Like propositional update, φ � φ′

selects, for each tree model �V of φ, the set of tree models of φ′ that are closest to �V .

Theorem 13. Let φ and φ′ be proper ACDFs of modal depth ≤ k. Then we have

TModk(φ � φ′) =
⋃

�V ∈TModk(φ)

Min(TModk(φ
′),≤�V).

Proof. Let φ ⇔ ∧
p K pφp , and φ′ ⇔ ∧

p K pφ′
p , where p ranges over all alternating paths of length ≤ k. By Theorem 10,

φ � φ′ ⇔ ∧
p K p[φp �w φ′

p]. Thus �V ′ ∈ TModk(φ � φ′) iff for each path p, V ′
p |= φp �w φ′

p iff (by the definition of �w)
for each p, there is V p ∈ Mod(φp) s.t. V ′

p ∈ Min(Mod(φ′
p), ≤V p) iff (by Proposition 32) there is �V ∈ TModk(φ) s.t. �V ′ ∈

Min(TModk(φ
′), ≤�). �
V

24

H. Wan, B. Fang and Y. Liu Artificial Intelligence 301 (2021) 103562
5. Implementation and experimentation

Based on the theoretic work, we have developed EPDDL – an epistemic extension of PDDL [35], to describe multi-agent
epistemic planning problems, and implemented a multi-agent epistemic planner MEPK.1

In this section, we introduce EPDDL, describe the overall architecture of MEPK, and give our experimental evaluation of
MEPK.

5.1. EPDDL

An MEP problem specified in EPDDL consists of two parts: a domain file for specifying types, predicates and actions, and
a problem file for specifying objects, agents, the initial KB and goal.

Below is the domain file for Example 3, where the detail for action right is omitted.

(define (domain ctc2)
(:types agent room box)
(:predicates (at ?ag - agent ?p - room) (in ?b - block ?p - room))

(:action left
:category (ontic)
:parameters (?i - agent)
:precondition (and (not(at ?i p1)) (K_?i (not(at ?i p1))))
:effect (<{at ?i p2} {and (at ?i p1) (K_?i (at ?i p1))}>

<{at ?i p3} {and (at ?i p2) (K_?i (at ?i p2))}>))

(:action right ...)

(:action find
:category (sensing)
:parameters (?i - agent ?b - box ?p - room)
:precondition (and (at ?i ?p) (K_?i (at ?i ?p)))
:observe_pos (and (in ?b ?p) (K_?i (in ?b ?p)))
:observe_neg (and (not (in ?b ?p)) (K_?i (not (in ?b ?p)))))

(:action tell
:category (communication)
:parameters (?i - agent ?j - agent ?b - box ?p - room)
:precondition (or (K_?i (in ?b ?p)) (K_?i (not (in ?b ?p))))
:effect (<{K_?i (in ?b ?p)} {K_?j (in ?b ?p)}>

<{K_?i (not (in ?b ?p))} {K_?j (not (in ?b ?p))}>))

The domain name is ctc2. There are three types: agent, room, and box. There are two predicates: binary predicate
at whose first parameter ?ag is of type agent and second parameter ?p is of type room, and binary predicate in. There
are three categories of actions: ontic, communication, and sensing. The preconditions of actions, the conditions and effects
of conditional effects, and the positive and negative results of sensing actions are represented with arbitrary multi-agent
epistemic formulas. For example, (and (not (at ?i p1)) (K_?i (not (at ?i p1)))) represents the formula
¬at(i, p1) ∧ Ki¬at(i, p1).

Then the following is the problem file for Example 3:

(define (problem ctc2)
(:domain ctc2)
(:objects b1 b2 - box p1 p2 p3 - room)
(:agents a b)

(:init (and (at a p2) (at b p2) (not (in b1 p2)) (not (in b2 p2))
(K_a (and (at a p2) (not (in b1 p2)) (not (in b2 p2))))
(K_b (and (at b p2) (not (in b1 p2)) (not (in b2 p2))))))

(:constraint (and
(or (and (in b1 p1) (not (in b1 p2)) (not (in b1 p3)))

(and (not (in b1 p1)) (in b1 p2) (not (in b1 p3)))
(and (not (in b1 p1)) (not (in b1 p2)) (in b1 p3))

(or (and (in b2 p1) (not (in b2 p2)) (not (in b2 p3)))
(and (not (in b2 p1)) (in b2 p2) (not (in b2 p3)))
(and (not (in b2 p1)) (not (in b2 p2)) (in b2 p3)))

...)

1 The link to our planner and domain sources is: https://github .com /sysulic /MEPK.
25

https://github.com/sysulic/MEPK

H. Wan, B. Fang and Y. Liu Artificial Intelligence 301 (2021) 103562
(:goal (and (or (K_a (in b1 p1)) (K_a (in b1 p2)) (K_a (in b1 p3)))
(or (K_b (in b2 p1)) (K_b (in b2 p2)) (K_b (in b2 p3))))))

5.2. Overall architecture

The MEPK system consists of two modules: Compiler and Planner. The Compiler module parses the input, i.e., an MEP
problem described with EPDDL. Then it does the following conversion: the initial KB, the effects of conditional effects of
deterministic actions, and the positive and negative results of sensing actions into ACDFs, the preconditions of actions, the
conditions of conditional effects, and the goal into the negation of ACDFs, and the constraint into a DNF formula. Finally,
the compiler grounds the operators, namely parameterized actions, into actions, and grounds predicates into atoms. For the
ctc2 input, the operator left(i) will be grounded into left(a) and left(b).

Like [47], we adapt the PrAO algorithm for contingent planning [45] as our planning algorithm. PrAO extends AND/OR
forward search with pruning techniques. It uses the so-called minimal DNF formulas to represent states and employs the
following basic operations: reasoning, equivalence checking, update w.r.t. ontic actions, and update w.r.t. sensing actions.
We use ACDFs to represent states, and for the above operations, we plug in our operations of reasoning, strong equivalence
checking, the progression w.r.t. deterministic actions, and progression w.r.t. sensing actions.

Algorithm 1 presents our main procedure. Each node n is a knowledge base in ACDF. We use state(n) to indicate the
state of n, which is one of the following values: goal meaning that the node is goal achievable, dead meaning that the node
is not goal achievable, unexplored, and explored. We use connected(n) to denote whether the node n can be reached from
the initial node. Lines 1-5 return an empty tree if I |= G; otherwise, initialize the search graph, i.e., set the initial node n0
to the initial KB, and let connected(n0) = true. Lines 6-14 build up the search graph until a solution is found or it is known
that no solution exists. If there is no unexplored and connected node, the search graph cannot be further expanded and
hence null is returned; otherwise, choose an unexplored and connected node n and explore it by calling Explore(n). With
loop detection, Explore(n) generates the children of node n by applying any executable deterministic or sensing action. If
state(n0) becomes goal, return a solution built from T by calling BuildPlan(T); if state(n0) becomes dead, return null. See
[45] for details of Explore(n) and BuildPlan(T).

In line 9, we provide with two strategies to choose nodes: breadth-first search (BFS) and heuristic search. For heuristic
search, we use greedy BFS, i.e., we choose an unexplored and connected node with the largest heuristic function value.

To define the heuristic function, we first define the degree of inconsistency of two ACDFs. The definition is inspired by
the recursive algorithm to check if an ACDF entails the negation of another (see Proposition 22). Recall that if φ and φ′ are
propositional terms, then φ |=γ ¬φ′ iff for each term t in γ , φ ∧ t ∧ φ′ has complementary literals.

Definition 30. Let φ and φ′ be two ACDFs, γ a DNF formula. The degree of inconsistency of φ and φ′ w.r.t. γ , denoted by
dγ (φ, φ′), is recursively defined as follows:

1. For propositional terms φ and φ′ , dγ (φ, φ′) is the number of terms t in γ s.t. φ ∧ t ∧ φ′ has complementary literals.
2. When φ = φ0 ∧ ∧

a∈B∇a�a and φ′ = φ′
0 ∧ ∧

a∈B′∇a�
′
a, dγ (φ, φ′) .= dγ (φ0, φ′

0) +
∑

a∈B∩B′
∑

φa∈�a,φ′
a∈�′

a
dγ (φa, φ′

a).
3. When φ = ∨

� and φ′ = ∨
�′, dγ (φ, φ′) .= ∑

φi∈�,φ j∈�′ dγ (φi, φ j).

Let φ be a node generated from a node φ′ . The heuristic value of φ is measured by the gain of the degree of inconsistency
with ¬G when we move from φ′ to φ.

Definition 31. Let φ be a node generated from a node φ′ , γ a constraint, and G the goal. The heuristic value of φ (w.r.t. γ
and G) is defined as: h(φ) = dγ (φ, ¬G) − dγ (φ′, ¬G).

5.3. Experimental evaluation

We evaluate MEPK with Selective-communication (SC) and Collaboration-and-communication (CC) domains adapted from
[31], Coin-in-the-box adapted from [32], and Grapevine from [38], where SC is called “Corridor”. We also made up three
domains: Assembly-line (AL), and domains adapted from the classic Gossip problem [2] and the knowledge game Hexa
[18]. We did not consider three domains from [31]: MuddyChildren, Sum, and WordRooms. The first two involve public
announcements, which result in common knowledge, and so we are not able to model them. The third is a variant of CC.
Below we give the description of each domain we use.

Selective-communication: SC(n). There are n rooms in a corridor. The agents can move from a room to a neighboring
room. When agent i tells some information, all the other agents in the same room or in a neighboring room can hear what
was told. Initially, each agent is in one of the rooms. The goal is that some agents get to know some information while
some other agents do not. Versions of SC(n) with higher modal depth result from an approximation of common knowledge
with higher-order knowledge.

Collaboration-and-communication: CC(k,n), *CC(k,n), †CC(k,n). These are variants of Example 3 where there are k boxes and
n rooms. The *CC(k, n) variant uses sensing actions as in Example 3. The CC(k, n) variant imitates the version from [31]
26

H. Wan, B. Fang and Y. Liu Artificial Intelligence 301 (2021) 103562
Algorithm 1: Plan(A, P, D, S, I, G, γ).

Input: An MEP problem Q = 〈A, P, D, S, I, G, γ 〉.

Output: A solution or null.

1 if I |= G then
2 return an empty tree

3 else
4 Let n0 = I , state(n0) = unexplored,

5 connected(n0) = true, and T = {n0}
6 while true do
7 if there is no node n s.t. state(n) = unexplored and connected(n) = true then
8 return null

9 Choose an unexplored and connected node n
10 Explore(n)

11 if state(n0) = goal then
12 return BuildPlan(T)

13 if state(n0) = dead then
14 return null

in that with one action, an agent can see which boxes are in a room. So in this version, we replace sensing actions with
ontic actions whose effect is knowing whether each box is in a room. We comment that this replacing is possible since this
example has linear plans. Furthermore, we add a cheat action to *CC(k, n), leading to the variant †CC(k,n). The cheat(i, j, b, r)
action means agent i misleads agent j about whether box b is in room r.

Finding-the-truth: FT(k,n). There are k boxes and n rooms. Each box is placed in a room. The agents start with wrong
beliefs of the positions of the boxes. The agents can move between the rooms and check if a box is in a room. The goal is
for the agents to find out the true locations of the boxes.

Coin-in-the-box: Coin(k). There are three agents and a box containing a coin. Only one agent has the key to the box and
one can peek into the box to check the face of the coin if the box is open. Agents can distract (resp. signal) others so that
they won’t (resp. will) look at the box. One can announce that the coin is showing head or tail. Initially, some of the agents
look at the box. The goal is to make certain agents know the face of the coin while others don’t. Different values of the
parameter k correspond to different settings of the initial KB and goal.

Grapevine(n). A few guests attend a meeting in a villa with n rooms. Each guest has her own secret to share with others.
Each guest can move between the rooms, and broadcast her secret to the guests in the same room. The goal is that only
some of the guests obtain the designated secrets.

Hexa Game. There are k agents and k cards, each with a unique color. Initially, everyone is holding a card, and can only
see the color of her own card. A player can ask a question to another player whether her card is of a certain color. The
question should always be honestly answered. The goal is for some agents to know the cards of all players.

Assembly-line (AL). There are two agents, each responsible for processing a part of a product. It is possible that an agent
fails in processing her part. An agent can inform the other agent of the status of her task. Two agents decide to assemble
the product or restart depending on their knowledge of the status of the agents’ tasks.

Gossip. Each of several friends has her own secret to share. Instead of sharing in public, they are only allowed to make
a call to each other. In each call, they exchange all the secrets they know. The goal is that everyone knows all the secrets of
other friends.

Our experiments were run on a Linux machine with 3.60 GHz Intel Core i7 and 8 GB RAM. Our experimental results
are shown in Table 1. The first 3 columns indicate the domain, the number of agents, and the maximal modal depth of the
KBs. Their values uniquely determine a problem. The next two columns represent the number of sensing and deterministic
actions, and the number of atoms. If the number of sensing actions is 0, the planning problem is conformant, else it is
contingent. In the MEPK columns (one for BFS and one for heuristic search), A-B(X/Y /Z) stands for A seconds of total
time, B seconds spent on search, depth X and Y nodes of solution tree, and Z nodes searched. The results show the
viability of our approach. Nonetheless, our planner does not perform well on the CC domain due to complicated constraints
and action effects. Also, our planner does not scale well on Finding-the-truth and Hexa Game. This is because the search
performance is greatly influenced by the number of actions, the depth of the shallowest solutions, and the complexity of
the goals. For example, in Hexa Game, there are 48 (resp. 100) sensing actions when there are 4 (resp. 5) agents.

We compare the performance of MEPK with those of the planner by Kominis & Geffner2 [31] and the RP-MEP planner by
Muise et al.3 [38]. We reran the corresponding experiments of the two planners using the FF-X planner with their domain
sources, and the comparison results are shown in Table 2. In the last two columns, (X) stands for plan length X , and “na”

2 Available at https://bitbucket .org /filcom /fromonetomany.
3 Available at https://bitbucket .org /haz /pdkb -planning /src /default.
27

https://bitbucket.org/filcom/fromonetomany
https://bitbucket.org/haz/pdkb-planning/src/default

H. Wan, B. Fang and Y. Liu Artificial Intelligence 301 (2021) 103562
Table 1
Experimental results of MEPK with BFS search and MEPK with heuristic search.

Domain |A| d |S|+|D| |P| MEPK (BFS) MEPK (Heu)

CC(2,4) 2 1 0+28 16 22.56-22.56 (6/7/263) 1.73-1.72 (8/9/45)
CC(3,4) 2 1 0+36 20 257.14-257.13 (6/7/263) 23.67-23.66 (8/9/45)
CC(4,4) 2 1 0+44 24 − 514.31-514.29 (8/9/45)
*CC(2,3) 2 1 8+16 12 0.48-0.47 (4/9/119) 0.15-0.15 (4/10/51)
*CC(2,3) 3 1 12+42 15 2.53-2.52 (5/11/1223) 0.07-0.07 (5/13/156)
*CC(2,4) 2 1 12+20 16 6.42-6.42 (7/20/1160) 2.23-2.22 (21/40/751)
*CC(3,3) 3 1 18+60 18 10.72-10.71 (5/13/1429) 0.19-0.19 (7/15/185)
†CC(2,3) 2 1 8+28 12 19.17-19.16 (4/10/642) 7.14-7.13 (6/11/471)
†CC(2,3) 3 1 12+78 15 0.22-0.21 (4/7/343) 0.06-0.05 (6/11/130)
†CC(2,4) 2 1 12+36 16 0.06-0.05 (3/6/49) 2.31-2.30 (8/14/850)
†CC(3,3) 3 1 18+114 18 0.65-0.63 (4/7/312) 0.37-0.36 (6/12/238)

FT(1,2) 1 1 2+2 4 0.01-0.01 (1/3/4) 0.01-0.01 (1/3/4)
FT(2,3) 1 1 6+2 9 0.08-0.08 (4/8/106) 0.03-0.03 (4/8/39)
FT(2,3) 2 1 12+4 12 7.42-7.42 (6/11/1423) 0.32-0.32 (10/16/251)

SC(4) 3 1 1+3 13 0.02-0.01 (5/10/26) 0.02-0.02 (5/10/22)
SC(4) 7 1 1+3 29 0.04-0.04 (5/10/26) 0.03-0.03 (5/10/22)
SC(4) 8 1 1+3 33 0.04-0.03 (5/10/30) 0.05-0.05 (5/10/32)
SC(4) 3 3 1+3 13 0.02-0.01 (5/10/26) 0.04-0.03 (5/10/32)
SC(4) 3 4 1+3 13 0.03-0.02 (5/10/26) 0.04-0.03 (5/10/23)
SC(8) 3 1 1+3 25 0.05-0.04 (10/19/40) 0.05-0.04 (10/19/43)

Coin(1) 3 1 0+25 8 0.01-0.01 (2/3/9) 0.01-0.01 (2/3/9)
Coin(2) 3 1 0+25 8 0.02-0.01 (3/4/31) 0.01-0.01 (3/4/18)
Coin(3) 3 1 0+25 8 0.05-0.04 (5/6/79) 0.05-0.04 (16/17/94)

Grapevine(2) 3 2 0+18 9 0.01-0.01 (2/3/15) 0.01-0.01 (2/3/15)
Grapevine(2) 4 1 0+40 12 1.80-1.80 (5/6/2607) 0.01-0.01 (6/7/61)
Grapevine(2) 4 2 0+56 12 0.03-0.01 (2/3/22) 0.05-0.02 (2/3/20)
Grapevine(2) 4 3 0+56 12 0.05-0.02 (2/3/22) 0.09-0.05 (2/3/20)
Grapevine(2) 4 4 0+56 12 0.06-0.03 (2/3/22) 0.09-0.05 (2/3/20)
Grapevine(3) 4 1 0+152 16 0.07-0.01 (2/3/27) 0.66-0.60 (16/17/472)

3 1 18+0 9 0.01-0.01 (1/3/3) 0.01-0.01 (1/3/3)
Hexa Game 4 1 48+0 16 0.02-0.02 (3/11/42) 0.02-0.02 (3/11/50)

5 1 100+0 25 9.69-9.68 (6/47/1670) −
2 2 2+4 4 0.01-0.01 (5/12/32) 0.02-0.02 (5/18/32)
2 3 2+4 4 0.02-0.02 (5/12/32) 0.03-0.03 (5/18/32)

Assemble Line 2 4 2+4 4 0.04-0.04 (5/12/32) 0.04-0.04 (5/18/32)
2 5 2+4 4 0.07-0.07 (5/12/32) 0.08-0.08 (5/18/32)
2 7 2+4 4 0.36-0.36 (5/12/32) 0.45-0.44 (5/18/32)
2 10 2+4 4 5.53-5.53 (5/12/32) 6.62-6.62 (5/18/32)

3 2 0+6 3 0.03-0.03 (3/4/11) 0.02-0.01 (3/4/7)
Gossip 4 2 0+24 4 1.84-1.83 (4/5/133) 0.20-0.20 (5/6/30)

5 2 0+120 5 − 1.10-1.09 (7/8/99)

means that the planning problem is not considered by the planner. For example, CC is not encoded by RP-MEP; as to SC,
K&G only encodes SC(4) with 3 agents and d = 1. The results show that the searching performance of MEPK is reasonable,
but still worse than the two other planners. This is because MEPK uses more general and complex KBs, and hence spends
more time on reasoning and progression. However, when it comes to total time, MEPK performs better than the two other
planners except for the CC domain. This is because MEPK saves from the expensive compilation into classical planning.

We also compare the performance of MEPK with those of the EFP and PG-EFP planners4 by Le et al. [32]. Since (PG-)EFP
is only executable on macOS, the comparison experiments were run on macOS with 2.30 GHz Intel Core i5 and 8 GB RAM.
We use the problem settings of the two planners,5 and the comparison results are illustrated in Table 3. We set the timeout
bound to 30 minutes, and “−” means timeout. The results show that MEPK performs better in most instances.

Finally, we should note that the four planners use different encodings of MEP problems. Thus even for the same domain,
the exact MEP problem considered by a planner might be different from that considered by another planner. For example,
for the CC domain, the K&G and MEPK encodings do not specify the exact positions of boxes in the initial state, while the
RP-MEP encoding has to since it cannot represent disjunctive beliefs. More details of the different encodings will be given
in the next section.

4 Available at https://github .com /tiep /EpistemicPlanning.
5 Note the differences in the MEPK data for the CC(2,4) and SC(4) domains in Tables 2 and 3.
28

https://github.com/tiep/EpistemicPlanning

H. Wan, B. Fang and Y. Liu Artificial Intelligence 301 (2021) 103562
Table 2
Comparison results with planners by Kominis & Geffner and Muise et al..

Domain |A| d MEPK (BFS) MEPK (Heu) K&G RP-MEP

CC(2,4) 2 1 22.56-22.56 (6/7/263) 1.73-1.72 (8/9/45) 0.02-0.01 (8) na
CC(3,4) 2 1 257.14-257.13 (6/7/263) 23.67-23.66 (8/9/45) 4.17-0.03 (8) na
CC(4,4) 2 1 − 514.31-514.29 (8/9/45) 726.14-0.71 (8) na

3 1 0.02-0.02 (5/10/27) 0.01-0.01 (5/10/27) 0.01-0.01 (9) 0.04-0.01 (5)
SC(4) 7 1 0.04-0.04 (5/10/26) 0.03-0.03 (5/10/22) na 0.05-0.01 (5)

3 3 0.02-0.01 (5/10/26) 0.04-0.03 (5/10/32) na 0.12-0.01 (5)

3 2 0.01-0.01 (2/3/15) 0.01-0.01 (2/3/15) na 0.18-0.01 (2)
Grapevine(2) 4 1 1.80-1.80 (5/6/2607) 0.01-0.01 (6/7/61) na 0.11-0.01 (5)

4 2 0.03-0.01 (2/3/22) 0.05-0.02 (2/3/20) na 0.53-0.02 (2)

Table 3
Comparison results with EFP and PG-EFP by Le et al..

Domain |A| d MEPK (BFS) MEPK (Heu) EFP PG-EFP

CC(2,4) 2 1 0.16-0.14 (3/4/15) 0.09-0.07 (3/4/9) − 42.85-40.86 (7)
CC(2,3) 3 1 0.68-0.59 (4/5/35) 0.37-0.28 (4/5/23) 12.92-12.34 (4) 2.42-1.84 (4)
CC(3,3) 3 1 47.01-46.70 (4/5/105) 6.43-6.12 (4/5/25) 770.57-770.43 (6) 2.35-2.19 (6)

SC(4) 3 1 0.03-0.03 (5/10/26) 0.04-0.03 (5/10/28) 0.06-0.06 (5) −
SC(6) 5 1 0.06-0.05 (6/12/55) 0.04-0.03 (7/13/34) 0.36-0.35 (6) 0.24-0.24 (6)
SC(8) 7 1 0.45-0.44 (9/18/159) 1.35-1.34 (11/20/253) 15.04-15.02 (9) −

3 2 0.02-0.01 (2/3/15) 0.10-0.10 (4/5/64) 0.20-0.17 (2) −
Grapevine(2) 4 1 8.08-8.08 (5/6/2607) 0.16-0.15 (10/11/209) − −

4 2 0.07-0.04 (2/3/22) 1.17-1.14 (4/5/179) 1.25-1.08 (2) −
Coin(1) 3 2 0.01-0.01 (2/3/9) 0.02-0.01 (2/3/9) 0.04-0.02 (2) 0.21-0.20 (2)
Coin(2) 4 2 0.03-0.02 (3/4/31) 0.02-0.01 (3/4/18) 0.17-0.16 (3) 0.88-0.87 (3)
Coin(3) 5 2 0.09-0.09 (5/6/79) 0.06-0.05 (6/7/50) 2.71-2.70 (5) 1.17-1.16 (5)

Assemble Line 2 2 0.03-0.03 (5/12/32) 0.03-0.03 (5/12/30) 1.48 - 1.47 (5) 0.70 - 0.69 (5)

Table 4
Comparison of four MEP systems.

System Approach Solution Action Knowledge/Belief Language

K&G compilation linear public knowledge LK

RP-MEP compilation linear private belief RMLd

MEPK native (KB) branching private belief LK

(PG-)EFP native (model) linear private belief LK

6. Comparison of four MEP systems

In this section, we compare the four MEP systems: K&G [31], RP-MEP [38], MEPK, and (PG-)EFP [32].
Table 4 illustrates a comparison of basic aspects of the four systems. Both K&G and RP-MEP rely on compilation into

classical planning, while MEPK and (PG-)EFP are native planners that search in the space of knowledge bases and Kripke
models, respectively. MEPK generates branching solutions as action trees, while the other systems all generate linear plans.
K&G assumes all actions are public and hence handles knowledge, while the other systems consider private actions and
hence beliefs. Finally, K&G, MEPK and (PG-)EFP all use the multi-agent epistemic language, while RP-MEP uses a restricted
language RMLd , denoting restricted modal literals with bounded modal depth.

In the following, for each of K&G, RP-MEP and (PG-)EFP, we illustrate how the approach encodes a variant of Example 3,
due to the difference in expressibility of different approaches.

We begin with K&G summarized that they deal with knowledge rather than belief. All the agents start with a common
initial belief. In this approach, a sensing action sense(A, �) represents that agents in A sense in parallel the truth value of
each formula of �, which is a set of multi-agent epistemic formulas. We formalize a variant of Example 3 with 4 rooms:

• The ontic actions are: left(i) and right(i), where
left(i) = 〈pre, {eff1, eff2, eff3}〉, with pre = ¬at(i, p1),
eff1 = 〈at(i, p2), {at(i, p1), ¬at(i, p2), ¬at(i, p3), ¬at(i, p4)}〉,
eff2 = 〈at(i, p3), {¬at(i, p1), at(i, p2), ¬at(i, p3), ¬at(i, p4)}〉, and
eff3 = 〈at(i, p4), {¬at(i, p1), ¬at(i, p2), at(i, p3), ¬at(i, p4)}〉.
29

H. Wan, B. Fang and Y. Liu Artificial Intelligence 301 (2021) 103562

.

• The communication actions are: sense(i, {K jin(b, p)}), meaning agent j communicates to agent i whether j knows
in(b, p).

• The sensing actions are: sense(i, {in(b1, p), in(b2, p)}) with precondition at(i, p), meaning agent i finds out in parallel
whether each block is in p.

• The common initial belief is at(1, p2) ∧ at(2, p2) ∧ ¬in(b1, p2) ∧ ¬in(b2, p2) ∧ γ2, where γ2 expresses that each box has
a unique location, as in Example 3.

• The goal is
∧2

i=1
∨4

k=1 Ki in(bi, pk).
• A solution is: left(1), right(2), sense(1, {in(b1, p1), in(b2, p1)}), sense(2, {in(b1, p3), in(b2, p3)}), sense(1, {K2in(b1, p3)}),

sense(2, {K1in(b2, p1)}). This is because: If agent 1 senses b1 is in p1, then she knows the position of p1. Otherwise,
she knows that b1 is not in p1. If she senses K2in(b1, p3), then she also knows that b1 is in p3. Otherwise, she knows
that b1 is not in p3. Since the common initial belief is that b1 is not in p2, she gets to know that b1 is in p4. The case
for agent 2 is similar.

The RP-MEP approach makes use of restricted modal literals (RMLs) from the perspective of a single root agent �. Thus
RP-MEP cannot represent the constraint in(b1, p1) ∨ in(b1, p2) ∨ in(b1, p3). Therefore, we formulate a variant of Example 3
where b1 is in p1 and b2 is in p3, which are represented by RMLs B�in(b1, p1) and B�in(b2, p3).

• The actions are (with action right(i) omitted):
left(i) = 〈¬at(i, p1), {eff1, eff2}〉, where eff1 = 〈at(i, p2), {B�at(i, p1), B�¬at(i, p2)}〉, and
eff2 = 〈at(i, p3), {B�at(i, p2), ¬B�at(i, p3)}〉;
tell(i, j, b, p) = 〈�, {eff1, eff2}〉, where eff1 = 〈Bi in(b, p), {B�B j in(b, p)}〉, and eff2 = 〈Bi¬in(b, p), {B�B j¬in(b, p)}〉;
find(i, b, p) = 〈pre, {eff1, eff2}〉, where pre = at(i, p), eff1 = 〈in(b, p), {B�Bi in(b, p)}〉, and eff2 = 〈¬in(b, p), {B�Bi¬in(b, p)}〉

• The initial KB is at(1, p2) ∧ at(2, p2) ∧ in(b1, p1) ∧ in(b2, p3) ∧ B1at(1, p2) ∧ B2at(2, p2).
• The goal is B1in(b1, p1) ∧ B2in(b2, p3).

(PG-)EFP encodes an MEP problem using mA [7], a multi-agent epistemic extension of the action language A [23], and
finitary S5-theories. The initial state is specified by a finitary S5-theory, which is an S5-theory contains only formulas of the
following forms: φ, C Kiφ, C(Kiφ ∨ Ki¬φ), where C is the common knowledge operator, and φ is a propositional formula.
We formulate a variant of Example 3 as follows:

• Action preconditions (with action right(i) omitted):
executable left(i) if ¬at(i, p1),
executable find(i, b, p) if Kiat(i, p),
executable tell(i, j, b, p) if Ki in(b, p).

• Action effects (with action right(i) omitted):
left(i) causes at(i, p1) if at(i, p2), left(i) causes ¬at(i, p2) if at(i, p2),
left(i) causes at(i, p2) if at(i, p3), left(i) causes ¬at(i, p3) if at(i, p3),
tell(i, j, b, p) announces in(b, p), meaning in(b, p) becomes the common knowledge of the observers,
find(i, b, p) determines in(b, p), meaning the observers get to know the truth value of in(b, p).

• Action observability statements:
{i, j} observes tell(i, j, b, p),
i observes find(i, b, p).

• The initial epistemic state is specified by a finitary S5-theory:
initially at(1, p2) ∧ at(2, p2) ∧ in(b1, p1) ∧ in(b2, p3) ∧ Cat(1, p2) ∧ Cat(2, p2).

• The goal is expressed as: goal
∧2

i=1
∨3

k=1 Ki in(bi, pk).

7. Conclusions

In this paper, we have proposed a novel multi-agent epistemic planning framework based on higher-order belief change.
In this framework, the initial KB and the goal, the preconditions and effects of actions can be arbitrary KD45n formulas, the
progression of KBs w.r.t. actions is achieved through the operation of belief revision or update, and the solution is an action
tree branching on sensing results.

Now we would like to compare the modeling approach of our paper with the DEL-based approach. In the DEL-based
approach, an epistemic state is modeled by a Kripke model, an action is modeled by an action model, and the progression
of an epistemic state w.r.t. an action is modeled by the product update of the Kripke model by the action model. Whereas in
our approach, an epistemic state is modeled by a KB in multi-agent epistemic logic, an action is modeled by its preconditions
and effects like in classical planning, and progression is modeled by high-level belief revision or update. In comparison with
the DEL-based approach, we think ours is closer to the representation framework from the planning community, and more
suitable for representing multi-agent epistemic planning problems.

To support efficient reasoning and progression, we resort to alternating cover disjunctive formulas (ACDFs). Any KD45n

formula φ can be transformed to an equivalent ACDF whose length is singly exponential in the length of φ, but doubly
30

H. Wan, B. Fang and Y. Liu Artificial Intelligence 301 (2021) 103562
exponential in the non-alternating factor of φ, i.e., the number of modal operators of an agent which directly occur inside
those of the same agent. We propose reasoning, strong equivalence checking, and basic revision and update algorithms for
ACDFs. The complexities of our algorithms are polynomial in the size of the formulas but exponential in the modal depth
of the formulas, which we expect to be small, except that the complexity of the update algorithm is also exponential in the
size of the update formulas, which are effects of actions and hence usually small formulas. Based on the theoretic work, we
have implemented a native multi-agent epistemic planner MEPK, which does not rely on compilation into classical planning.
Experimental results have demonstrated the viability of our approach.

In this paper, we give syntactic approaches for higher-order belief revision and update. The operators have basic prop-
erties that both return satisfiable formulas entailing the revision or update formula, revision has the conjunction property,
and update has the distribution property. For proper ACDFs, we show that semantic characterizations for propositional belief
change nicely carry over to higher-order belief change. This is achieved via introducing the concept of tree models, showing
that a proper ACDF has a model iff it has a tree model, and then restricting our attention to tree models. We do not yet
have general semantic definitions of higher-order belief change. Despite this, we think that we have made an important
first step towards the study of higher-level belief change. In the future, we are interested in doing a general model-theoretic
study of higher-order belief change and improving our revision and update algorithms.

Finally, by basing multi-agent epistemic planning on higher-order belief change, this paper exposes an interesting chal-
lenge – how to use revision and/or update to model sensing and communication actions. In this paper, we use revision
for sensing and communication actions. However, there are arguments that update should be used for these actions, and
arguments that both revision and update should be used for communication. In the future, we are interested in a more
thorough exploration of this challenging issue.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

We are deeply grateful to the anonymous reviewers whose comments and suggestions have helped us significantly
improve the paper. We thank Liangda Fang for helpful discussions on the paper, and Hans van Ditmarsch for introducing
us to the normal form of alternating cover disjunctive formulas. Yongmei Liu acknowledges support from National Natural
Science Foundation of China under Grant No. 61572535. Hai Wan and Biqing Fang acknowledge support from National
Natural Science Foundation of China under Grant No. 61976232, and Guangzhou Science and Technology Project under
Grant No. 201804010435.

Appendix A. Proofs

Proof of Proposition 2. We prove by induction on |φ|. Basis: φ is p. No transformation is needed. Induction step: Let
p1, . . . , pm be the atoms that appear in φ but not within the scope of any modal operator. Let Ka1φ1, . . . , Kan φn be the
modal atoms that appear in φ but not within the scope of any modal operator. Let � = {φ1, . . . , φn}. For i = 1, . . . , n, let
li = |φi |. Let l = n

i=1li . It is easy to prove by induction that |φ| ≥ 2(m + n) + l − 1. Firstly, we treat Ka1φ1, . . . , Kan φn as
atoms and put φ into DNF. Let φ′ be the resulting formula. Then there are at most 2m+n disjuncts in φ′ , and each disjunct
is of the form η = φ0 ∧ ∧

a∈B(Ka
∧

�a ∧ La�a), where B ⊆ A, φ0 is a term of p1, . . . , pm , �a and �a are disjoint subsets
of �. By Proposition 1 (2), η ⇔ φ0 ∧ ∧

a∈B ∇a({∧�a} ∪ {∧�a ∧ ψ | ψ ∈ �a}). By induction, each formula β of
∧

�a and ∧
�a ∧ ψ can be transformed to an equivalent CDF whose length is O (2|β|2). Clearly, |β| ≤ l + n − 1. In total, there are at

most n such formulas. Thus we obtain a CDF φ′′ , equivalent to φ′ , and |φ′′| ∈ O (2m+nn2(l+n−1)2
), hence in O (2(l+2(m+n)−1)2

),
which is O (2|φ|2). �
Proof of Proposition 3. 1. ⇐: If M, w |= Kaπ , obviously, M, w |= Ka(π ∨ α ∧ Kaβ). So let M, w |= Ka(π ∨ α) ∧ Kaβ . Now

let v satisfy w Ra v . Then M, v |= π ∨α. Now let u satisfy v Rau. Since Ra is transitive, we have w Rau. From M, w |= Kaβ ,
we get M, u |= β . Thus M, v |= Kaβ . So M, w |= Ka(π ∨ α ∧ Kaβ).
⇒: Let M, w |= Ka(π ∨ α ∧ Kaβ). There are two cases: (1) M, w |= Kaβ . It is easy to show M, w |= Ka(π ∨ α). (2)
M, w |= ¬Kaβ . Then there exists u s.t. w Rau and M, u |= ¬β . Now let v satisfy w Ra v . Since Ra is Euclidean, v Rau.
Hence M, v |= ¬Kaβ . Since M, v |= π ∨ α ∧ Kaβ , we get M, v |= π . Hence M, w |= Kaπ .

2. ⇐: If M, w |= Kaπ , obviously, M, w |= Ka(π ∨ α ∧ Laβ). So let M, w |= Ka(π ∨ α) ∧ Laβ . Then there exist v s.t. w Ra v
and M, v |= β . Now let u satisfy w Rau. Since Ra is Euclidean, uRa v . So M, u |= Laβ . Since M, u |= π ∨ α, we get
M, w |= Ka(π ∨ α ∧ Laβ).
⇒: Let M, w |= Ka(π ∨ α ∧ Laβ). There are two cases: (1) M, w |= Laβ . It is easy to show M, w |= Ka(π ∨ α). (2)
M, w |= ¬Laβ . Now let u satisfy w Rau. Then M, u |= π ∨ α ∧ Laβ . Then for all v s.t. uRa v , since Ra is transitive, w Ra v ,
and hence M, v |= ¬β because M, w |= ¬Laβ . So M, u |= ¬Laβ . Thus M, u |= π . Therefore, M, w |= Kaπ . �
31

H. Wan, B. Fang and Y. Liu Artificial Intelligence 301 (2021) 103562
Proof of Proposition 4. We prove by induction on |φ|. When φ is p, ¬ψ , or (ψ ∧ ψ ′), the proof is easy. Now let φ be
Kaψ . If na(φ) = 0, no transformation is needed. Otherwise, Kaψ must be of the form Ka(π ∨ α ∧ Kaβ) or Ka(π ∨ α ∧ Laβ),
where π might be ⊥ and α might be �. We only prove the first case, the second case is similar. By Proposition 3, Kaψ ⇔
Ka(π ∨α) ∧ Kaβ ∨ Kaπ ∧ ¬Kaβ . Let n1 = na(Kaπ), n2 = na(Kaα), and n3 = na(Kaβ); let l1 = |π |, l2 = |α|, and l3 = |β|. Then
na(Kaψ) = n1 + n2 + n3 + 1, and |Kaψ | = l1 + l2 + l3 + 4. By induction, each of Ka(π ∨ α), Kaβ , Kaπ is equivalent to an
alternating formula. Hence Kaψ is equivalent to an alternating formula η, and

|η| ≤2n1+n2(l1 + l2 + 2) + 2 · 2n3(l3 + 1) + 2n1(l1 + 1) + 4

=(2n1+n2 + 2n1)l1 + 2n1+n2 l2 + 2n3+1l3 + 2n1+n2+1 + 2n3+1 + 2n1 + 4

≤2n1+n2+n3+1(l1 + l2 + l3 + 4) = 2na(φ)|φ|. �
Proof of Proposition 10. {Dif f (ψi, μ j) | ψi ∈ ψ, μ j ∈ μ} can be computed in time O (|ψ | · |μ|), hence MinPairs(ψ, μ) and
so ψ ◦s μ can be computed in time O (|ψ |2 · |μ|2). In the worst case, each of Dif f (ψi, μ j) is empty, and so ψ ◦s μ is of size
O (|ψ | · |μ|). �
Proof of Proposition 12. revise(ψi, μ j) and Dif f (μ j, ψi) can be computed in time O (|ψi | · |μ j |). patchψi (μ j) can be com-
puted in time O (|μ| · (|ψi | + |μ j|)). Note that patchψi (μ j) is a sub-expression of ¬

∧
k �= j μk . Hence revise(ψi, μ j) ∧

patchψi (μ j) can be put into DNF in O (|ψi | · 2|μ|). Therefore, the DNF formula of ψ �w μ can be computed in time
O (|ψ | · 2|μ|), and the resulting formula is of size O (|ψ | · 2|μ|). �
References

[1] C.E. Alchourrón, P. Gärdenfors, D. Makinson, On the logic of theory change: partial meet contraction and revision functions, J. Symb. Log. 50 (1985)
510–530.

[2] M. Attamah, H. van Ditmarsch, D. Grossi, W. van der Hoek, Knowledge and gossip, in: Proceedings of the 21st European Conference on Artificial
Intelligence (ECAI-2014), 2014, pp. 21–26.

[3] G. Aucher, Generalizing AGM to a multi-agent setting, Log. J. IGPL 18 (2010) 530–558.
[4] G. Aucher, DEL-sequents for progression, J. Appl. Non-Class. Log. 21 (2011) 289–321.
[5] G. Aucher, T. Bolander, Undecidability in epistemic planning, in: Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence

(IJCAI-2013), 2013, pp. 27–33.
[6] A. Baltag, S. Smets, A qualitative theory of dynamic interactive belief revision, in: Logic and the foundations of game and decision theory (LOFT 7),

vol. 3, Amsterdam University Press, 2008, pp. 9–58.
[7] C. Baral, G. Gelfond, E. Pontelli, T.C. Son, An action language for reasoning about beliefs in multi-agent domains, in: Proceedings of the 14th Interna-

tional Workshop on Non-Monotonic Reasoning (NMR-2012), 2012.
[8] J. van Benthem, Dynamic logic for belief revision, J. Appl. Non-Class. Log. 17 (2007) 129–155.
[9] M. Bienvenu, H. Fargier, P. Marquis, Knowledge compilation in the modal logic S5, in: Proceedings of the Twenty-Fourth Conference on Artificial

Intelligence (AAAI-2010), 2010, pp. 261–265.
[10] T. Bolander, M.B. Andersen, Epistemic planning for single and multi-agent systems, J. Appl. Non-Class. Log. 21 (2011) 9–34.
[11] T. Caridroit, S. Konieczny, T. de Lima, P. Marquis, On distances between KD45n Kripke models and their use for belief revision, in: Proceedings of the

Twenty-second European Conference on Artificial Intelligence (ECAI-2016), 2016, pp. 1053–1061.
[12] T. Charrier, B. Maubert, F. Schwarzentruber, On the impact of modal depth in epistemic planning, in: Proceedings of the Twenty-Fifth International

Joint Conference on Artificial Intelligence (IJCAI-2016), 2016, pp. 1030–1036.
[13] S.L. Cong, S. Pinchinat, F. Schwarzentruber, Small undecidable problems in epistemic planning, in: Proceedings of the Twenty-Seventh International

Joint Conference on Artificial Intelligence (IJCAI-2018), 2018, pp. 4780–4786.
[14] M.C. Cooper, A. Herzig, F. Maffre, F. Maris, P. Régnier, A simple account of multi-agent epistemic planning, in: Proceedings of the Twenty-second

European Conference on Artificial Intelligence (ECAI-2016), 2016, pp. 193–201.
[15] M.C. Cooper, A. Herzig, F. Maffre, F. Maris, P. Régnier, Simple epistemic planning: generalised gossiping, in: Proceedings of the Twenty-second European

Conference on Artificial Intelligence (ECAI-2016), 2016, pp. 1563–1564.
[16] G. D’Agostino, G. Lenzi, On modal μ-calculus with explicit interpolants, J. Appl. Log. 4 (2006) 256–278.
[17] A. Darwiche, J. Pearl, On the logic of iterated belief revision, Artif. Intell. 89 (1997) 1–29.
[18] H. van Ditmarsch, Knowledge games, Bull. Econ. Res. (2001) 249–273.
[19] H. van Ditmarsch, W. van der Hoek, B.P. Kooi, Dynamic Epistemic Logic, Springer, 2007.
[20] T. Engesser, T. Bolander, R. Mattmüller, B. Nebel, Cooperative epistemic multi-agent planning for implicit coordination, in: Proceedings of the Ninth

Workshop on Methods for Modalities (M4M-2017), 2017, pp. 75–90.
[21] R. Fagin, J. Halpern, Y. Moses, M. Vardi, Reasoning about Knowledge, MIT Press, 1995.
[22] K. Fine, Normal forms in modal logic, Notre Dame J. Form. Log. 16 (1975) 229–237.
[23] M. Gelfond, V. Lifschitz, Representing action and change by logic programs, J. Log. Program. 17 (1993) 301–321.
[24] J. Hales, T. French, R. Davies, Refinement quantified logics of knowledge and belief for multiple agents, in: Proceedings of the Ninth Conference on

Advances in Modal Logic (AiML-2012), 2012, pp. 317–338.
[25] S.M. Hedetniemi, S.T. Hedetniemi, A.L. Liestman, A survey of gossiping and broadcasting in communication networks, Networks 18 (1988) 319–349.
[26] A. Herzig, J. Lang, P. Marquis, Action representation and partially observable planning using epistemic logic, in: Proceedings of the Eighteenth Interna-

tional Joint Conference on Artificial Intelligence (IJCAI-2003), 2003, pp. 1067–1072.
[27] J.-J.Ch. Meyer, W. van der Hoek, Epistemic Logic for AI and Computer Science, Cambridge University Press, 2004.
[28] X. Huang, B. Fang, H. Wan, Y. Liu, A general multi-agent epistemic planner based on higher-order belief change, in: Proceedings of the Twenty-Sixth

International Joint Conference on Artificial Intelligence (IJCAI-2017), 2017, pp. 1093–1101.
[29] D. Janin, I. Walukiewicz, Automata for the modal mu-calculus and related results, in: Proceedings of the Twentieth International Symposium on

Mathematical Foundations of Computer Science (MFCS-1995), 1995, pp. 552–562.
32

http://refhub.elsevier.com/S0004-3702(21)00113-2/bib06043502E263D8D41FFED60F142FEC20s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bib06043502E263D8D41FFED60F142FEC20s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bibE0C5A8DC2C64109188483C33259BE196s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bibE0C5A8DC2C64109188483C33259BE196s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bib370E833C05F06528FCDE4018D9724C21s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bibCFF9483B7494CE96A26E4A2BA9CEC56Cs1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bib197CB584E28B992E2772D49176515A1Ds1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bib197CB584E28B992E2772D49176515A1Ds1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bibDF10E93A016D446B65789D81C5010E46s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bibDF10E93A016D446B65789D81C5010E46s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bib9A86E4CB23DE567DC0C592283984E3C7s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bib9A86E4CB23DE567DC0C592283984E3C7s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bibF86D8F370AD5B7D6EFDA69ADD69F30A6s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bib8617586AE2FB93E19CFFBE6D78840DFEs1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bib8617586AE2FB93E19CFFBE6D78840DFEs1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bib51B92707114DED00EBE28EFC21B6DA00s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bibA74EC9C5B6882F79E32A8FBD8DA90C1Bs1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bibA74EC9C5B6882F79E32A8FBD8DA90C1Bs1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bib1996D3268C3C0F72A935396BBCBC4AC0s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bib1996D3268C3C0F72A935396BBCBC4AC0s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bib777B2BDD3AACB1FE90AF63F98649D71Ds1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bib777B2BDD3AACB1FE90AF63F98649D71Ds1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bib5D7D4C90B040B92E658BE586F94EBA09s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bib5D7D4C90B040B92E658BE586F94EBA09s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bib0471FFE43D6E7AE9916722BE36D534D3s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bib0471FFE43D6E7AE9916722BE36D534D3s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bib1EE0F773AF80F763EF5D999FD5707121s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bib5AEED189F2559B141F61398A9FB70587s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bibD84C8D60AAB2E9E2AD532844DB1E6A18s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bib108FB51B5C705600742D1F715F825227s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bib9960D702CE3D6F28ACB54387A397EEDDs1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bib9960D702CE3D6F28ACB54387A397EEDDs1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bib328BDA83D9FC509B059CFDE00BCD1636s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bib5999B8900BB8B90CFA1AF137D355FF14s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bibFB8F05A009CB55C9F3C3AF61480FCBC2s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bib7A86D98049F2E1FCD5639E2B7D12BFD0s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bib7A86D98049F2E1FCD5639E2B7D12BFD0s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bibCBAB2B0FF9A8A5F7B39084060EEF2EDAs1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bibDB15C8B062B3D1D3B09280EF4334D4F4s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bibDB15C8B062B3D1D3B09280EF4334D4F4s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bib95015CDABBCCA802BAE4A57E2E0E178As1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bib786686A6F9EAC08664F387EC0E301D98s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bib786686A6F9EAC08664F387EC0E301D98s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bibDFA1776D36D3203ECBD7680DE65438B2s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bibDFA1776D36D3203ECBD7680DE65438B2s1

H. Wan, B. Fang and Y. Liu Artificial Intelligence 301 (2021) 103562
[30] H. Katsuno, A.O. Mendelzon, On the difference between updating a knowledge base and revising it, in: Proceedings of the Second International
Conference on Principles of Knowledge Representation and Reasoning (KR-1991), 1991, pp. 387–394.

[31] F. Kominis, H. Geffner, Beliefs in multiagent planning: from one agent to many, in: Proceedings of the Twenty-Fifth International Conference on
Automated Planning and Scheduling (ICAPS-2015), 2015, pp. 147–155.

[32] T. Le, F. Fabiano, T.C. Son, E. Pontelli, EFP and PG-EFP: epistemic forward search planners in multi-agent domains, in: Proceedings of the Twenty-Eighth
International Conference on Automated Planning and Scheduling (ICAPS-2018), 2018, pp. 161–170.

[33] Q. Liu, Y. Liu, Multi-agent epistemic planning with common knowledge, in: Proceedings of the Twenty-Seventh International Joint Conference on
Artificial Intelligence (IJCAI-2018), 2018, pp. 1912–1920.

[34] B. Löwe, E. Pacuit, A. Witzel, DEL planning and some tractable cases, in: Proceedings of the Third International Workshop on Logic, Rationality, and
Interaction (LORI-2011), 2011, pp. 179–192.

[35] D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso, D. Weld, D. Wilkins, PDDL—The Planning Domain Definition Language, Technical
Report CVC TR98003/DCS TR1165, Yale Center for Computational Vision and Control, New Haven, CT, 1998.

[36] T. Miller, C.J. Muise, Belief update for proper epistemic knowledge bases, in: Proceedings of the Twenty-Fifth International Joint Conference on Artificial
Intelligence (IJCAI-2016), 2016, pp. 1209–1215.

[37] L.S. Moss, Finite models constructed from canonical formulas, J. Philos. Log. 36 (2007) 605–640.
[38] C.J. Muise, V. Belle, P. Felli, S.A. McIlraith, T. Miller, A.R. Pearce, L. Sonenberg, Planning over multi-agent epistemic states: a classical planning approach,

in: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI-2015), 2015, pp. 3327–3334.
[39] R.P.A. Petrick, F. Bacchus, A knowledge-based approach to planning with incomplete information and sensing, in: Proceedings of the Sixth International

Conference on Artificial Intelligence Planning Systems (AIPS-2002), 2002, pp. 212–222.
[40] R.P.A. Petrick, F. Bacchus, Extending the knowledge-based approach to planning with incomplete information and sensing, in: Proceedings of the

Fourteenth International Conference on Automated Planning and Scheduling (ICAPS-2004), 2004, pp. 613–622.
[41] K. Satoh, Nonmonotonic reasoning by minimal belief revision, in: Proceedings of the First International Conference on Fifth Generation Computer

Systems (FGCS-1988), 1988, pp. 455–462.
[42] T.C. Son, E. Pontelli, C. Baral, G. Gelfond, Finitary s5-theories, in: Logics in Artificial Intelligence - Proceedings of the 14th European Conference (JELIA-

2014), 2014, pp. 239–252.
[43] B. ten Cate, W. Conradie, M. Marx, Y. Venema, Definitorially complete description logics, in: Proceedings of the Tenth International Conference on

Principles of Knowledge Representation and Reasoning (KR-2006), 2006, pp. 79–89.
[44] S.T. To, E. Pontelli, T.C. Son, A conformant planner with explicit disjunctive representation of belief states, in: Proceedings of the Nineteenth Interna-

tional Conference on Automated Planning and Scheduling (ICAPS-2009), 2009.
[45] S.T. To, T.C. Son, E. Pontelli, Contingent planning as and/or forward search with disjunctive representation, in: Proceedings of the Twenty-First Interna-

tional Conference on Automated Planning and Scheduling (ICAPS-2011), 2011, pp. 258–265.
[46] A. del Val, Syntactic characterizations of belief change operators, in: Proceedings of the Thirteenth International Joint Conference on Artificial Intelli-

gence (IJCAI-1993), 1993, pp. 540–545.
[47] H. Wan, R. Yang, L. Fang, Y. Liu, H. Xu, A complete epistemic planner without the epistemic closed world assumption, in: Proceedings of the Twenty-

Fourth International Joint Conference on Artificial Intelligence (IJCAI-2015), 2015, pp. 3257–3263.
[48] M. Winslett, Reasoning about action using a possible models approach, in: Proceedings of the Seventh Conference on Artificial Intelligence (AAAI-1988),

1988, pp. 89–93.
[49] Q. Yu, X. Wen, Y. Liu, Multi-agent epistemic explanatory diagnosis via reasoning about actions, in: Proceedings of the Twenty-Third International Joint

Conference on Artificial Intelligence (IJCAI-2013), 2013, pp. 1183–1190.
33

http://refhub.elsevier.com/S0004-3702(21)00113-2/bib20E05E3DC9A1C5394D6CBDEFB6CE1B4Fs1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bib20E05E3DC9A1C5394D6CBDEFB6CE1B4Fs1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bibF7CB72400BD7FB19294E1F9692C48CD9s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bibF7CB72400BD7FB19294E1F9692C48CD9s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bibD43112E5D210C28AA11AAB1BD918484Bs1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bibD43112E5D210C28AA11AAB1BD918484Bs1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bibE5FFB7E68A2A4E68E75FA20DEFB27AE0s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bibE5FFB7E68A2A4E68E75FA20DEFB27AE0s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bibEBAA3C73387EC96A87A2CE3A2F96BBD5s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bibEBAA3C73387EC96A87A2CE3A2F96BBD5s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bib626953D1E341367C5D9D7EE6A16D8C04s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bib626953D1E341367C5D9D7EE6A16D8C04s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bib453003EE0D6B07F99036B9744FF6F43Es1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bib453003EE0D6B07F99036B9744FF6F43Es1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bib58091CD419F36B3852B27525492A5D46s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bib7A58BE7A2C6DB9060A073AFA0D245396s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bib7A58BE7A2C6DB9060A073AFA0D245396s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bibE485647E040DB2462B0C6325958B2B6As1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bibE485647E040DB2462B0C6325958B2B6As1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bib02012FE854BA3DF772C11701CFB054E6s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bib02012FE854BA3DF772C11701CFB054E6s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bib1A17914A23BF787C8225EA04474A01E2s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bib1A17914A23BF787C8225EA04474A01E2s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bibC91972D16C915BE2670842E0E0D086DAs1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bibC91972D16C915BE2670842E0E0D086DAs1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bib60D3A2981A0CEB9DA62F2E0C0B276781s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bib60D3A2981A0CEB9DA62F2E0C0B276781s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bib9CEF6BA9121B6914F859D676A74B38A7s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bib9CEF6BA9121B6914F859D676A74B38A7s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bib1A44B4CB08728B0CCD7C03B4D77092BCs1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bib1A44B4CB08728B0CCD7C03B4D77092BCs1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bib170D9AD3DDB3E8980BF37FC86A36ECF8s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bib170D9AD3DDB3E8980BF37FC86A36ECF8s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bibB179960B6FE78B02FAC6E0B6CE94F707s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bibB179960B6FE78B02FAC6E0B6CE94F707s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bibCA0615A6DE23591F979771C7C4F296C2s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bibCA0615A6DE23591F979771C7C4F296C2s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bib9EBC3442C5C9D93519FB4633D4D703F1s1
http://refhub.elsevier.com/S0004-3702(21)00113-2/bib9EBC3442C5C9D93519FB4633D4D703F1s1

	A general multi-agent epistemic planner based on higher-order belief change
	1 Introduction
	2 Preliminaries
	2.1 Multi-agent modal logic KD45n
	2.2 Alternating cover disjunctive formulas
	2.2.1 Cover disjunctive formulas
	2.2.2 Alternating cover disjunctive formulas
	2.2.3 Satisfiability checking of alternating cover disjunctive formulas

	2.3 Belief revision and update

	3 Our modeling framework
	3.1 Multi-agent epistemic planning problems
	3.2 Actions and progression
	3.3 Multi-agent epistemic planning solutions
	3.4 Conformant vs contingent planning
	3.5 Coincidence with propositional conformant planning

	4 Our algorithms
	4.1 Strong entailment and equivalence
	4.2 Reasoning
	4.3 Higher-order belief change
	4.3.1 Revision
	4.3.2 Update
	4.3.3 Semantic characterizations for proper ACDFs

	5 Implementation and experimentation
	5.1 EPDDL
	5.2 Overall architecture
	5.3 Experimental evaluation

	6 Comparison of four MEP systems
	7 Conclusions
	Declaration of competing interest
	Acknowledgements
	Appendix A Proofs
	References

