
Artificial Intelligence 301 (2021) 103562
Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

A general multi-agent epistemic planner based on 

higher-order belief change ✩

Hai Wan, Biqing Fang, Yongmei Liu ∗

Dept. of Computer Science, Sun Yat-sen University, Guangzhou 510006, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 November 2020
Received in revised form 18 May 2021
Accepted 20 July 2021
Available online 29 July 2021

Keywords:
Epistemic planning
Multi-agent epistemic logic
Belief change

In recent years, multi-agent epistemic planning has received attention from both dynamic 
logic and planning communities. Existing implementations of multi-agent epistemic 
planning are based on compilation into classical planning and suffer from various 
limitations, such as generating only linear plans, restriction to public actions, and 
incapability to handle disjunctive beliefs. In this paper, we consider centralized multi-
agent epistemic planning from the viewpoint of a third person who coordinates all the 
agents to achieve the goal. We treat contingent planning, resulting in nonlinear plans. We 
model private actions and hence handle beliefs, formalized with the multi-agent KD45 
logic. We handle static propositional common knowledge, which we call constraints. For 
such planning settings, we propose a general representation framework where the initial 
knowledge base (KB) and the goal, the preconditions and effects of actions can be arbitrary 
KD45n formulas, and the solution is an action tree branching on sensing results. In this 
framework, the progression of KBs w.r.t. actions is achieved through the operation of belief 
revision or update on KD45n formulas, that is, higher-order belief revision or update. To 
support efficient reasoning and progression, we make use of a normal form for KD45n

called alternating cover disjunctive formulas (ACDFs). We propose reasoning, revision and 
update algorithms for ACDFs. Based on these algorithms, adapting the PrAO algorithm for 
contingent planning from the literature, we implemented a multi-agent epistemic planner 
called MEPK. Our experimental results show the viability of our approach.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, multi-agent epistemic planning (MEP) has received attention from both dynamic logic and planning 
communities. Essentially, multi-agent epistemic planning is planning that involves multiple agents, actions with epistemic 
preconditions and effects, and epistemic goals. For illustration, consider the following example from [31]. There is a corridor 
of several rooms, and a number of boxes that are in some of the rooms. Two agents can move along this corridor, and sense 
if a box is in a room. The task is to make the two agents collaborate via communication in finding out the positions of the 
boxes. Here, the goal is epistemic, the sensing action has epistemic effects, and the communication action has epistemic 
precondition and effect. In some cases, it is even necessary to reason about higher-order knowledge and beliefs, i.e., knowl-
edge and beliefs about other agents’ knowledge and beliefs. For example, agent a may wish to know a secret s with agent 
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b knowing she knows s, or without b knowing she knows s, or even with b believing she does not know s. Now consider a 
more practical application scenario: after an earthquake, two robots collaborate via communication in locating trapped peo-
ple. In such a scenario, like in the above example, multi-agent epistemic planning is necessary, while propositional planning 
is not sufficient.

There are earlier works on single-agent epistemic planning. Herzig et al. [26] proposed a framework for epistemic plan-
ning where knowledge bases (KBs) are expressed as positive epistemic formulas, and showed how progression, regression 
and plan generation can be achieved in their framework. Bienvenu et al. [9] identified two normal forms of epistemic for-
mulas called S5-CNFCNF,DNF and S5-DNFDNF,CNF, and showed that progression and entailment are tractable when the KB is 
in S5-DNFDNF,CNF and the query is in S5-CNFCNF,DNF. Petrick and Bacchus [39,40] presented a first-order epistemic planning 
system PKS based on the idea of progression. The kinds of knowledge they consider include literal knowledge, knowing-
whether knowledge, and exclusive-or knowledge. However, their progression and reasoning algorithms are both incomplete, 
and hence their planner is incomplete. Wan et al. [47] presented a complete epistemic planner without the epistemic closed 
world assumption. They proposed normal forms for epistemic formulas which support tractable reasoning and progression, 
and adapted the Pruning AND/OR forward search (PrAO) algorithm for contingent planning [45].

Many efforts have gone into the theoretic studies of multi-agent epistemic planning (MEP). Bolander and Andersen [10]
and Löwe et al. [34] were the first to propose to formalize MEP based on dynamic epistemic logic (DEL) [19]. In the DEL-
based formalization, states are represented as Kripke models, actions are represented as action models, which are Kripke 
models of actions, describing agents’ abilities to distinguish among actions, and by the product update operation, action 
models are used to update Kripke models. Bolander and Andersen showed that the solvability of such epistemic planning 
problems is undecidable in general. Further, Aucher and Bolander [5] showed that MEP is undecidable in the presence of 
only purely epistemic actions, and Charrier et al. [12] proved that the above holds even if the actions have preconditions of 
modal depth bounded by two. Very recently, Cong et al. [13] showed that MEP is undecidable even for two-agent S5 models, 
a fixed action, and a fixed goal. Nonetheless, Yu et al. [49] identified two important decidable fragments of multi-agent 
epistemic planning. The first one is MEP with propositional actions and goal not involving common knowledge, and the 
second one is MEP with a wide variety of special types of propositional purely epistemic actions. In contrast to centralized 
planning considered in the above works, Engesser et al. [20] investigated decentralized planning with implicit coordination. 
To investigate decidable fragments of MEP, Cooper et al. [14] formalized MEP based on a simple logic of knowledge that is 
grounded on the visibility of propositional variables and showed that it is decidable (PSPACE-complete). Meanwhile, Cooper 
et al. [15] studied a typical example of MEP, the so-called gossip problem [25], and showed that it is polynomial time 
while it becomes NP-complete in the presence of negative goals. When it comes to the specification of MEP domains, Baral 
et al. [7] proposed an action language mA, whose semantics is based on DEL, and Son et al. [42] investigated finitary 
S5-theories, which can be characterized by finitely many finite Kripke models.

There are mainly two approaches for implementing multi-agent epistemic planning. Kominis and Geffner [31], and Muise 
et al. [38] showed how to exploit classical planning to solve restricted versions of MEP problems. By resorting to classical 
planning, both methods can only generate linear plans, doing conformant planning. Moreover, Kominis and Geffner assumed 
all actions are public, and hence dealt with knowledge. In contrast, Muise et al. focused on beliefs; however, they can 
only handle bounded-depth belief literals, disallowing disjunctive beliefs. Based on earlier works on the action language 
mA and finitary S5-theories, Le et al. [32] presented two multi-agent epistemic forward search planners: one uses simple 
breadth-first search, and the other employs heuristic search via an epistemic planning graph. The initial state is specified 
by a finitary S5-theory, which is an S5-theory containing only formulas of the following forms: φ, C Kiφ, C(Kiφ ∨ Ki¬φ), 
and C(¬Kiφ ∧¬Ki¬φ), where C is the common knowledge operator, Ki is the knowledge operator, and φ is a propositional 
formula.

Belief change studies how an agent modifies her beliefs on receiving new information. However, so far research on belief 
change focuses on beliefs represented as formulas in propositional logic. Two main types of belief change are revision and 
update: revision concerns belief change about static environments due to partial and possibly incorrect information, whereas 
update concerns belief change about dynamic environments due to the performance of actions. Various guidelines for belief 
change have been proposed, and the most popular ones are the AGM postulates for belief revision [1], the KM postulates 
for belief update [30], and the DP postulates for iterated belief revision [17]. Katsuno and Mendelzon [30] briefly discussed 
how belief revision and update can be used for reasoning about actions: if a condition φ is found true, the KB is revised 
with φ; if an action with postcondition ψ is performed, the KB is updated with ψ . There have been preliminary works 
extending belief change from propositional logic to epistemic logic. Aucher [3] gave a semantic study of multi-agent belief 
revision incurred by private announcements. Aucher [4] explored the progression of KBs with respect to actions, where both 
KBs and actions are represented as canonical formulas in modal logics, which capture Kripke models up to certain depths 
[37]. Recently, Caridroit et al. [11] investigated several measures of distances between KD45n Kripke models, and use them 
to define the revision of beliefs represented by such models. Miller and Muise [36] studied belief update for KBs consisting 
of belief literals. Finally, Van Benthem [8] integrated belief revision into DELs, and Baltag and Smets [6] further presented a 
general framework for this integration: in line with the AGM approach of giving priority to new information, they proposed 
the action priority update operation: when updating a plausibility model by an action plausibility model, give priority to 
the action plausibility order.

In this paper, we consider centralized multi-agent epistemic planning from the viewpoint of a third person who coordi-
nates all the agents to achieve the goal. We treat contingent rather than conformant planning, resulting in nonlinear plans. 
2
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We model private actions and hence handle beliefs, formalized with the multi-agent modal logic KD45n [21]. We do not 
support arbitrary common knowledge, but we handle static propositional common knowledge, which we call constraints. 
For such planning settings, we propose a general representation framework where the initial KB and the goal, the precondi-
tions and effects of actions can be arbitrary KD45n formulas, and the solution is an action tree branching on sensing results. 
In this framework, the progression of KBs w.r.t. actions is achieved through the operation of belief revision or update on 
KD45n formulas, i.e., higher-order belief revision or update. To support efficient reasoning and progression, we make use of 
a normal form for KD45n called alternating cover disjunctive formulas (ACDFs) [24]. We propose reasoning, revision and up-
date algorithms for ACDF formulas. Based on these algorithms, adapting the PrAO algorithm, we implemented a multi-agent 
epistemic planner called MEPK. Our experimental results show the viability of our approach.

A preliminary version of this paper was published in IJCAI-2017 [28]. The main differences between this version and the 
conference paper are as follows:

• We revise the definition of progression w.r.t. deterministic actions (Definition 12) to resolve issues with conditional 
effects: a KB might be split into multiple copies, for which we apply all applicable effects.

• We revise the definition of progression w.r.t. sensing actions (Definition 14) to let the progression be false in the 
presence of impossible sensing results. Accordingly, we revise the definition of multi-agent epistemic solutions (Defini-
tion 17) to allow branches of impossible sensing results.

• We give semantic characterizations for our higher-order belief change operators for proper ACDFs, a fragment of ACDFs 
disallowing negative or disjunctive beliefs (Section 4.3.3). We define the concept of tree models and show that a proper 
ACDF has a model iff it has a tree model. By restricting attention to tree models, we show that for proper ACDFs, the 
semantic characterizations for propositional belief change nicely carry over to higher-order belief change.

Besides, in this version, we have extended and improved the presentation, added detailed complexity analysis, full proofs 
of all propositions, and illustrating examples, and updated the experimental results. We remark that Liu and Liu [33] have 
extended the work of this conference paper with the support of common knowledge.

The paper is organized as follows. In the next section, we introduce preliminaries, including ACDFs. Section 3 covers 
our modeling framework for multi-agent epistemic planning. In Section 4, we describe our reasoning and belief change 
algorithms. Section 5 is devoted to our implementation and experimentation results. Finally, we discuss related work and 
conclude the paper.

2. Preliminaries

In this section, we introduce the background work of our paper, i.e., the multi-agent modal logic KD45n , alternating cover 
disjunctive formulas, and belief revision and update.

2.1. Multi-agent modal logic KD45n

Consider a finite set of agents A and a finite set of atoms P . We use φ and ψ for formulas, � and � for sets of formulas.

Definition 1. The language LK C of multi-agent modal logic with common knowledge is generated by the BNF:

ϕ ::= p | ¬φ | (φ ∧ ψ) | Kaφ | Cφ, where

p ∈P , a ∈A, φ, ψ ∈LK C . We use LK for the language without the C operator, and L0 for the propositional language.

As usual, “∨” and “→” are treated as abbreviations. To reduce the use of parentheses in formulas, we specify the 
following order of precedence for connectives: C , Ka , ¬, ∧, ∨, and →.

Intuitively, Kaφ means that agent a knows φ holds, and Cφ means φ is common knowledge among all agents, i.e., every-
body knows φ, everybody knows everybody knows φ, everybody knows everybody knows everybody knows φ, and so on. 
In this paper, we restrict our attention to the case of propositional common knowledge, i.e., Cφ where φ ∈ L0, and we call 
φ a constraint. We use C∗φ to denote φ ∧ Cφ.

We let Laφ stand for ¬Ka¬φ. We let � and ⊥ represent true and f alse respectively. We let 
∨

� (resp. 
∧

�) denote the 
disjunction (resp. conjunction) of members of �; and we use La� to represent the conjunction of Laφ where φ ∈ �. The 
length of a formula φ, denoted by |φ|, is the number of atoms, logical connectives, and modal operators in φ. The modal 
depth of a formula φ in LK , denoted by md(φ), is the depth of nesting of modal operators in φ.

Definition 2. A frame is a pair (W , R), where W is a non-empty set of possible worlds; for each agent a ∈ A, Ra is a binary 
relation on W , called the accessibility relation for a.

We say Ra is serial if for any w ∈ W , there is w ′ ∈ W s.t. w Ra w ′; we say Ra is Euclidean if whenever w Ra w1 and 
w Ra w2, we get w1 Ra w2. A KD45n frame is a frame whose accessibility relations are serial, transitive and Euclidean.
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Definition 3. A Kripke model is a triple M = (W , R, V ), where (W , R) is a frame, and V is a valuation map, which maps 
each w ∈ W to a subset of P . A pointed Kripke model is a pair s = (M, w), where M is a Kripke model and w is a world 
of M , called the actual world.

Definition 4. Let s = (M, w) be a Kripke model where M =(W , R, V ). We interpret formulas in LK C by induction:

• M, w |= p iff p ∈ V (w);
• M, w |= ¬φ iff M, w � φ;
• M, w |= φ ∧ ψ iff M, w |= φ and M, w |= ψ ;
• M, w |= Kaφ iff for all v s.t. w Ra v , M, v |= φ;
• M, w |= Cφ iff for all v s.t. w RAv , M, v |= φ, where RA is the transitive closure of the union of Ra for a ∈A.

A model of φ is a KD45n Kripke model (M, w) s.t. M, w |= φ. We say φ is satisfiable if φ has a model. We say φ entails
ψ , written φ |= ψ , if any model of φ is also a model of ψ . We say φ and ψ are equivalent, written φ ⇔ ψ , if φ |= ψ and 
ψ |= φ. Note that we have Kaφ |= Laφ, Ka⊥ ⇔ ⊥, and La� ⇔ �.

We say that φ is satisfiable w.r.t. constraint γ ∈ L0 if φ ∧ C∗γ is satisfiable; we say that φ entails ψ w.r.t. constraint γ , 
written φ |=γ ψ , if φ ∧ C∗γ |= ψ ∧ C∗γ .

2.2. Alternating cover disjunctive formulas

In this section, we introduce alternating cover disjunctive formulas (ACDFs), which we use to support efficient reasoning 
and progression. We show that every multi-agent epistemic formula can be transformed to an equivalent ACDF whose length 
is singly exponential in the length of the original formula. Also, we show that it is tractable to check the satisfiability of 
ACDFs.

2.2.1. Cover disjunctive formulas
Janin and Walukiewicz [29] introduced the notion of disjunctive formulas for modal μ-calculus and showed that every 

formula is equivalent to a disjunctive formula. D’Agostino and Lenzi [16] gave the definition of disjunctive formulas for 
modal logics, using a cover modality. Ten Cate et al. [2006] showed that every formula in the multi-agent modal logic Kn
is equivalent to a disjunctive formula whose length is at most singly exponential in the length of the original formula. We 
slightly vary the definition, and use the name cover disjunctive formulas.

We first introduce the cover modality. Intuitively, ∇a� means that each world considered possible by agent a satisfies 
an element of �, and each element of � is satisfied by some world considered possible by agent a.

Definition 5. Let a ∈A, and � a finite set of formulas. The cover modality is defined as follows:

∇a�
.= Ka(

∨
�) ∧ La�.

The following are useful properties about the cover modality, which can help us to convert an arbitrary multi-agent 
epistemic formula to an ACDF. We use � ∧ ψ to denote the set {φ ∧ ψ | φ ∈ �}.

Proposition 1.

1. ∇a{�} ⇔ �;
2. Kaψ ∧ La� ⇔ ∇a({ψ} ∪ (� ∧ ψ));
3. ∇a� ∧ ∇a�

′ ⇔ ∇a[� ∧ (
∨

�′) ∪ �′ ∧ (
∨

�)].

Proof. 1. ∇a{�} ⇔ Ka� ∧ La� ⇔ �.
2. ∇a({ψ} ∪ (� ∧ ψ)) ⇔ Kaψ ∧ Laψ ∧ La(� ∧ ψ) ⇔ Kaψ ∧ La�, since Kaψ |= Laψ , and Kaψ ∧ Laφ |= La(φ ∧ ψ) for φ ∈ �.
3. ∇a[� ∧ (

∨
�′) ∪ �′ ∧ (

∨
�)]

⇔ Ka{∨[� ∧ (
∨

�′)] ∨ ∨[�′ ∧ (
∨

�)]} ∧ La[� ∧ (
∨

�′)] ∧ La[�′ ∧ (
∨

�)]
⇔ Ka[(∨�) ∧ (

∨
�′)] ∧ La� ∧ La�

′ ⇔ Ka(
∨

�) ∧ La� ∧ Ka(
∨

�′) ∧ La�
′

⇔ ∇a� ∧ ∇a�
′. �

Definition 6. The set of cover disjunctive formulas (CDFs) is inductively defined as follows:

1. A propositional term, i.e., a conjunction of propositional literals, is a CDF.
2. If φ0 is a propositional CDF, and for each a ∈ B ⊆ A, �a is a finite set of CDFs, then φ0 ∧ ∧

a∈B∇a�a is a CDF, called a 
CDF term.

3. If � is a non-empty finite set of CDF terms, then 
∨

� is a CDF, called a disjunctive CDF.
4
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In this paper, we use DNF to mean propositional disjunctive normal form, i.e., a DNF formula is a disjunction of proposi-
tional terms. So a propositional CDF is in DNF.

Moss [37] introduced the concept of canonical formulas, very similar to formulas introduced by Fine [22], and showed 
that every formula in Kn is equivalent to a disjunction of a finite set of canonical formulas. However, in the definition of 
canonical formulas, no disjunction is allowed. As a result, the conversion may cause a non-elementary blowup in size [37], 
as compared to a single exponential blowup for CDFs.

The following result shows that every formula in Kn is equivalent to a CDF whose length is singly exponential in the 
length of the original formula. The transformation part was first shown by Janin and Walukiewicz [29] in the context of 
modal μ-calculus, and the complexity part was first shown by ten Cate et al. [43] in the context of the ALC description 
logic. Since this result is the foundation for our compilation result concerning ACDFs, and the paper by ten Cate et al.
doesn’t include a detailed complexity analysis, we include a proof in the appendix.

Proposition 2 (Janin and Walukiewicz [29], ten Cate et al. [43]). In Kn, every formula φ in LK can be transformed to an equivalent 
CDF whose length is O (2|φ|2).

The idea of the proof is as follows: If φ is a propositional term, no transformation is needed. Otherwise, let 
Ka1φ1, . . . , Kan φn be the modal atoms that appear in φ but not within the scope of any modal operator. Firstly, we treat 
Ka1φ1, . . . , Kan φn as atoms and put φ into DNF. Each disjunct of the resulting DNF is of the form η = φ0 ∧ ∧

a∈B(Ka
∧

�a ∧
La�a), where B ⊆A, and φ0 is a propositional term. By Proposition 1 (2), η ⇔ φ0 ∧∧

a∈B ∇a({∧�a} ∪{∧�a ∧ψ | ψ ∈ �a}). 
We repeat the process on each formula of 

∧
�a and 

∧
�a ∧ ψ .

We illustrate the transformation with the following example. To improve readability, we use brackets “[]” or “{}” in place 
of “()”.

Example 1. K1[q ∧ K2(p ∨ q) ∧ L2r ∨ p] ∧ L1 K2¬q
⇔ (by Proposition 1 (2))∇1{q ∧ K2(p ∨ q) ∧ L2r ∨ p, (q ∧ K2(p ∨ q) ∧ L2r ∨ p) ∧ K2¬q}
⇔ (by converting to DNF) ∇1{q ∧ K2(p ∨ q) ∧ L2r ∨ p,q ∧ K2(p ∨ q) ∧ L2r ∧ K2¬q ∨ p ∧ K2¬q}
⇔ (by combining two K2 atoms) ∇1{q ∧ K2(p ∨ q) ∧ L2r ∨ p,q ∧ K2(p ∧ ¬q) ∧ L2r ∨ p ∧ K2¬q}
⇔ (by Proposition 1 (2)) ∇1{q ∧ ∇2{p ∨ q, (p ∨ q) ∧ r} ∨ p,q ∧ ∇2{p ∧ ¬q, p ∧ ¬q ∧ r} ∨ p ∧ ∇2{¬q}}.

2.2.2. Alternating cover disjunctive formulas
Hales et al. [24] introduced the notion of alternating cover disjunctive formulas (ACDFs), and showed that in KD45n , 

every formula in LK is equivalent to such a formula. In this section, we introduce the definition of ACDFs, and present the 
compilation result together with a complexity analysis of the resulting formula, via introducing the notion of non-alternating 
factor.

Definition 7. The non-alternating factor of a formula φ, denoted by na(φ), is the number of modal operators of an agent 
which directly occur inside those of the same agent. We say that a formula is alternating if its non-alternating factor is 0.

Definition 8. We call an alternating CDF an ACDF (alternating cover disjunctive formula).

For example, ∇a{�, q} ∧ ∇b{�, ∇a{�, ¬q}} is an ACDF; but the CDF ∇a{¬p ∧ q, ∇b{p, q}, ∇a{¬p ∧ q}} is not, and its non-
alternating factor is 1.

The compilation result by Hales et al. makes use of the following proposition. To make the paper self-contained, we 
include a proof of the proposition in the appendix.

Proposition 3 (van der Hoek and Meyer [27]). The following hold in KD45n:

1. Ka(π ∨ α ∧ Kaβ) ⇔ Ka(π ∨ α) ∧ Kaβ ∨ Kaπ ∧ ¬Kaβ;
2. Ka(π ∨ α ∧ Laβ) ⇔ Ka(π ∨ α) ∧ Laβ ∨ Kaπ ∧ ¬Laβ .

The following result was proved by Hales et al. Here we enrich the result with a complexity analysis, and include a proof 
in the appendix.

Proposition 4 (Hales et al. [24]). In KD45n, every formula φ in LK can be transformed to an equivalent alternating formula whose 
length is bounded by 2na(φ)|φ|.

The idea of proof is as follows: from the outside in, iteratively apply the two equivalences from Proposition 3.
We illustrate the transformation with the following example.
5
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Example 2. K1[q ∧ K2(p ∨ q) ∧ L2¬p ∨ p ∧ K1(p ∨ L1¬p) ∧ L1(p ∧ ¬q)] ⇔ (by Proposition 3(2))
K1[q ∧ K2(p ∨ q) ∧ L2¬p ∨ p ∧ K1(p ∨ L1¬p)] ∧ L1(p ∧ ¬q) ∨ K1[q ∧ K2(p ∨ q) ∧ L2¬p] ∧ ¬L1(p ∧ ¬q), where
K1[q ∧ K2(p ∨ q) ∧ L2¬p ∨ p ∧ K1(p ∨ L1¬p)] ⇔ (by Proposition 3(1))
K1[q ∧ K2(p ∨ q) ∧ L2¬p ∨ p] ∧ K1(p ∨ L1¬p) ∨ K1[q ∧ K2(p ∨ q) ∧ L2¬p] ∧ ¬K1(p ∨ L1¬p), where
K1(p ∨ L1¬p) ⇔ (by Proposition 3(2)) L1¬p ∨ K1 p ∧ ¬L1¬p.

Finally, we show the compilation result by Hales et al., enriched with a complexity analysis.

Theorem 1 (Hales et al. [24]). In KD45n, every formula φ in LK can be transformed to an equivalent ACDF whose length is O (24nl2 )

where n = na(φ) and l = |φ|.

Proof. We first apply Proposition 4 to convert φ into an equivalent alternating formula φ′ whose length is bounded by 2nl. 
Then we apply Proposition 2 to convert φ′ into an equivalent CDF, which remains to be alternating and whose length is 
O (24nl2 ). �

So the length of the resulting formula is singly exponential in the size of φ, but doubly exponential in the non-alternating 
factor of φ.

2.2.3. Satisfiability checking of alternating cover disjunctive formulas
A modal term is a conjunction of propositional formulas and modal atoms of the form Kaφ or Laφ, where φ ∈ LK . We 

call a modal term with the alternating agent modality property an alternating modal term. In the following, we present a 
result concerning how to check the satisfiability of alternating modal terms.

Proposition 5. An alternating modal term δ = φ0 ∧ ∧
a∈B(Kaφa ∧ La�a) is satisfiable w.r.t. constraint γ iff the following hold:

1. φ0 ∧ γ is propositionally satisfiable;
2. for each a ∈B, φa is satisfiable w.r.t. γ ;
3. for each a ∈B, for each ψ ∈ �a, φa ∧ ψ is satisfiable w.r.t. γ .

Proof. The only-if direction is easy. Since δ is satisfiable w.r.t. γ , i.e., δ ∧ C∗γ is satisfiable, let (M, w) be a model of it. 
Then w satisfies δ ∧ γ . Now let a ∈ B. Since Ra is serial, there exists wa s.t. w Ra wa . Since M, w |= Kaφa ∧ C∗γ , M, wa |=
φa ∧ C∗γ . Thus φa is satisfiable w.r.t. γ . Now let ψ ∈ �a . Since M, w |= Kaφa ∧ Laψ ∧ C∗γ , there exists wψ s.t. w Ra wψ and 
M, wψ |= φa ∧ ψ ∧ C∗γ . Thus φa ∧ ψ is satisfiable w.r.t. γ .

We now prove the if direction. Since La� ⇔ �, without loss of generality, we assume that for each a ∈ B, �a is not 
empty. Construct a model (M, w) as follows. By condition 1, create a new world w satisfying φ0 ∧ γ . By condition 3, for 
each a ∈ B, for each ψ ∈ �a , there is a KD45n model (Mψ, wψ) satisfying φa ∧ ψ ∧ C∗γ , add a new copy of (Mψ, wψ)

into M , and let w Ra wψ ; then add a-edges between all the a-children of w . Thus (M, w) is a KD45n model. Since δ is an 
alternating modal term, φa and ψ ∈ �a do not use Ka or La as outmost modalities. So we get M, wψ |= φa ∧ ψ . Also, all 
worlds of M satisfy γ . Thus M, w |= δ ∧ C∗γ . Hence δ is satisfiable w.r.t. γ . �

The following are two easy corollaries of Proposition 5, which will be used later in our paper. The first characterizes 
whether an alternating modal term entails another, and the second characterizes the satisfiability of an ACDF.

Proposition 6. Let δ = φ0 ∧ ∧
a∈A(Kaφa ∧ La�a) and δ′ = φ′

0 ∧ ∧
a∈A(Kaφ

′
a ∧ La�

′
a) be two alternating modal terms satisfiable 

w.r.t. constraint γ . Then δ |=γ δ′ iff the following hold:

1. φ0 ∧ γ |= φ′
0 propositionally;

2. for each a ∈A, φa |=γ φ′
a;

3. for each a ∈A, for every ψ ′ ∈ �′
a there is a ψ ∈ �a s.t. φa ∧ ψ |=γ ψ ′ .

Proof. We have δ |=γ δ′ iff δ ∧ ¬δ′ , which is δ ∧ [¬φ′
0 ∨ ∨

a∈A(La¬φ′
a ∨ ∨

ψ ′∈�′
a

Ka¬ψ ′)], is not satisfiable w.r.t. γ iff the 
following hold:

1. δ ∧ ¬φ′
0 is not satisfiable w.r.t. γ ;

2. for each a ∈A, δ ∧ La¬φ′
a is not satisfiable w.r.t. γ ;

3. for each a ∈A, for every ψ ′ ∈ �′
a , δ ∧ Ka¬ψ ′ is not satisfiable w.r.t. γ .

Since we know δ and δ′ are satisfiable w.r.t. γ , by Proposition 5, we have:

1. δ ∧ ¬φ′ is not satisfiable w.r.t. γ iff φ0 ∧ ¬φ′ ∧ γ is not propositional satisfiable iff φ0 ∧ γ |= φ′ propositionally;
0 0 0

6
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2. δ ∧ La¬φ′
a is not satisfiable w.r.t. γ iff φa ∧ φ′

a is not satisfiable w.r.t. γ iff φa |=γ φ′
a;

3. δ ∧ Ka¬ψ ′ is not satisfiable w.r.t. γ iff there is a ψ ∈ �a s.t. φa ∧ ¬ψ ′ ∧ ψ is not satisfiable w.r.t. γ , i.e., φa ∧ ψ |=γ ψ ′ .

Thus the proposition is proved. �
Proposition 7. An ACDF term δ = φ0 ∧ ∧

a∈B∇a�a is satisfiable w.r.t. a constraint γ iff the following hold:

1. φ0 ∧ γ is propositionally satisfiable;
2. for each a ∈B, �a is not empty;
3. for each a ∈B, for each φ ∈ �a, φ is satisfiable w.r.t. γ .

Proof. By Proposition 5, φ0 ∧∧
a∈B∇a�a , which is φ0 ∧∧

a∈BKa(
∨

�a) ∧ La�a , is satisfiable w.r.t. γ iff the following hold:

1. φ0 ∧ γ is propositionally satisfiable;
2. for each a ∈ B, 

∨
�a is satisfiable w.r.t. γ ;

3. for each a ∈ B, for each φ ∈ �a , (
∨

�a) ∧ φ is satisfiable w.r.t. γ .

The above 3 conditions are equivalent to the conditions given in the proposition. �
The above proposition gives us a polynomial-time recursive algorithm to check the satisfiability of an ACDF, since the 

modal depth of φ is less than that of δ.

Proposition 8. Whether an ACDF φ is satisfiable w.r.t. a DNF constraint γ can be checked in time O (|φ| · |γ |).

Proof. We prove by induction on φ.

1. φ is a propositional term. Let γ = t1 ∨ . . . tn . Then φ is satisfiable w.r.t. γ iff there is a term ti of γ s.t. φ ∧ ti is 
satisfiable iff there is a term ti of γ s.t. φ ∧ ti does not contain complementary literals. This can be checked in time 
O (n

i=1(|φ| + |ti |)), and hence in time O (|φ| · |γ |).
2. φ = φ0 ∧ ∧

a∈B∇a�a . By induction, whether φ0 ∧ γ is propositionally satisfiable can be checked in time O (|φ0| · |γ |); 
for each a ∈ B, for each φa ∈ �a , whether φa is satisfiable w.r.t. γ can be checked in time O (|φa| · |γ |). Thus by 
Proposition 7, whether φ is satisfiable w.r.t. γ can be checked in time O (|φ0| · |γ | + a∈Bφa∈�a |φa| · |γ |), and hence 
in time O (|φ| · |γ |).

3. φ = ∨
�. Let � = {φ1, . . . , φn}. Then φ is satisfiable w.r.t. γ iff there is φi which is satisfiable w.r.t. γ . By induction, this 

can be checked in time O (n
i=1|φi| · |γ |), and hence in time O (|φ| · |γ |). �

2.3. Belief revision and update

In our framework, we describe the world with KBs, and the progression of KBs w.r.t. actions is achieved through the 
operation of belief revision and update. In this section, we review propositional belief revision and update, which are the 
bases of higher-order belief revision and update proposed in Section 4.3.

We use ◦ to denote a revision operator, and � an update operator. Let ψ be the original formula, and μ the revision 
or update formula. Both revision and update are guided by the principle of minimal change. To formalize the distinction 
between revision and update, Katsuno and Mendelzon [30] presented model-theoretic definitions of them: intuitively, ψ ◦μ
selects from the models of μ those that are closest to models of ψ , while ψ � μ selects, for each model M of ψ , the set of 
models of μ that are closest to M . As easy properties of the definitions: when ψ ∧ μ is satisfiable, ψ ◦ μ is equivalent to 
ψ ∧ μ; update is distributive over the initial formula, i.e., (ψ1 ∨ ψ2) � μ is equivalent to (ψ1 � μ ∨ ψ2 � μ).

Let’s illustrate the difference between revision and update with an example. Take the notion of closeness based on set 
inclusion, i.e., a model I is closer to a model M than a model J if Diff(I, M) ⊆ Diff( J , M), where Diff(I, M) is the set of 
atoms where I and M assign different truth values. Then the above model-theoretic definitions give us Satoh’s revision 
operator ◦s [41] and Winslett’s update operator �w [48]. For example, let ψ = (a ∧ b ∧ c) ∨ (a ∧¬b ∧¬c), and μ = a ∧ c. The 
models of ψ are M1 = {a, b, c} and M2 = {a, ¬b, ¬c}; the models of μ are M1 and M3 = {a, ¬b, c}. Then ψ ◦s μ = a ∧ b ∧ c, 
equivalent to ψ ∧ μ, since M1 is closet to models of ψ . On the other hand, ψ �w μ = a ∧ c, since M1 is closest to M1, but 
M3 is closest to M2.

Del Val [46] provided syntactic characterizations of belief change operators and algorithms based on them. Our higher-
level belief change algorithms are recursive ones which as a basis resort to propositional belief change algorithms. To lay 
the foundation for complexity analysis of our high-level belief change algorithms, below we present his syntactic charac-
terizations of Satoh’s revision and Winslett’s update operators (Propositions 9 and 11), and analyze the complexity of the 
algorithms based on these characterizations. The complexity analysis results (Propositions 10 and 12) are simple results not 
7
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included in the original paper. We include the results here since they will be used later in Section 4.3, in the proofs of 
Propositions 5 and 7.

We begin with some notation. A DNF formula is treated as the set of its disjuncts, and a term is treated as the set of its 
literals. We assume that ψ and μ are both in DNF; we use ψ with subscripts to denote the disjuncts of ψ , and similarly 
for μ. For two terms t1 and t2, we use Dif (t1, t2) to denote the set of literals in t1 whose complement occurs in t2. For 
a formula φ, we use Prop(φ) to denote the set of atoms occurring in φ. For a set S and a partial order ≤ on S , we use 
Min(S, ≤) for the set of elements of S minimal under ≤.

First, define

revise(ψi,μ j) =
∧

((ψi − Dif (ψi,μ j)) ∪ μ j);
S ynMinDi f (ψ,μ) = Min({Prop(Dif (ψi,μk)) | ψi ∈ ψ,μk ∈ μ},⊆);

MinPairs(ψ,μ) = {〈ψi,μ j〉 | ψi ∈ ψ,μ j ∈ μ, Prop(Dif (ψi,μ j)) ∈ S ynMinDi f (ψ,μ)}.
The following two propositions show the propositional revision operation and its computational complexity.

Proposition 9 (Theorem 7 in del Val [46]).

ψ ◦s μ ⇔
∨

〈ψi ,μ j〉∈MinPairs(ψ,μ)

revise(ψi,μ j).

Proposition 10. Let ψ and μ be two DNF formulas. Then ψ ◦s μ can be computed in time O (|ψ |2 · |μ|2), and the resulting formula is 
of size O (|ψ | · |μ|).

The following two propositions show the propositional update operation and its computational complexity.

patchψi (μ j) =
∧

μk∈μ,Dif (μ j ,ψi)�μk

¬
∧

(μk − (ψi ∪ μ j)).

Then we have:

Proposition 11 (Theorem 1 in del Val [46]).

ψ �w μ ⇔
∨

μ j∈μ,ψi∈ψ

revise(ψi,μ j) ∧ patchψi (μ j)

Proposition 12. Let ψ and μ be two DNF formulas. The DNF formula of ψ �w μ can be computed in time O (|ψ | · 2|μ|), and the 
resulting formula is of size O (|ψ | · 2|μ|).

3. Our modeling framework

In this section, we present our modeling framework for multi-agent epistemic planning (MEP), which is adapted from 
that for single-agent epistemic planning by Wan et al. [47].

We illustrate our framework with the collaboration via communication example from the introduction.

Example 3. As shown in Fig. 1, there is a corridor of three rooms p1, p2 and p3. Two boxes b1 and b2 are located in some 
of the rooms. Two agents 1 and 2 can move back and forth along this corridor. When an agent gets into a room, she can 
see if a box is in the room. An agent can communicate information to another agent. Initially, the two agents are in p2 and 
the two boxes are not there. The goal is for agent 1 to know the position of b1, and for agent 2 to know the position of b2.

We begin with the definition of MEP problems, then give the definition of different kinds of actions and the associated 
progression operations, and end with the definition of MEP solutions. The actions we consider include ontic, communication
and sensing actions. The first two kinds share the same representation, and we call them deterministic actions.

3.1. Multi-agent epistemic planning problems

Definition 9. A multi-agent epistemic planning problem Q is a tuple 〈A, P, D, S, I , G, γ 〉, where A is a set of agents; P
is a set of atoms; D is a set of deterministic actions; S is a set of sensing actions; I ∈LK is the initial KB; G ∈LK is the 
goal; and γ ∈L0 is the constraint.
8
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Fig. 1. Illustration for Example 3.

Note that we have I ∈LK and G ∈LK . I and G actually describe the beliefs of a third person. Thus the propositional 
parts of I and G describe the third person’s beliefs about the world. Since we model beliefs rather than knowledge, the 
subjective parts of I and G might not agree with the propositional parts.

The main reason we consider constraints in this paper is for natural modeling of planning domains: we use constraints 
to express static propositional common knowledge, as will be illustrated in our formalization of Example 3.

We now formalize Example 3.

• The atoms are: at(i, p), meaning agent i is in room p; and in(b, p), meaning box b is in room p.
• The ontic actions are: left(i), agent i moves left; and right(i), i moves right.
• The communication actions are: tell(i, j, b, p), agent i tells j whether b is in p.
• The sensing actions are: find(i, b, p): i sees if b is in p.
• The initial KB is at(1, p2) ∧at(2, p2) ∧¬in(b1, p2) ∧¬in(b2, p2) ∧ K1(at(1, p2) ∧¬in(b1, p2) ∧¬in(b2, p2)) ∧ K2(at(2, p2) ∧

¬in(b1, p2) ∧ ¬in(b2, p2));
• The goal is 

∧2
i=1(Ki in(bi, p1) ∨ Ki in(bi, p2) ∨ Ki in(bi, p3)), meaning agent 1 knows the position of box b1, and agent 2 

knows the position of box b2.
• The constraint is γ1 ∧ γ2, where γ1 = ∧2

i=1(at(i, p1) ∧ ¬at(i, p2) ∧ ¬at(i, p3) ∨ ¬at(i, p1) ∧ at(i, p2) ∧ ¬at(i, p3) ∨
¬at(i, p1) ∧ ¬at(i, p2) ∧ at(i, p3)), meaning each agent is at exactly one room, and γ2 is similar, representing each 
box is in exactly one room.

The reason that we have in the initial KB at(1, p2) ∧ K1at(1, p2) instead of simply K1at(1, p2) is that we model beliefs 
rather than knowledge.

3.2. Actions and progression

Definition 10. A deterministic action is a pair 〈pre, eff〉, where pre ∈ LK is the precondition; eff is a set of conditional 
effects, each of which is a pair 〈con, cef〉, where con, cef ∈ LK indicate the condition and the effect, respectively. Let eff =
{〈c1, e1〉, . . . , 〈cn, en〉}. We require that eff should be consistent w.r.t. constraint γ , i.e., for any non-empty I ⊆ {1, . . . , n}, if ∧

i∈I ei is unsatisfiable w.r.t. γ , so is 
∧

i∈I ci .

Similarly to Definition 9, pre, con, cef ∈ LK , and they thus may contain propositional parts, which actually model the 
beliefs of a third person about the world.

For example, left(i) = 〈pre, {eff1, eff2}〉, where pre = ¬at(i, p1) ∧ Ki¬at(i, p1), eff1 = 〈at(i, p2), at(i, p1) ∧ Kiat(i, p1)〉, and 
eff2 = 〈at(i, p3), at(i, p2) ∧ Kiat(i, p2)〉. Here {eff1, eff2} is consistent w.r.t. γ1 ∧ γ2, since at(i, p2) ∧ at(i, p3) is unsatisfiable 
w.r.t. γ1 ∧ γ2.

For another example, tell(i, j, b, p) = 〈pre, {eff1, eff2}〉, where pre = Ki in(b, p) ∨ Ki¬in(b, p), eff1 = 〈Ki in(b, p), K jin(b, p)〉, 
and eff2 = 〈Ki¬in(b, p), K j¬in(b, p)〉. Here {eff1, eff2} is consistent, since Ki in(b, p) ∧ Ki¬in(b, p) is unsatisfiable.

Actually, when Ki in(b, p), tell(i, j, b, p) should result in common knowledge of in(b, p) between the two agents. Since 
we do not support arbitrary common knowledge, we have to approximate common knowledge with higher-order knowl-
edge. For example, we can express the conditional effect with K jin(b, p) ∧ Ki K j in(b, p) ∧ K j Ki in(b, p) ∧ Ki K j Ki in(b, p) ∧
K j Ki K j in(b, p).

Definition 11. A sensing action is a triple 〈pre, pos, neg〉 of LK formulas, where pre, pos, and neg indicate the precondition, 
the positive result, and the negative result, respectively. We require that pos ∧ neg should be unsatisfiable w.r.t. γ .

Similarly to Definition 9, pos, neg ∈ LK . The fact that pos and neg may have propositional parts does not mean that 
sensing actions may change the world, but means that they may change the beliefs of a third person about the world.

For the example of find(i, b, p), pre = at(i, p) ∧ Kiat(i, p), pos = in(b, p) ∧ Ki in(b, p), and neg = ¬in(b, p) ∧ Ki¬in(b, p). 
This is an example of an accurate sensing action, since beliefs agree with ground truth. If pos = Ki in(b, p), and neg =
Ki¬in(b, p), we have a possibly noisy sensing action.
9
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An action a is executable w.r.t. a KB φ ∈ LK if φ |=γ pre(a). This means that a is executable in each model of φ. For 
example, left(1) is executable w.r.t. I , since I |=γ pre(left(1)), which is ¬at(1, p1) ∧ K1¬at(1, p1). Suppose a is executable 
w.r.t. φ. The progression of φ w.r.t. a is defined by resorting to a revision operator ◦γ and an update operator �γ (where γ
is a constraint) for LK . Here, both ◦γ and �γ are generic higher-order belief change operators. We will formally define our 
specific higher-order belief change operators in Section 4.3.

We use update for ontic actions, and revision for communication and sensing actions. We justify this as follows. It is well-
accepted that propositional revision concerns belief change about static environments due to partial and possibly incorrect 
information, whereas propositional update concerns belief change about dynamic environments due to the performance of 
actions. Propositional belief revision and update are actually revision and update of first-order beliefs, i.e., beliefs about the 
objective world. Thus, it is natural to expect Kiφ • Kiμ ⇔ Ki(φ • μ), where • is ◦ or �, φ and μ are propositional formulas. 
Note that when we write Kiφ • Kiμ, we make the assumption that φ is all agent i knows. In general, it is natural to reduce 
higher-order belief revision and update to lower-order ones. Thus eventually, higher-order belief revision and update reduce 
to first-order ones. So higher-order belief revision and update concern belief change about static and dynamic environments 
(here by environments, we mean worlds), respectively. Thus we use update for ontic actions, and revision for communication 
and sensing actions.

Nonetheless, it might be controversial whether to use revision or update for communication or sensing actions. One 
argument is as follows: In our framework, a formula φ ∈ LK represents the belief of a third person. When sensing or 
communication actions happen, the belief states of the involved agents change, and hence the environment of the third 
person changes. Thus we should use update for sensing and communication actions. There is also an argument that both 
revision and update should be involved in communication: Suppose agent i is told φ. Then i should revise her beliefs, while 
other agents, including the third person, have to update their beliefs about what i believes. So it is a subtle and tricky issue 
of whether to use revision or update for communication or sensing actions. We will leave a more thorough exploration of 
this issue as future work.

We begin with progression of deterministic actions. Let φ ∈ LK , and a be a deterministic action where eff(a) = {〈c1, e1〉, 
. . . , 〈cn, en〉}. We follow To et al.’s way to process conditional effects [44]. There are two ideas behind our definition of 
progression of φ w.r.t. a. Firstly, we conjoin all applicable effects, and revise or update with the result. Secondly, to decide 
if effect ei is applicable, we consider three cases:

1. if φ |=γ ci , then ei is applicable, since ei is applicable in each model of φ;
2. if φ |=γ ¬ci , then ei is not applicable, since ei is applicable in none model of φ;
3. otherwise, we split φ into φ ∧ ci , where ei is applicable, and φ ∧ ¬ci , where ei is not applicable.

Let I = {1, . . . , n}. We use I+ to denote the set of those i s.t. φ |=γ ci , and I− the set of i s.t. φ |=γ ¬ci . For each I ′ ⊆ I∗ =
I − I+ − I− , we get a splitting of φ by conjoining ci for i ∈ I ′ and ¬ci for i ∈ I∗ − I ′ . Thus we have the following definition.

Definition 12. Let φ ∈ LK , and a be a deterministic action where eff(a) = {〈c1, e1〉, . . . , 〈cn, en〉}. Let I = {1, . . . , n}, I+ = {i ∈
I | φ |=γ ci}, I− = {i ∈ I | φ |=γ ¬ci}, and I∗ = I − I+ − I− .

1. A splitting of φ w.r.t. I ′ ⊆ I∗ is φs = φ ∧ ∧{ci | i ∈ I ′} ∧ ∧{¬ci | i ∈ I∗ − I ′} s.t. φs is satisfiable w.r.t. γ .
2. The progression of φs is φs •γ

∧{ei | i ∈ I+ ∪ I ′}, where • is � if a is ontic, and • is ◦ if a is a communication action.
3. The progression of φ w.r.t. a is the disjunction of progressions of all splittings of φ.

For example, let φ = r, and eff(a) = {〈p, q〉, 〈¬p, q〉}. Then the progression of φ w.r.t. a is ((r ∧ p) �γ q) ∨ ((r ∧ ¬p) �γ q).
In the above definition, in the worst case, I∗ = I , so there are 2n splitting of φ, where n is the number of conditional 

effects. However, in our experimental domains, usually, for each i ∈ I , either φ |=γ ci or φ |=γ ¬ci , hence I∗ = ∅, and there 
is no splitting of φ. Also, in our experimental domains, normally, I+ is small, so a small number of conditional effects are 
applicable.

We now turn to sensing actions. Given a KB φ ∈LK , and a sensing action a, a certain sensing result of a might be impos-
sible. For example, let φ = ¬in(b, p), and a = find(i, b, p). Then pos(a) is impossible, since it is contradictory to knowledge 
about the objective world. However, if φ = Ki¬in(b, p), then pos(a) is possible, since the current belief of agent i might be 
false. Whether pos(a) is possible can be detected via checking if φ ∧ pos(a) is propositionally satisfiable, i.e., the proposi-
tional part of φ ∧ pos(a) is satisfiable. When pos(a) is impossible, we let the progression of φ w.r.t. pos(a) be ⊥, otherwise, 
we let it be φ ◦γ pos(a). Thus we have

Definition 13. Let φ ∈LK . Then φ can be equivalently transformed to an ACDF formula φ′ . In φ′ , we replace any occurrence 
of the ∇a� formula by �. We say φ is propositionally satisfiable if the resulting propositional formula is satisfiable.

Definition 14. Let φ ∈LK , and a a sensing action. Then the progression of φ w.r.t. a with positive result is

φ+ =
{

⊥ if φ ∧ pos(a) is propositionally unsatisfiable w.r.t. γ

φ ◦γ pos(a) otherwise.
10
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Fig. 2. A solution to an example with impossible sensing results.

The progression of φ w.r.t. a with negative result is similarly defined.

Note that by the above definition, the cases of impossible objective sensing results are handled properly. However, we 
are not able to handle impossible subjective sensing results. For example, in our framework, it is possible for agent i to first 
sense that j believes p, and then (immediately afterwards) that j doesn’t believe p.

Definition 15. The progression of φ w.r.t. a sequence of actions (with sensing results for sensing actions) is inductively 
defined as follows: prog(φ, ε) = φ, where ε represents the empty sequence; prog(φ, (a; σ)) = prog(prog(φ, a), σ) if φ |=
pre(a), and undefined otherwise.

3.3. Multi-agent epistemic planning solutions

A solution of an MEP problem is an action tree branching on sensing results such that the progression of the initial KB 
w.r.t. each branch in the tree entails the goal.

Definition 16. Let Q be an MEP problem 〈A, P, D, S, I, G, γ 〉. The set T of action trees is inductively defined:

1. ε is in T , here ε represents the empty tree;
2. if ad ∈D and T ∈ T , then ad; T is in T ;
3. if as ∈ S , T +, T − ∈ T , then as; (T + | T −) is in T .

Definition 17. Let Q be an MEP problem 〈A, P, D, S, I, G, γ 〉. Let T be an action tree. We say a branch σ of T achieves 
the goal if prog(I, σ) is defined, and prog(I, σ) |=γ G; and if prog(I, σ) is not ⊥, we say σ properly achieves the goal. 
We say T is a solution of Q if each branch of T achieves the goal, and at least one branch properly achieves the goal.

Intuitively, we use a KB to model an epistemic state. When an action is performed, we revise or update the current KB 
with the action’s effects. The problem is solved if for each possible sequence of actions (with sensing results for sensing 
actions), the final KB entails the goal.

Our definition is inspired by the PKS approach [39] to first-order epistemic planning. In the paper, the authors state 
that “The intuition behind our approach is that a planning agent operating under conditions of incomplete knowledge (and 
without a model of uncertainty) can only build plans based on what it knows and on how its knowledge will change as 
it executes actions – it has access to no other information at plan time.” PKS uses a database collection DB to represent 
the agent’s incomplete knowledge. When an action is chosen, its effects are applied to update DB. When branching on 
Kα ∨ K¬α, the formula is removed from DB, and either α or ¬α is added to DB. A plan is found, if along each branch, the 
resulting DB satisfies the goal.

Note that since ⊥ |= φ for any φ, if a branch ends with an impossible sensing result, it achieves the goal. For example, 
there are two agents, and action sense(i) senses the truth value of atom p. Suppose the initial KB is �, and the goal is 
K1 p ∧ K2 p ∨ K1¬p ∧ K2¬p. Then Fig. 2 shows a solution, where impossible sensing results are marked with ×.

Note that our definition of an MEP solution is a solution of centralized planning from the viewpoint of a third person who 
coordinates all the agents to achieve the goal. That is, with our MEP framework, a solution is computed offline, and then 
a third person monitors the execution of the plan, and instructs the agents to perform actions according to the execution 
states: if the currently executed action is a deterministic one, when it is done, the third person instructs the next action to 
be performed; if the currently executed action is a sensing action, according to the sensing result, the third-person instructs 
one of the successor actions to be performed. We illustrate this with an example below.

Fig. 3 shows a solution for Example 3. First, agent 1 is instructed to move left, and sense if b1 is in p1. If b1 is in p1, 
agent 2 is instructed to move right, and sense if b2 is in p3. If b1 is not in p1, agent 1 knows b1 is in p3, and she is 
instructed to sense if b2 is in p1, and tell the result to agent 2.

Finally, for illustration purpose, we present another example, which formalizes an instance of the classic Gossip problem 
[2].
11
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Fig. 3. A solution to Example 3.

Example 4. There are three agents 1, 2, and 3. Each of them has her own secret s1, s2, and s3. Instead of sharing in public, 
they are only allowed to make a call to each other. In each call, they exchange all the secrets they know. The goal is that 
everyone knows all the secrets.

• The atoms are: s(i), meaning the secret of agent i.
• The communication actions are: share(i, j, k) = 〈pre, {eff1, eff2, eff3}〉, agent i calls agent j to exchange all the secrets 

they know, where
– pre = Ki(si ∧ ¬K j si) ∨ Ki(sk ∧ ¬K j sk), meaning that i knows some secret that j does not know;
– eff1 = 〈�, Ki si ∧ K j s j〉, meaning that each of i and j gets to know the secret of the other agent;
– eff2 = 〈Ki sk, K j sk〉, meaning that j gets to know k’s secret if i knows k’s secret;
– eff3 = 〈K j sk, Ki sk〉, meaning that i gets to know k’s secret if j knows k’s secret.

• The initial KB is

s1 ∧ s2∧s3 ∧ ¬K1s2 ∧ ¬K1s3 ∧ ¬K2s1 ∧ ¬K2s3 ∧ ¬K3s1 ∧ ¬K3s2∧
K1(s1 ∧ ¬K2s1 ∧ ¬K3s1) ∧ K2(s2 ∧ ¬K1s2 ∧ ¬K3s2) ∧ K3(s3 ∧ ¬K1s3 ∧ ¬K2s3),

meaning that initially each agent knows her own secret and knows that the other agents do not know her secret.
• The goal is 

∧3
i=1 Ki(s1 ∧ s2 ∧ s3), meaning that each agent knows all secrets.

• The constraint is �.

3.4. Conformant vs contingent planning

Our framework can model both conformant and contingent planning problems. In contingent planning, we need sensing 
actions to generate branching plans. In conformant planning, the action that agent i senses the truth value of p is modeled 
as a deterministic action α = 〈pre, {〈p, Ki p〉, 〈¬p, Ki¬p〉}〉. The progression of a KB w.r.t. α is a single KB. The progression 
of a KB w.r.t. a sensing action results in different KBs for different sensing results.

3.5. Coincidence with propositional conformant planning

In this section, we show that for the fragment of propositional conformant planning, our MEP solution concept coincides 
with the standard one.

We first review propositional conformant planning, following the formal representations presented in [44]. A planning 
problem is a tuple P = 〈F , A, I, G〉 where F is a set of atoms, A is a set of actions, I is an initial condition, and G is a goal 
condition. Each action a ∈ A is a pair 〈pre(a), eff(a)〉 where pre(a) is the precondition, and eff(a) is a set of conditional effects. 
Each conditional effect is a pair (c, e) where c is the condition and e is the effect. Each of the preconditions, conditions and 
effects is a set of literals. A literal is an atom p or its negation ¬p, which are complements to each other.

A state s can be treated as the set of literals holding in s. Action a is applicable in state s if s |= pre(a), and the resulting 
set of triggered effects, written eff (s, a), is the union of e such that (c, e) ∈ eff(a) and s |= c. The result of applying a in s is 
a new state θ(s, a) = s/¬eff (s, a) ∪ eff (s, a), i.e., the state obtained from s as follows: for each literal l ∈ eff (s, a), first delete 
from s the complement of l and then add l.

A belief state S is a set of states. A formula φ represents S if S coincides with the set of all states satisfying φ. Action 
a is applicable in belief state S if it is applicable in every state in S . The result of applying a in S is a new belief state 
�(S, a) = {θ(s, a) | s ∈ S}.

A solution for a planning problem P is an action sequence π = 〈a1, ..., an〉 that induces a belief state sequence 
〈S0, S1, ..., Sn〉 such that S0 is the set of all states satisfying I , every state in Sn satisfies G , and for each i such that 
1 ≤ i ≤ n, ai is applicable in Si−1 and Si = �(Si−1, ai).
12
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Proposition 13. Let s be a state, and t a subset of a state. Then s �w t = s/¬t ∪ t; and if s |= φ , then s �w t |= φ �w t.

Proof. These follow from the model-theoretic definition of �w . �
Proposition 14. Suppose that the higher-order belief update operator coincides with Winslett’s update operator on propositional 
formulas. Let a be an action. If a DNF formula φ represents a belief state S, then prog(φ, a) represents �(S, a).

Proof. As in Definition 12, let eff(a) = {〈c1, e1〉, . . . , 〈cn, en〉}, I = {1, . . . , n}, I+ = {i ∈ I | φ |=γ ci}, I− = {i ∈ I | φ |=γ ¬ci}, 
and I∗ = I − I+ − I− .

We first prove that for any s ∈ S , θ(s, a) |= prog(φ, a). Let I ′ = {i ∈ I − I+ | s |= ci}. Since s |= φ, for i ∈ I+ , we have s |= ci . 
Then eff(s, a) = ∧{ei | i ∈ I+ ∪ I ′}. Let φs be the splitting of φ w.r.t. I ′ , i.e., φs = φ ∧ ∧{ci | i ∈ I ′} ∧ ∧{¬ci | i ∈ I∗ − I ′}. Then 
s |= φs . Then θ(s, a) = s �w eff(s, a) |= φs �w

∧{ei | i ∈ I+ ∪ I ′}. Thus θ(s, a) |= prog(φ, a).
We now prove that for any s′ |= prog(φ, a), there exists s ∈ S s.t. s′ = θ(s, a). Since s′ |= prog(φ, a), there exists a splitting 

φs = φ ∧ ∧{ci | i ∈ I ′} ∧ ∧{¬ci | i ∈ I∗ − I ′} s.t. s′ |= φs �w
∧{ei | i ∈ I+ ∪ I ′}. Thus there exists s |= φs s.t. s′ = s �w

∧{ei | i ∈
I+ ∪ I ′}. Since s |= φs , eff(s, a) = ∧{ei | i ∈ I+ ∪ I ′}. Thus s′ = s �w eff(s, a) = θ(s, a). �

For the fragment of propositional conformant planning, an MEP solution is an action sequence π = 〈a1, ..., an〉 that 
induces a formula sequence 〈φ0, φ1, ..., φn〉 such that φ0 is the initial KB, φn |= G , and for each i such that 1 ≤ i ≤ n, 
φi−1 |= pre(ai), and φi = prog(φi−1, ai). Thus, by the above proposition, we have

Theorem 2. Suppose that the higher-order belief update operator coincides with Winslett’s update operator on propositional formulas. 
Then for the fragment of propositional conformant planning, our MEP solution concept coincides with the standard one.

4. Our algorithms

In this section, we present our reasoning and belief change algorithms.
To support efficient reasoning and belief change, we represent KBs as ACDFs, queries as the negation of ACDFs, revision 

or update formulas as ACDFs, and constraints as DNF formulas. Thus, for a planning problem, our planner first compiles the 
initial KB, the effects of conditional effects of deterministic actions, and the positive and negative results of sensing actions 
into ACDFs, the preconditions of actions, the conditions of conditional effects, and the goal into the negation of ACDFs, and 
finally the constraint into DNF formula. When progressing w.r.t. deterministic actions (see Definition 12), we compile each 
splitting of KB and each conjunction of applicable effects into ACDFs.

For Example 3, after compilation, we get

• I = at(1, p2) ∧ at(2, p2) ∧ ¬in(b1, p2) ∧ ¬in(b2, p2)∧
∇1{at(1, p2) ∧ ¬in(b1, p2) ∧ ¬in(b2, p2)} ∧ ∇2{at(2, p2) ∧ ¬in(b1, p2) ∧ ¬in(b2, p2)};

• pre(left(i)) = ¬(at(i, p1) ∨ ∇i{�, at(i, p1)}); note this is the negation of an ACDF;
• cef(eff1(left(i))) = at(i, p1) ∧ ∇i{at(i, p1)};
• pos(find(i, b, p)) = in(b, p) ∧ ∇i{in(b, p)};
• G = ¬ 

∨2
i=1 ∇i{�, ¬in(bi, p1), ¬in(bi, p2), ¬in(bi, p3)};

• γ is a DNF formula of 81 terms.

4.1. Strong entailment and equivalence

Our planner searches through the space of KBs, represented as ACDFs, and performs loop detection during search to 
avoid generating duplicate KBs. Unfortunately, it is not tractable to check the equivalence of two ACDFs. Thus we introduce 
a stronger notion of equivalence which is computationally less demanding. When doing loop detection, we check if two 
ACDFs are strongly equivalent. In this way, we reduce the search space to a limited degree.

Our notion of strong equivalence is defined via defining the notion of strong entailment.

Definition 18. Let φ and φ′ be two ACDFs, γ a DNF formula. The strong entailment relation φ �→γ φ′ is recursively defined:

1. For propositional terms φ and φ′ , φ �→γ φ′ if φ ∧ γ |= φ′ .
2. When φ = φ0 ∧ ∧

a∈A∇a�a and φ′ = φ′
0 ∧ ∧

a∈A∇a�
′
a , φ �→γ φ′ if the following hold:

(a) φ0 �→γ φ′
0;

(b) for each a ∈A, for each φa ∈ �a there exists φ′
a ∈ �′

a s.t. φa �→γ φ′
a;

(c) for each a ∈A, for each φ′
a ∈ �′

a there exists φa ∈ �a s.t. φa �→γ φ′
a .

3. When φ = ∨
� and φ′ = ∨

�′ , φ �→γ φ′ if for all φi ∈ � there exists φ′
j ∈ �′ s.t. φi �→γ φ′

j .

The following proposition shows the difference between strong entailment and entailment, which lies with Items 2(b) 
and 3.
13
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Proposition 15. Let φ and φ′ be two ACDFs, γ a DNF formula.

1. When φ and φ′ are propositional terms, φ |=γ φ′ iff φ ∧ γ |= φ′ .
2. When φ = φ0 ∧ ∧

a∈A∇a�a and φ′ = φ′
0 ∧ ∧

a∈A∇a�
′
a, φ |=γ φ′ iff the following hold:

(a) φ0 |=γ φ′
0;

(b) for each a ∈A, for every φa ∈ �a, φa |=γ
∨

�′
a;

(c) for each a ∈A, for every φ′
a ∈ �′

a there is φa ∈ �a s.t. φa |=γ φ′
a.

3. When φ = ∨
� and φ′ = ∨

�′ , φ |=γ φ′ iff for all φi ∈ �, φi |=γ
∨

�′ .

Proof. (1) and (3) are easy. We prove (2). Recall ∇a� = Ka(
∨

�) ∧ La�. By Proposition 6, φ |=γ φ′ iff the following hold:

1. φ0 |=γ φ′
0;

2. for each a ∈A, 
∨

�a |=γ
∨

�′
a , i.e., for every φa ∈ �a , φa |=γ

∨
�′

a;
3. for each a ∈A, for every φ′

a ∈ �′
a there is φa ∈ �a s.t. φa |=γ φ′

a . �
By induction, it is easy to prove:

Proposition 16. The strong entailment relation is reflexive and transitive.

Proposition 17. Let φ and φ′ be two ACDFs, and γ a DNF formula. If φ �→γ φ′ , then φ |=γ φ′ .

Proof. We prove by induction.

1. φ and φ′ are propositional terms. By Definition 18, φ ∧ γ |= φ′ . Hence φ ∧ C∗γ |= φ′ , i.e., φ |=γ φ′ .
2. φ = φ0 ∧ ∧

a∈A∇a�a and φ′ = φ′
0 ∧ ∧

a∈A∇a�
′
a . By Definition 18,

(a) φ0 �→γ φ′
0, i.e., φ0 ∧ γ |= φ′

0.
(b) for each a ∈A, for each φa ∈ �a there exists φ′

a ∈ �′
a s.t. φa �→γ φ′

a . By induction, φa |=γ φ′
a . Hence φa |=γ

∨
�′

a .
(c) for each a ∈A, for each φ′

a ∈ �′
a there exists φa ∈ �a s.t. φa �→γ φ′

a . By induction, φa |=γ φ′
a .

Thus the 3 conditions of Proposition 15(2) are satisfied. Hence φ |=γ φ′ .
3. φ = ∨

� and φ′ = ∨
�′ . By Definition 18, for all φ ∈ � there exists φ′ ∈ �′ s.t. φ �→γ φ′ . By induction, φ |=γ φ′ . Hence 

φ |=γ
∨

�′ . So 
∨

� |=γ
∨

�′ . �
The definition of strong entailment gives us a recursive algorithm to check strong entailment. As shown below, the 

complexity of the algorithm is exponential in md(φ ∨ φ′), i.e., the maximal modal depth of φ and φ′ , which is usually small.

Theorem 3. Let φ and φ′ be two ACDFs, γ a DNF formula. The strong entailment relation φ �→γ φ′ can be checked in time O (2md(φ∨φ′) ·
|φ| · |φ′| · |γ |).

Proof. We prove by induction.

1. φ and φ′ are propositional terms. Then φ �→γ φ′ iff φ∧γ |= φ′ iff for each term t of γ , φ∧t |= φ′ iff for each term t of γ
and for each literal l of φ′ , l is contained in φ∧t . This can be checked in time O (q), where q = tl(|φ| ·|t|) ≤ |φ| ·|φ′| ·|γ |.

2. φ = φ0 ∧ ∧
a∈A∇a�a and φ′ = φ′

0 ∧ ∧
a∈A∇a�

′
a . By induction, whether φ �→γ φ′ can be checked in time O (q), where

q = |φ|·|φ′|·|γ | + 2aφa∈�aφ′
a∈�′

a
2md(φa∨φ′

a) ·|φa| · |φ′
a| · |γ |

≤ |φ|·|φ′|·|γ | + 2md(φ∨φ′)aφa∈�aφ′
a∈�′

a
|φa| · |φ′

a| · |γ |
≤ |φ|·|φ′|·|γ | + 2md(φ∨φ′)a|∇a�a| · |∇a�

′
a| · |γ |

≤ 2md(φ∨φ′) ·|φ| · |φ′| · |γ |.
3. φ = ∨

� and φ′ = ∨
�′ . By induction, whether φ �→γ φ′ can be checked in time O (q), where q=φ1∈�φ′

1∈�′ 2md(φ1∨φ′
1)·

|φ1| · |φ′
1| · |γ | ≤ 2md(φ∨φ′) ·|φ| · |φ′| · |γ |. �

Definition 19. We say that two ACDFs φ and φ′ are strongly equivalent w.r.t. constraint γ , written φ �γ φ′ , if both φ �→γ φ′
and φ′ �→γ φ.

The following proposition gives a characterization of the concept of strong equivalence. Essentially, two ACDFs are 
strongly equivalent if they can be made identical by removing redundant formulas from disjunctions and cover operations: 
for a disjunction 

∨
�, an element is redundant if it strongly entails another one; for a cover formula ∇a�, an element is 

redundant if it lies between two other elements in the order of strong entailment.
14
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Proposition 18. Let φ and φ′ be two ACDFs, γ a DNF formula.

1. For propositional terms φ and φ′ , φ �γ φ′ iff φ ∧ γ ⇔ φ′ ∧ γ .
2. When φ = φ0 ∧ ∧

a∈A∇a�a and φ′ = φ′
0 ∧ ∧

a∈A∇a�
′
a, φ �γ φ′ iff the following hold:

(a) φ0 �γ φ′
0;

(b) for each a ∈A, for each φa ∈ �a there exist φ′
a1, φ

′
a2 ∈ �′

a and φa1, φa2 ∈ �a s.t. φa1 �→γ φ′
a1 �→γ φa �→γ φ′

a2 �→γ φa2 .
(c) for each a ∈A, for each φ′

a ∈ �′
a there exists φa ∈ �a s.t. φa �γ φ′

a or there exist φ′
a1, φ

′
a2 ∈ �′

a −{φ′
a} s.t. φ′

a1 �→γ φ′
a �→γ φ′

a2 .
(d) for each a ∈A, for each φ′

a ∈ �′
a there exist φa1, φa2 ∈ �a and φ′

a1, φ
′
a2 ∈ �a s.t. φ′

a1 �→γ φa1 �→γ φ′
a �→γ φa2 �→γ φ′

a2 .
3. When φ = ∨

� and φ′ = ∨
�′ , φ �γ φ′ iff for all φi ∈ � there exist φ′

j ∈ �′ and φk ∈ � s.t. φi �→γ φ′
j �→γ φk, and for all 

φ′
j ∈ �′ there exist φi ∈ � and φ′

k ∈ �′ s.t. φ′
j �→γ φi �→γ φ′

k.

Proof. This follows straightforwardly from Definitions 18 and 19. �
For example, p ∧ q ∨ p � p, and ∇a{p, p ∧ q, p ∨ q} �∇a{p ∧ q, p ∨ q}.

Proposition 19. Suppose that φ ∈ � and φ1, φ2 ∈ � − {φ} s.t. φ1 �→γ φ �→γ φ2 . Then ∇a� ⇔γ ∇a(� − {φ}).

Proof. By Proposition 17, φ1 |=γ φ |=γ φ2. We have ∇a� = Ka(
∨

�) ∧ La�. Since φ |=γ φ2, φ can be removed from � in 
Ka(

∨
�). Since φ1 |=γ φ, φ can be removed from � in La�. Hence ∇a� ⇔γ ∇a(� − {φ}). �

By Proposition 16,

Proposition 20. Strong equivalence is an equivalence relation.

By Proposition 17,

Proposition 21. Two strongly equivalent ACDFs are equivalent.

However, two equivalent ACDFs might not be strongly equivalent, as shown in the following example.

Example 5.

1. Let φ = p ∨ ¬p, and φ′ = q ∨ ¬q. Then φ ⇔ φ′ but φ ��→ φ′ and φ′ ��→ φ′ .
2. Let φ = ∇a{p, q, p ∨ q}, and φ′ = ∇a{p, q}. Then φ ⇔ φ′ . However, φ ��→ φ′ , since p ∨ q ��→ p and p ∨ q ��→ q.

4.2. Reasoning

As mentioned earlier, to support efficient reasoning, we represent KBs as ACDFs, and queries as the negation of ACDFs. 
The following result gives us a recursive algorithm to check if an ACDF entails the negation of another, or to check if the 
conjunction of two ACDFs is unsatisfiable. The proof is by applying Propositions 1(3) and 7.

Proposition 22. Let φ and φ′ be two ACDFs, γ a DNF formula.

1. If φ and φ′ are propositional terms, then φ |=γ ¬φ′ iff for each term t in γ , φ ∧ t ∧ φ′ has complementary literals.
2. If φ = φ0 ∧ ∧

a∈A∇a�a and φ′ = φ′
0 ∧ ∧

a∈A∇a�
′
a, then φ |=γ ¬φ′ iff one of the following holds:

(a) φ0 |=γ ¬φ′
0;

(b) there exists a ∈A s.t. �a or �′
a is empty;

(c) there exist a ∈A and φi ∈ �a s.t. for all φ′
j ∈ �′

a, φi |=γ ¬φ′
j ;

(d) there exist a ∈A and φ′
j ∈ �′

a s.t. for all φi ∈ �a, φi |=γ ¬φ′
j .

3. If φ = ∨
� and φ′ = ∨

�′ , then φ |=γ ¬φ′ iff for all φi ∈ � and φ′
j ∈ �′ , φi |=γ ¬φ′

j .

Proof. We prove by induction.

1. φ and φ′ are propositional terms. Then φ |=γ ¬φ′ iff φ ∧ φ′ ∧ γ is unsatisfiable iff for each term t in γ , φ ∧ t ∧ φ′ is 
unsatisfiable iff for each term t in γ , φ ∧ t ∧ φ′ has complementary literals.

2. φ = φ0 ∧ ∧
a∈A∇a�a and φ′ = φ′

0 ∧ ∧
a∈A∇a�

′
a . We have φ ∧ φ′ ⇔ φ0 ∧ φ′

0 ∧ ∧
a∈A∇a�a ∧ ∇a�

′
a ⇔ φ0 ∧ φ′

0 ∧∧
a∈A∇a[�a ∧ (

∨
�′

a) ∪ �′
a ∧ (

∨
�a)], by Proposition 1(3). Then φ |=γ ¬φ′ iff φ ∧ φ′ is unsatisfiable w.r.t. γ iff by 

Proposition 7, one of the following holds:
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(a) φ0 ∧ φ′
0 ∧ γ is propositionally unsatisfiable, i.e., φ0 |=γ ¬φ′

0;
(b) there exists a ∈A s.t. �a or �′

a is empty;
(c) there exist a ∈A and φ ∈ �a ∧ (

∨
�′

a) ∪�′
a ∧ (

∨
�a) s.t. φ is unsatisfiable w.r.t. γ , i.e., there exist a ∈A and φ ∈ �a

s.t. φ ∧ (
∨

�′
a) is unsatisfiable w.r.t. γ , or there exist a ∈A and φ′ ∈ �′

a s.t. φ′ ∧ (
∨

�a) is unsatisfiable w.r.t. γ , i.e., 
there exist a ∈ A and φ ∈ �a s.t. for all φ′ ∈ �′

a , φ ∧ φ′ is unsatisfiable w.r.t. γ , or there exist a ∈ A and φ′ ∈ �′
a

s.t. for all φ ∈ �a , φ ∧ φ′ is unsatisfiable w.r.t. γ , i.e., there exist a ∈ A and φ ∈ �a s.t. for all φ′ ∈ �′
a , φ |=γ ¬φ′ , or 

there exist a ∈A and φ′ ∈ �′
a s.t. for all φ ∈ �a , φ |=γ ¬φ′ .

3. φ = ∨
� and φ′ = ∨

�′ . Then φ |=γ ¬φ′ iff (
∨

�) ∧ (
∨

�′) is unsatisfiable w.r.t. γ iff for all φ ∈ � and φ′ ∈ �′ , φ ∧ φ′
is unsatisfiable w.r.t. γ iff for all φ ∈ � and φ′ ∈ �′ , φ |=γ ¬φ′ . �

Theorem 4. Let φ and φ′ be two ACDFs, γ a DNF formula. Whether φ |=γ ¬φ′ can be checked in time O (2md(φ∨φ′) ·|φ| · |φ′| · |γ |).

Proof. The proof is the same as that of Proposition 3. �
For Example 3, to check if I |=γ pre(left(1)), by Rule 3, we check if both I |=γ ¬at(1, p1) and I |=γ ¬∇1{�, at(1, p1)}

hold. By Rule 1, the former holds. By Rule 2.a, the latter holds, since at(1, p2) |=γ ¬at(1, p1).

4.3. Higher-order belief change

In this section, we present our syntactic higher-order belief change operators, and we give semantic characterizations for 
our operators for a fragment of ACDFs called proper ACDFs. Intuitively, proper ACDFs only allow negation and disjunction 
for propositional formulas, i.e., they disallow negative or disjunctive beliefs. A proper ACDF is equivalent to a formula of the 
form 

∧
p∈P K pφp , where P is a set of paths of agents, Ka1a2...an abbreviates for Ka1 Ka2 . . . Kan , and each φp is a propositional 

formula. We show that for proper ACDFs, higher-order belief change nicely reduces to propositional belief change along each 
path. As a special case, we have Kiφ • Kiμ ⇔ Ki(φ •μ), where • is ◦ or �, φ and μ are propositional formulas. Based on the 
reduction result, we show that semantic characterizations for propositional belief change nicely carry over to higher-order 
belief change.

We do not yet have general semantic definitions of higher-order belief change operators. On the one hand, these are hard 
to come up with. As introduced in Section 2.3, Katsuno and Mendelzon’s semantic definitions of propositional belief opera-
tors rely on the notion of closeness between two models. However, it is more complicated to define the distance between 
two Kripke models than that of two propositional models. Please refer to Caridroit et al. [11] for a comprehensive study of 
distances between Kripke models. On the other hand, our work on multi-agent epistemic planning tries to simulate the way 
humans do epistemic planning, and we think for humans to do higher-order belief change, which is more complicated than 
propositional belief change, the principle of efficient computability is more important than the principle of minimal change. 
So the principle of efficient computability guides our definition of higher-order belief change operators. We will leave for 
future work the hard issue of a general model-theoretic study of higher-order belief change.

The basic idea behind our belief change operators is to reduce the change of epistemic formulas to that of lower-order 
epistemic formulas, and as a basis we resort to change of propositional formulas. The essential difference between revision 
and update is: revision satisfies the conjunction property that when φ ∧ φ′ is satisfiable, φ ◦ φ′ ⇔ φ ∧ φ′ , while update 
satisfies the distribution property that when both φ1 and φ2 are satisfiable, (φ1 ∨ φ2) � φ′ ⇔ (φ1 � φ′ ∨ φ2 � φ′).

To approximate the principle of minimal change, we mimic the definition of MinPairs from Section 2.3 as follows.

Definition 20. Let � and �′ be sets of formulas, γ a DNF formula.

1. For φ ∈ � and φ′ ∈ �′ ,

dist(φ,φ′) =
{

0 if φ ∧ φ′ is satisfiable w.r.t. γ

1 otherwise.

2. dist(�, �′) = min{dist(φ, φ′) | φ ∈ �, φ′ ∈ �′}.
3. The set of closest pairs of formulas from � and �′ w.r.t. γ , denoted � ∗γ �′ , is the set {(φ, φ′) | φ ∈ �, φ′ ∈

�′, dist(φ, φ′) = dist(�, �′)}.

Intuitively, whenever possible, � ∗γ �′ restricts our attention to those consistent pairs of formulas. We let � ◦ φ′ denote 
the set {φ ◦ φ′ | φ ∈ �}, and similarly for �.

4.3.1. Revision
We first present the formal definition of our revision operator, and then give the intuitive explanation.

Definition 21. Let φ and φ′ be ACDFs, γ a DNF formula. The revision of φ with φ′ under γ , denoted φ ◦γ φ′ , is recursively 
defined as follows:
16
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1. When φ and φ′ are propositional, the result is φ ◦s (φ′ ∧ γ ), where ◦s is Satoh’s revision operator.
2. When φ = φ0 ∧ ∧

a∈B∇a�a, φ′ = φ′
0 ∧ ∧

a∈B′∇a�
′
a , and φ ∧ φ′ is satisfiable w.r.t. γ , φ ◦γ φ′ is defined as:

(φ0 ◦γ φ′
0) ∧

∧
a∈B−B′∇a�a ∧

∧
a∈B′−B∇a�

′
a ∧

∧
a∈B∩B′∇a[(�a ◦γ

∨
�′

a) ∪ (�′
a ◦γ

∨
�a)].

3. When φ = φ0 ∧ ∧
a∈B∇a�a , φ′ = φ′

0 ∧ ∧
a∈B′∇a�

′
a , and φ ∧ φ′ is unsatisfiable w.r.t. γ , φ ◦γ φ′ is defined as:

(φ0 ◦γ φ′
0) ∧

∧
a∈B−B′∇a�a ∧

∧
a∈B′−B∇a�

′
a ∧

∧
a∈B∩B′∇a[�∗

a ∪ (�′
a − �′′

a )],
where �∗

a = {φ ◦γ φ′ | (φ, φ′) ∈ �a ∗γ {∨�′
a}}, �′′

a = {φ′ ∈ �′
a | there exists a φ ∈ �∗

a s.t. φ �→γ φ′}.
4. (

∨
�) ◦γ (

∨
�′) = ∨{φ ◦γ φ′ | (φ, φ′) ∈ � ∗γ �′}.

Rule 2 is for the purpose of the conjunction property: recall that by Proposition 1(3), ∇a� ∧ ∇a�
′ ⇔ ∇a[� ∧ (

∨
�′) ∪

�′ ∧ (
∨

�)]. Rule 4 is to approximate the principle of minimal change: when there are consistent pairs of formulas φ and 
φ′ , we ignore those that are not. The intuition behind Rule 3 is as follows. Recall that ∇a�a ⇔ Ka(

∨
�) ∧ La�, hence 

∨
�a

is the belief of agent a, and each φ ∈ �a is a possibility for agent a. To explain the definition of �∗
a , when there exist old 

possibilities that are consistent with the new belief 
∨

�′
a , we just keep these possibilities and revise them with the new 

belief, otherwise we revise each old possibility with the new belief. Also, among all the new possibilities, we remove those 
which are strongly entailed by an element of �∗

a , getting �′
a − �′′

a . This is because we would like to get a revision result as 
strong as possible. For example, suppose �∗

a = {p ∧ q}, and �′
a = {p}; then we obtain ∇a{p ∧ q}, which is strictly stronger 

than ∇a{p ∧ q, p}.
Our definition of revision relies on satisfiability checking. To complete the operation efficiently, we present the following 

recursive algorithm to check for satisfiability and return the revision result at the same time.

Definition 22. Let φ and φ′ be ACDFs, γ a DNF formula. Procedure Sat-revγ (φ, φ′) returns a pair (s, ψ), where s ∈ {�, ⊥}, 
which is recursively defined as follows:

1. φ and φ′ are propositional terms. Let s denote whether φ ∧ φ′ ∧ γ is satisfiable, and ψ = φ ◦s (φ′ ∧ γ ).
2. φ = φ0 ∧ ∧

a∈B∇a�a , and φ′ = φ′
0 ∧ ∧

a∈B′∇a�
′
a . Let (s0, ψ0) = Sat-revγ (φ0, φ′

0).
For each a ∈ B ∩ B′ , for each φai ∈ �a , let (sai, ψai) = Sat-revγ (φai, 

∨
�′

a); for each φ′
aj ∈ �′

a , let (s′
aj, ψ

′
aj) =

Sat-revγ (φ′
aj, 

∨
�a). If s0 = �, and for each a ∈ B ∩ B′ , for each φai ∈ �a and each φ′

aj ∈ �′
a , sai = � and s′

aj = �, 
then let s = � and

ψ =ψ0 ∧
∧

a∈B−B′∇a�a ∧
∧

a∈B′−B∇a�
′
a ∧

∧
a∈B∩B′∇a[{ψai | φai ∈ �a} ∪ {ψ ′

aj | φ′
aj ∈ �′

a}].
Otherwise, let s = ⊥. If there exists φai ∈ �a s.t. sai = �, let �∗

a = {ψai | φai ∈ �a, sai = �}, otherwise let �∗
a = {ψai |

φai ∈ �a}. Let �′′
a = {φ′ ∈ �′

a | there exists a φ ∈ �∗
a s.t. φ �→γ φ′}. Now let

ψ = ψ0 ∧
∧

a∈B−B′∇a�a ∧
∧

a∈B′−B∇a�
′
a ∧

∧
a∈B∩B′∇a[�∗

a ∪ (�′
a − �′′

a )].
3. φ = ∨m

i=1 φi and φ′ = ∨n
j=1 φ′

j . For each i and j, let (si j, ψi j) = Sat-revγ (φi, φ′
j). If there exist i and j s.t. si j = �, let 

s = � and ψ = ∨{ψi j | si j = �}; otherwise, let s = ⊥ and ψ = ∨
ψi j .

Theorem 5. Let φ and φ′ be two ACDFs, γ a DNF formula. Sat-revγ (φ, φ′) can be computed in time O (4md(φ∨φ′) ·|φ|2 · |φ′|2 · |γ |2)
and the resulting formula is of size O (2md(φ∨φ′) ·|φ| · |φ′| · |γ |).

Proof. We prove by induction on |φ| + |φ′|.

1. φ and φ′ are propositional. Since φ, φ′ and γ are all in DNF, whether φ ∧ φ′ ∧ γ is satisfiable can be checked in time 
O (|φ| · |φ′| · |γ |). By Proposition 10, φ ◦s (φ′ ∧γ ) can be computed in time O (|φ|2 · |φ′|2 · |γ |2), and the resulting formula 
is of size O (|φ| · |φ′| · |γ |). Hence Sat-revγ (φ, φ′) can be computed in time O (|φ|2 · |φ′|2 · |γ |2).

2. φ = φ0 ∧ ∧
a∈B∇a�a , and φ′ = φ′

0 ∧ ∧
a∈B′∇a�

′
a . Suppose that s = �. By induction, it is easy to prove that ψ can be 

computed in time O (2 · 4md(φ∨φ′)−1 ·|φ|2 · |φ′|2 · |γ |2), and ψ is of size O (2md(φ∨φ′) ·|φ| · |φ′| · |γ |). Now suppose s = ⊥. 
We have each ψai is of size O (2md(φ∨φ′)−1 ·|φai | · | ∨�′

a| · |γ |). By Proposition 3, for φ′
aj ∈ �′

a , whether ψai �→γ φ′
aj can 

be checked in time O (4md(φ∨φ′)−1 ·|φai| · | ∨�′
a| · |φ′

aj| · |γ |2). Thus �′′
a can be computed in time O (4md(φ∨φ′)−1 ·| ∨�a| ·

| ∨�′
a|2 · |γ |2). So the total time is O (4md(φ∨φ′) ·|φ|2 · |φ′|2 · |γ |2). Also, ψ is of size O (2md(φ∨φ′) ·|φ| · |φ′| · |γ |).

3. φ = ∨m
i=1 φi and φ′ = ∨n

j=1 φ′
j . By induction, Sat-revγ (φi, φ′

j) can be computed in time O (4md(φi∨φ′
j) ·|φi |2 · |φ′

j |2 · |γ |2)
and the resulting formula is of size O (2md(φi∨φ′

j) · |φi| · |φ′
j| · |γ |). Hence Sat-revγ (φ, φ′) can be computed in time 

O (4md(φ∨φ′) ·|φ|2 · |φ′|2 · |γ |2) and the resulting formula is of size O (2md(φ∨φ′) ·|φ| · |φ′| · |γ |). �
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In the following, we analyze the properties of our revision operator. For an ACDF, we need a notion stronger than that 
of satisfiability. We say that an ACDF φ is disjunct-wise satisfiable if not only φ is satisfiable, but also for any disjunction in 
φ, each disjunct is satisfiable. We formally define the notion as follows:

Definition 23. We say that an ACDF φ is disjunct-wise satisfiable (d-satisfiable for short) w.r.t. γ if one of the following 
holds:

1. φ is a propositional term which is satisfiable w.r.t. γ .
2. φ = φ0 ∧ ∧

a∈A∇a�a , for each a ∈A, each φ′ ∈ �a is d-satisfiable w.r.t. γ , and φ is satisfiable w.r.t. γ .
3. φ = ∨

�, and each φ′ ∈ � is d-satisfiable w.r.t. γ .

It is easy to prove by induction that if an ACDF φ is d-satisfiable w.r.t. γ , then it is satisfiable w.r.t. γ . The following 
result states the properties of our revision operator.

Theorem 6. Let φ and φ′ be ACDFs d-satisfiable w.r.t. γ . Let φ∗ = φ ◦γ φ′ . Then φ∗ is d-satisfiable w.r.t. γ , and φ∗ |=γ φ′ . Moreover, 
when φ ∧ φ′ is satisfiable w.r.t. γ , φ∗ ⇔γ φ ∧ φ′ .

Proof. We prove by induction on |φ| + |φ′|.
1. φ and φ′ are propositional. The properties follow from the definition of Satoh’s revision.
2. φ = φ0 ∧∧

a∈B∇a�a , φ′ = φ′
0 ∧∧

a∈B′∇a�
′
a , φ ∧φ′ is satisfiable w.r.t. γ . Let a ∈ B∩B′ . Since φ ∧φ′ is satisfiable w.r.t. 

γ , by Proposition 5, for each φa ∈ �a , φa ∧ ∨
�′

a is satisfiable w.r.t. γ . By induction, φa ◦γ
∨

�′
a is d-satisfiable w.r.t. γ , and 

φa ◦γ
∨

�′
a ⇔γ φa ∧ ∨

�′
a . Similarly, for each φ′

a ∈ �′
a , φ′

a ◦γ
∨

�a is d-satisfiable w.r.t. γ , and φ′
a ◦γ

∨
�a ⇔γ φ′

a ∧ ∨
�a . 

By Proposition 1 (3), φ ◦γ φ′ ⇔γ φ ∧ φ′ . It follows that φ ◦γ φ′ is satisfiable w.r.t. γ and φ ◦γ φ′ |=γ φ′ . Hence φ ◦γ φ′ is 
d-satisfiable w.r.t. γ .

3. φ = φ0 ∧∧
a∈B∇a�a , φ′ = φ′

0 ∧∧
a∈B′∇a�

′
a , φ ∧φ′ is unsatisfiable w.r.t. γ . By induction, φ0 ∧φ′

0 is satisfiable w.r.t. γ . 
Let a ∈ B ∩B′ . By induction, for each φa ∈ �a , φa ◦γ

∨
�′

a is d-satisfiable w.r.t. γ , hence each element of �∗
a is d-satisfiable 

w.r.t. γ . Thus φ ◦γ φ′ is satisfiable w.r.t. γ . Hence φ ◦γ φ′ is d-satisfiable w.r.t. γ . By induction, φ0 ◦γ φ′
0 |=γ φ′

0, and for each 
φ∗

a ∈ �∗
a , φ∗

a |=γ
∨

�′
a . Also, by the definition of �′′

a , for each φ′
a ∈ �′

a , there exists φ∗
a ∈ �∗

a ∪ (�′
a − �′′

a ) s.t. φ∗
a |=γ φ′

a . By 
Proposition 6, φ ◦γ φ′ |=γ φ′ .

4. φ = ∨
�, φ′ = ∨

�′ , φ ∧ φ′ is satisfiable w.r.t. γ . Then � ∗γ �′ = {(φ1, φ′
1) | φ1 ∈ �1, φ′

1 ∈ �′
1, φ1 ∧ φ′

1 is satisfiable 
w.r.t. γ }. By induction, for each (φ1, φ′

1) ∈ � ∗γ �′ , φ1 ◦γ φ′
1 is d-satisfiable w.r.t. γ , and φ1 ◦γ φ′

1 ⇔γ φ1 ∧φ′
1. Thus φ ◦γ φ′ is 

d-satisfiable w.r.t. γ , and φ ◦γ φ′ = ∨{φ1 ◦γ φ′
1 | (φ1, φ′

1) ∈ � ∗γ �′} ⇔γ
∨{φ1 ∧φ′

1 | (φ1, φ′
1) ∈ � ∗γ �′} ⇔γ φ ∧φ′ . It follows 

that φ ◦γ φ′ |=γ φ′ .
5. φ = ∨

�, φ′ = ∨
�′ , φ ∧ φ′ is unsatisfiable w.r.t. γ . Then � ∗γ �′ = {(φ1, φ′

1) | φ1 ∈ �1, φ′
1 ∈ �′

1}. Since both φ and 
φ′ are d-satisfiable w.r.t. γ , for each (φ1, φ′

1) ∈ � ∗γ �′ , both φ1 and φ′
1 are d-satisfiable w.r.t. γ . By induction, φ1 ◦γ φ′

1 is 
d-satisfiable w.r.t. γ , and φ1 ◦γ φ′

1 |=γ φ′
1. Hence φ ◦γ φ′ is d-satisfiable w.r.t. γ , and φ ◦γ φ′ |= φ′ . �

4.3.2. Update
We now present the formal definition of our update operator, followed by the intuitive explanation.

Definition 24. Let φ and φ′ be ACDFs, γ a DNF formula. The update of φ with φ′ under γ , denoted φ �γ φ′ , is recursively 
defined as follows:

1. When φ and φ′ are propositional, the result is φ �w (φ′ ∧ γ ), where �w is Winslett’s update operator.
2. When φ = φ0 ∧ ∧

a∈B∇a�a and φ′ = φ′
0 ∧ ∧

a∈B′∇a�
′
a , φ �γ φ′ is defined as follows:

(φ0 �γ φ′
0) ∧

∧
a∈B−B′∇a�a ∧

∧
a∈B′−B∇a�

′
a ∧

∧
a∈B∩B′∇a[�∗

a ∪ (�′
a − �′′

a )],
where �∗

a = �a �γ
∨

�′
a , �′′

a = {φ′ ∈ �′
a | there exists a φ ∈ �∗

a s.t. φ �→γ φ′}.
3. (

∨
�) �γ φ′ = ∨

φ∈� φ �γ φ′ .
4. When φ is a CDF term, φ �γ (

∨
�′) = ∨{φ �γ φ′ | (φ, φ′) ∈ {φ} ∗γ �′}.

Rule 3 and the definition of �∗
a in Rule 2 are for the purpose of the distribution property. Rule 4 is to approximate the 

principle of minimal change: when there is φ′ ∈ �′ s.t. φ′ is consistent with φ, we simply ignore those which are not.

Theorem 7. Let φ and φ′ be two ACDFs, γ a DNF formula. The time to compute φ �γ φ′ is O (2md(φ∨φ′) · 2|φ′|·|γ | · |φ| · |φ′| · |γ |), and 
the resulting formula is of size O (2|φ′|·|γ | · |φ|).

Proof. We prove by induction on |φ| + |φ′|.
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1. φ and φ′ are propositional. By Proposition 12, φ �w (φ′ ∧ γ ) can be computed in time O (2|φ′ |·|γ | · |φ|), and the resulting 
formula is of size O (2|φ′ |·|γ | · |φ|).

2. φ = φ0 ∧ ∧
a∈B∇a�a , and φ′ = φ′

0 ∧ ∧
a∈B′∇a�

′
a . By induction, for each φai ∈ �a , ψai = φai �γ

∨
�′

a can be com-

puted in time O (2md(φ∨φ′)−1 · 2|∨�′
a|·|γ | · |φai | · | ∨�′

a| · |γ |, and the resulting formula is of size O (2|∨�′
a|·|γ | · |φai |). By 

Proposition 3, for φ′
aj ∈ �′

a , whether ψai �→γ φ′
aj can be checked in time O (2md(φ∨φ′)−1 · 2|∨�′

a|·|γ | · |φai| · |φ′
aj| · |γ |). 

Thus both �∗
a and �′′

a can be computed in time O (2md(φ∨φ′)−1 · 2|∨�′
a |·|γ | · | ∨�a| · | ∨�′

a| · |γ |). So the total time is 
O (2md(φ∨φ′) · 2|φ′|·|γ | · |φ| · |φ′| · |γ |). The resulting formula is of size O (2|φ′ |·|γ | · |φ|).

3. φ = ∨
i φi . By induction, φi �γ φ′ can be computed in time O (2md(φi∨φ′) ·2|φ′|·|γ | · |φi| · |φ′| · |γ |), and the resulting formula 

is of size O (2|φ′|·|γ | · |φi |). Thus φ �γ φ′ can be computed in time O (2md(φ∨φ′) · 2|φ′|·|γ | · |φ| · |φ′| · |γ |), and the resulting 
formula is of size O (2|φ′ |·|γ | · |φ|).

4. φ is a CDF term, and φ′ = ∨
φ′

i . By Proposition 4, whether φ and φ′
i are consistent w.r.t. γ can be checked in time 

O (2md(φ∨φ′
i ) · |φ| · |φ′

i | · |γ |). By induction, φ �γ φ′
i can be computed in time O (2md(φ∨φ′

i ) · 2|φ′
i |·|γ | · |φ| · |φ′

i | · |γ |), and the 
resulting formula is of size O (2|φ′

i |·|γ | · |φ|). Thus φ �γ φ′ can be computed in time O (2md(φ∨φ′) · 2|φ′|·|γ | · |φ| · |φ′| · |γ |), 
and the resulting formula is of size O (2|φ′ |·|γ | · |φ|). �

The complexity of the algorithm is exponential in the size of φ′ , which is an action effect and hence usually small.
The following result states the properties of our update operator.

Theorem 8. Let φ and φ′ be ACDFs d-satisfiable w.r.t. γ . Let φ∗ = φ �γ φ′ . Then φ∗ is d-satisfiable w.r.t. γ , and φ∗ |=γ φ′ . Moreover, 
(φ1 ∨ φ2) �γ φ′ ⇔γ (φ1 �γ φ′ ∨ φ2 �γ φ′).

Proof. We prove by induction on |φ| + |φ′|.
1. φ and φ′ are propositional. The properties follow from the definition of Winslett’s update.
2. φ = φ0 ∧∧

a∈B∇a�a , φ′ = φ′
0 ∧∧

a∈B′∇a�
′
a . By induction, φ0 ∧φ′

0 is satisfiable w.r.t. γ . Let a ∈ B∩B′ . By induction, for 
each φa ∈ �a , φa �γ

∨
�′

a is d-satisfiable w.r.t. γ , hence each element of �∗
a is d-satisfiable w.r.t. γ . Thus φ�γ φ′ is satisfiable 

w.r.t. γ . So φ �γ φ′ is d-satisfiable w.r.t. γ . By induction, φ0 �γ φ′
0 |=γ φ′

0, and for each φ∗
a ∈ �∗

a , φ∗
a |=γ

∨
�′

a . Also, by the 
definition of �′′

a , for each φ′
a ∈ �′

a , there exists φ∗
a ∈ �∗

a ∪ (�′
a − �′′

a ) s.t. φ∗
a |=γ φ′

a . By Proposition 6, φ �γ φ′ |=γ φ′ .
3. φ = ∨

�. Clearly, the disjunction property holds. Since φ is d-satisfiable (w.r.t. γ ), each φ1 ∈ � is d-satisfiable. By in-
duction, for each φ1 ∈ �, φ1 �γ φ′ is d-satisfiable and φ1 �γ φ′ |=γ φ′ . Thus φ �γ φ′ is d-satisfiable w.r.t. γ and φ �γ φ′ |=γ φ′ .

4. φ is a CDF term, φ′ = ∨
�′ . Since φ′ is d-satisfiable (w.r.t. γ ), each φ′

1 ∈ �′ is d-satisfiable. By induction, for each 
φ′

1 ∈ �′ , φ �γ φ′
1 is d-satisfiable and φ �γ φ′

1 |=γ φ′
1. Thus φ �γ φ′ is d-satisfiable w.r.t. γ and φ �γ φ′ |=γ φ′ . �

For Example 3, after doing action left(1), we get I �γ cef(eff1(left(1)), equivalent to φ1 under γ :
φ1 = at(1, p1) ∧ at(2, p2) ∧ ¬in(b1, p2) ∧ ¬in(b2, p2)∧

∇1{at(1, p1) ∧ ¬in(b1, p2) ∧ ¬in(b2, p2)} ∧ ∇2{at(2, p2) ∧ ¬in(b1, p2) ∧ ¬in(b2, p2)}.
Now after doing find(1, b1, p1) with a positive result, we get φ1 ◦γ pos(find(1, b1, p1)), equivalent to φ2 under γ :
φ2 = at(1, p1) ∧ at(2, p2) ∧ in(b1, p1) ∧ ¬in(b2, p2)∧

∇1{at(1, p1) ∧ in(b1, p1) ∧ ¬in(b2, p2)} ∧ ∇2{at(2, p2) ∧ ¬in(b1, p2) ∧ ¬in(b2, p2)}.
4.3.3. Semantic characterizations for proper ACDFs

We now give semantic characterizations for our higher-order belief change operators for a fragment of ACDFs which we 
call proper ACDFs. Intuitively, proper ACDFs disallow negative or disjunctive beliefs. We define the concept of tree models: 
a tree model is a special KD45n model with an underlying tree structure such that each world has a unique a-successor for 
each agent a. Thus a tree model cannot represent negative or disjunctive beliefs. It is easy to show that a proper ACDF has 
a model iff it has a tree model. Hence for semantic characterizations for proper ACDFs, we can restrict our attention to tree 
models. Because tree models have a simple form, we are able to show that for proper ACDFs, the semantic characterizations 
for propositional belief change nicely carry over to higher-order belief change. For simplicity of the presentation, we ignore 
the constraint γ .

Definition 25. We say that an ACDF φ is proper if in any ∇a�a subformula, �a must be a singleton, and in φ disjunction 
can only be used for propositional formulas.

Proposition 23. ∇a{φ} ⇔ Kaφ .

Proof. ∇a{φ} ⇔ Kaφ ∧ Laφ ⇔ Kaφ ∧ La� ⇔ Kaφ. �
Let p be a path of agents a1, a2, . . . , an . We use K pφ to abbreviate for Ka1 Ka2 . . . Kan φ. We call K p a path knowledge 

operator. In case p is the empty path ε , K pφ simply represents φ. We let Lpφ stand for ¬K p¬φ. We call p an alternating 
path if any adjacent agents on the path are different.
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Proposition 24. Any proper ACDF can be equivalently transformed to formula of the form 
∧

p∈P K pφp , where P is a set of alternating 
paths, and each φp is in DNF. We call such a formula an alternating path knowledge term.

Proof. Let φ be a proper ACDF. We prove by induction on φ.
1. φ is a propositional term. The claim obviously holds.
2. φ = ∨

�. By the definition of proper ACDFs, φ is a DNF.
3. φ = φ0 ∧ ∧

a∈B∇a{φa}. By the definition of proper ACDFs, each φa is a proper ACDF. By induction, each φa can be 
equivalently transformed to an alternating path knowledge term 

∧
p∈Pa

K pφap . Thus φ ⇔ φ0 ∧ ∧
a∈B,p∈Pa Kapφap , which is 

an alternating path knowledge term. �
Without loss of generality, we can assume an alternating path knowledge term 

∧
p∈P K pφp of modal depth k takes the 

form of 
∧

p K pφp , where p ranges over all alternating paths of length ≤ k, since for p /∈ P , we can let φp be �.
In the following, we show that for proper ACDFs, higher-order belief change nicely reduces to propositional belief change 

along each path. For each operator, we first prove a proposition which is used to prove the reduction result.

Proposition 25. Let φ and φ′ be proper ACDFs. We have φ ◦ φ′ �→ φ′ , and

1. When φ and φ′ are propositional, we have φ ◦ φ′ = φ ◦s φ′ , and if φ ∧ φ′ is satisfiable, then φ ◦ φ′ ⇔ φ ∧ φ′ , and φ ◦ φ′ �→ φ .
2. When φ = φ0 ∧ ∧

a∈B∇a{φa}, φ′ = φ′
0 ∧ ∧

a∈B′∇a{φ′
a}, and φ ∧ φ′ is satisfiable, we have φ ◦ φ′ ⇔ φ ∧ φ′ , and φ ◦ φ′ �→ φ .

3. When φ = φ0 ∧ ∧
a∈B∇a{φa}, φ′ = φ′

0 ∧ ∧
a∈B′∇a{φ′

a}, and φ ∧ φ′ is unsatisfiable, we have

φ ◦ φ′ = (φ0 ◦ φ′
0) ∧

∧
a∈B−B′∇a{φa} ∧

∧
a∈B′−B∇a{φ′

a} ∧
∧

a∈B∩B′∇a{φa ◦ φ′
a}.

Proof. We prove by induction on |φ| + |φ′|.
1. φ and φ′ are propositional. By definition, φ ◦ φ′ is φ ◦s φ′ . By Proposition 9,

φ ◦s φ′ =
∨

〈φi ,φ
′
j〉∈MinPairs(φ,φ′)

revise(φi, φ
′
j).

Recall that for a DNF φ, we use φ with subscripts to denote disjuncts of φ. Also recall that revise(φi, φ′
j) is the result 

of revising term φi by term φ′
j . Thus for each term t of φ ◦s φ′ , t |= φ′

j for some j. By definition of strong entailment, 
φ ◦s φ′ �→ φ′ .

When φ ∧ φ′ is satisfiable, we have

φ ◦s φ′ =
∨

φi∈φ,φ′
j∈φ′,φi∧φ′

j is satisfiable

φi ∧ φ′
j.

Thus φ ◦ φ′ ⇔ φ ∧ φ′ , and we also have φ ◦ φ′ �→ φ.
2. φ = φ0 ∧ ∧

a∈B∇a{φa}, φ′ = φ′
0 ∧ ∧

a∈B′∇a{φ′
a}, and φ ∧ φ′ is satisfiable. By definition,

φ ◦ φ′ = (φ0 ◦ φ′
0) ∧

∧
a∈B−B′∇a{φa} ∧

∧
a∈B′−B∇a{φ′

a} ∧
∧

a∈B∩B′∇a{φa ◦ φ′
a, φ

′
a ◦ φa}.

Since φ ∧φ′ is satisfiable, by Proposition 5, φ0 ∧φ′
0 is satisfiable, and for each a ∈ B∩B′ , φa ∧φ′

a is satisfiable. By induction, 
φ0 ◦ φ′

0 strongly entails both φ0 and φ′
0, both φa ◦ φ′

a and φ′
a ◦ φa strongly entail both φa and φ′

a . Thus by definition of strong 
entailment, φ ◦φ′ �→ φ′ and φ ◦φ′ �→ φ. Also, by induction, φ0 ◦φ′

0 ⇔ φ0 ∧φ′
0, φa ◦φ′

a ⇔ φa ∧φ′
a , and φ′

a ◦φa ⇔ φa ∧φ′
a . Thus

φ ◦ φ′ ⇔ (φ0 ∧ φ′
0) ∧

∧
a∈B−B′∇a{φa} ∧

∧
a∈B′−B∇a{φ′

a} ∧
∧

a∈B∩B′∇a{φa ∧ φ′
a}.

So φ ◦ φ′ ⇔ φ ∧ φ′ .
3. φ = φ0 ∧ ∧

a∈B∇a{φa}, φ′ = φ′
0 ∧ ∧

a∈B′∇a{φ′
a}, and φ ∧ φ′ is unsatisfiable. By induction, φ0 ◦ φ′

0 �→ φ′
0, and for each 

a ∈ B ∩B′ , φa ◦ φ′
a �→ φ′

a . Thus by definition,

φ ◦ φ′ = (φ0 ◦ φ′
0) ∧

∧
a∈B−B′∇a{φa} ∧

∧
a∈B′−B∇a{φ′

a} ∧
∧

a∈B∩B′∇a{φa ◦ φ′
a}.

So by definition of strong entailment, φ ◦ φ′ �→ φ′ . �
Note that in Section 3.2, we stated that we would like to have Kiφ ◦ Kiμ ⇔ Ki(φ ◦ μ), where φ and μ are propositional 

formulas. Below, we prove a general version of this claim.
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Theorem 9. Let φ ⇔ ∧
p∈P K pφp and φ′ ⇔ ∧

p∈P ′ K pφ′
p be proper ACDFs. Then

φ ◦ φ′ ⇔
∧

p∈P−P ′
K pφp ∧

∧
p∈P ′−P

K pφ′
p ∧

∧
p∈P∩P ′

K p[φp ◦s φ′
p].

Proof. We prove by induction on |φ| + |φ′|.
1. φ and φ′ are propositional. The claim obviously holds.
2. φ = φ0 ∧ ∧

a∈B∇a{φa}, φ′ = φ′
0 ∧ ∧

a∈B′∇a{φ′
a}, and φ ∧ φ′ is satisfiable. By Proposition 5, for each p ∈ P ∩ P ′ , φp ∧ φ′

p
is satisfiable. Thus by Proposition 25,

φ ◦ φ′ ⇔ φ ∧ φ′ ⇔
∧

p∈P−P ′
K pφp ∧

∧
p∈P ′−P

K pφ′
p ∧

∧
p∈P∩P ′

K p[φp ∧ φ′
p]

⇔
∧

p∈P−P ′
K pφp ∧

∧
p∈P ′−P

K pφ′
p ∧

∧
p∈P∩P ′

K p[φp ◦s φ′
p]

3. φ = φ0 ∧ ∧
a∈B∇a{φa}, φ′ = φ′

0 ∧ ∧
a∈B′∇a{φ′

a}, and φ ∧ φ′ is unsatisfiable. By Proposition 25,

φ ◦ φ′ = (φ0 ◦ φ′
0) ∧

∧
a∈B−B′ Kaφa ∧

∧
a∈B′−BKaφ

′
a ∧

∧
a∈B∩B′ Ka[φa ◦ φ′

a].
By induction, for each a ∈ B ∩B′ ,

φa ◦ φ′
a ⇔

∧
p∈Pa−P ′

a

K pφap ∧
∧

p∈P ′
a−Pa

K pφ′
ap ∧

∧
p∈Pa∩P ′

a

K p[φap ◦s φ′
ap].

Thus

φ ◦ φ′ ⇔ (φ0 ◦ φ′
0) ∧

∧
a∈B−B′ Kaφa ∧

∧
a∈B′−BKaφ

′
a∧∧

a∈B∩B′,p∈Pa−P ′
a

Kapφap ∧
∧

a∈B∩B′,p∈P ′
a−Pa

Kapφ′
ap ∧

∧
a∈B∩B′,p∈Pa∩P ′

a
Kap[φap ◦s φ′

ap]
⇔

∧
p∈P−P ′

K pφp ∧
∧

p∈P ′−P

K pφ′
p ∧

∧
p∈P∩P ′

K p[φp ◦s φ′
p] �

Proposition 26. Let φ and φ′ be proper ACDFs. We have φ � φ′ �→ φ′ , and

1. When φ and φ′ are propositional, φ � φ′ is φ �w φ′ .
2. When φ = φ0 ∧ ∧

a∈B∇a{φa} and φ′ = φ′
0 ∧ ∧

a∈B′∇a{φ′
a}, φ � φ′ is

(φ0 � φ′
0) ∧

∧
a∈B−B′∇a{φa} ∧ ∧

a∈B′−B∇a{φ′
a} ∧

∧
a∈B∩B′∇a{φa � φ′

a}.

Proof. We prove by induction on |φ| + |φ′|.
1. φ and φ′ are propositional. By definition, φ � φ′ is φ �w φ′ . By Proposition 11,

φ �w φ′ =
∨

φ′
j∈φ′,φi∈φ

revise(φi, φ
′
j) ∧ patchφi (φ

′
j).

Thus for each term t of φ �w φ′ , t |= φ′
j for some j. By definition, φ �w φ′ �→ φ′ .

2. φ = φ0 ∧ ∧
a∈B∇a{φa} and φ′ = φ′

0 ∧ ∧
a∈B′∇a{φ′

a}. By induction, φ0 � φ′
0 �→ φ′

0, and for each a ∈ B ∩B′ , φa � φ′
a �→ φ′

a . 
Thus by definition,

φ � φ′ = (φ0 � φ′
0) ∧

∧
a∈B−B′∇a{φa} ∧

∧
a∈B′−B∇a{φ′

a} ∧
∧

a∈B∩B′∇a{φa � φ′
a}.

So by definition of strong entailment, φ � φ′ �→ φ′ . �
In the following, we prove a general version of the claim Kiφ � Kiμ ⇔ Ki(φ � μ), where φ and μ are propositional 

formulas.

Theorem 10. Let φ ⇔ ∧
p∈P K pφp and φ′ ⇔ ∧

p∈P ′ K pφ′
p be proper ACDFs. Then

φ � φ′ ⇔
∧

′
K pφp ∧

∧
′

K pφ′
p ∧

∧
′
K p[φp �w φ′

p].

p∈P−P p∈P −P p∈P∩P
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Fig. 4. An example tree model.

Proof. We prove by induction on |φ| + |φ′|.
1. φ and φ′ are propositional. The claim obviously holds.
2. φ = φ0 ∧ ∧

a∈B∇a{φa} and φ′ = φ′
0 ∧ ∧

a∈B′∇a{φ′
a}. By Proposition 26,

φ � φ′ = (φ0 � φ′
0) ∧

∧
a∈B−B′ Kaφa ∧

∧
a∈B′−BKaφ

′
a ∧

∧
a∈B∩B′ Ka[φa � φ′

a].
By induction, for each a ∈ B ∩B′ ,

φa � φ′
a ⇔

∧
p∈Pa−P ′

a

K pφap ∧
∧

p∈P ′
a−Pa

K pφ′
ap ∧

∧
p∈Pa∩P ′

a

K p[φap �w φ′
ap].

Thus

φ � φ′ ⇔ (φ0 � φ′
0) ∧

∧
a∈B−B′ Kaφa ∧

∧
a∈B′−BKaφ

′
a∧∧

a∈B∩B′,p∈Pa−P ′
a

Kapφap ∧
∧

a∈B∩B′,p∈P ′
a−Pa

Kapφ′
ap ∧

∧
a∈B∩B′,p∈Pa∩P ′

a
Kap[φap �w φ′

ap]
⇔

∧
p∈P−P ′

K pφp ∧
∧

p∈P ′−P

K pφ′
p ∧

∧
p∈P∩P ′

K p[φp �w φ′
p] �

We now show that for proper ACDFs, the semantic characterization for propositional belief change operators can nicely 
carry over to higher-order belief change operators. For this purpose, we consider specially designed KD45n models with an 
underlying tree structure such that each world has a unique a-successor for each agent a. We call such models tree models.

Definition 26. A tree model of depth k ≥ 0 is a pointed Kripke model t = (M, w) such that

1. After removal of loops at worlds, the underlying graph of t is a tree of depth k rooted at w .
2. w has a unique a-child for each agent a ∈ A.
3. For each world v of t , if it is at level j < k and it is the a-child of its parent, then there is an a-loop at v , and v has a 

unique b-child for each agent b �= a.
4. For each leaf v of t , there is an a-loop at v for each agent a ∈A.

For example, Fig. 4 shows a tree model of depth 2 where there are three agents a, b, c and three atoms p, q, r.
A tree model has the following properties:

Proposition 27. A tree model is a KD45n model such that each world has a unique a-successor for each agent a, and each world at 
level j ≥ 0 is reachable from the root via a unique alternating path of length j.

Proof. Let a ∈A. By Definition 26, obviously, each world has a unique a-successor. Now let w Rau and w Ra v . Then we must 
have u = v . If w = u, uRa v . If w �= u, by Condition 3 of Definition 26, uRau, i.e., uRa v . Hence Ra is Euclidean. Now suppose 
w Rau and uRa v . By Definition 26, w = u or u = v , hence w Ra v . So Ra is transitive.

Finally, we prove by induction on j that each world at level j ≥ 0 is reachable from the root via a unique alternating 
path of length j. Basis: j = 0. The path is the empty path. Induction: j > 0. Suppose that w is the a-child of some world v
at level j − 1 for some agent a. By induction, v is reachable from the root by a unique alternating path p of length j − 1. 
By Condition 3, a must be different from the last agent of p. Thus w is reachable from the root via the unique alternating 
path pa of length j. �
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Thus we have the following properties of tree models:

Proposition 28. Let t = (M, w) be a tree model. Let p be a path of agents, φ, ψ ∈ LK . Then we have t |= K pφ ⇔ Lpφ; t |= K p(φ ∨
ψ) ⇔ K pφ ∨ K pψ .

Proof. By Proposition 27, let v be the unique world of t reachable from w via p. Then we have t |= K pφ iff M, v |= φ iff 
t |= Lpφ; t |= K p(φ ∨ ψ) iff M, v |= φ ∨ ψ iff M, v |= φ or M, v |= ψ iff t |= K pφ or t |= K pψ iff t |= K pφ ∨ K pψ . �

The above properties say that tree models cannot represent negative beliefs in the form of L pφ ∧ ¬K pφ or disjunctive 
beliefs in the form of K p(φ ∨ ψ) ∧ ¬(K pφ ∨ K pψ). Since proper ACDFs disallow negative or disjunctive beliefs, we will be 
able to easily show that if a proper ACDF has a model, then it has a tree model.

By Proposition 27, for a tree model, each world at level j ≥ 0 is reachable from the root via a unique alternating path of 
length j. Thus a tree model of depth k can be represented as a tuple of valuations �V where for each alternating path p of 
length ≤ k, there is a valuation V p .

Proposition 29. Let φ = ∧
p∈P K pφp be an alternating path knowledge term of modal depth k. Let �V be a tree model of depth ≥ k. 

Then �V |= φ iff for each p ∈ P , V p |= φp .

Proof. In the tree model �V , for each path p, the root has a unique p-descendant, and its associated valuation is V p . �
For example, the tree model in Fig. 4 is a model of

p ∧ q ∧ r ∧ Kc(p ∧ q ∨ p ∧ r ∨ q ∧ r) ∧ Kab(p ∨ q ∨ r) ∧ Kbc(p ∨ q ∨ r).

Theorem 11. Let φ = ∧
p∈P K pφp be an alternating path knowledge term. Then φ is satisfiable iff it has a tree model.

Proof. We only need to prove the only-if direction. By Proposition 5, an alternating modal term φ0 ∧∧
a∈B Kaφa is satisfiable 

iff φ0 is propositionally satisfiable and for each a ∈ B, φa is satisfiable. Now suppose that φ is satisfiable. By iteratively 
applying the above result, φp is satisfiable for each p ∈ P . Let V p |= φp for each p ∈ P . We construct a tree model �V from 
these V p ’s. By Proposition 29, �V |= φ. �

Because of the above property, for a proper ACDF, we can treat its tree models as its canonical models. Hence for 
semantic characterizations for proper ACDFs, we can restrict our attention to tree models.

Let φ be a DNF. We use Mod(φ) to denote the set of valuations that satisfy φ. Let φ be a proper ACDF of depth ≤ k. We 
use TModk(φ) to denote the set of tree models of depth k which are models of φ.

In the following, we define order relations between tree models. Since a tree model can be represented as a tuple of 
valuations, we can easily define order relations between tree models as bitwise order relations between valuations.

Let ≤ be a binary relation on a set U . We say that ≤ is a partial preorder if it is reflexive and transitive. Let ≤ be a 
partial preorder on U . We write x < y if x ≤ y but not y ≤ x. Let S ⊆ U . We use Min(S, ≤) for the set of elements of S
minimal under ≤.

Definition 27.

1. Let V and V ′ be two valuations. The difference of V and V ′ , written Diff(V , V ′), is defined as (V − V ′) ∪ (V ′ − V ).
2. A difference tree of depth k is a tuple �D where for each alternating path p of length ≤ k, D p is a subset of P .
3. Let �V and �V ′ be two tree models of depth k. We define Diff( �V , �V ′) as �D where for each alternating path p of length 

≤ k, D p = Diff(V p, V ′
p).

Definition 28.

1. Let V , V 1, V 2 be valuations. We define V 1 ≤V V 2 if Diff(V 1, V ) ⊆ Diff(V 2, V ).
2. Let �D and �D ′ be two different trees of depth k. We write �D ≤b �D ′ if for each path p, D p ⊆ D ′

p .

3. Let �V , �V 1, �V 2 be tree models of depth k. We define �V 1 ≤�V �V 2 if Diff( �V 1, �V ) ≤b Diff( �V 2, �V ).

The following Proposition is easy to prove.

Proposition 30. ≤V , ≤b, and ≤� are all partial preorders.
V
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Definition 29.

1. Let φ0 and φ′
0 be two DNFs. We define Diff(φ0, φ′

0) = {Diff(V , V ′) | V ∈Mod(φ0), V ′∈ Mod(φ′
0)}, and let MinDiff(φ0, φ′

0) =
Min(Diff(φ0, φ′

0), ⊆).
2. Let φ and φ′ be two proper ACDFs of modal depth ≤ k. We define Diffk(φ, φ′) = {Diff( �V , �V ′) | �V ∈ TModk(φ), �V ′ ∈

TModk(φ
′)}, and let MinDiffk(φ, φ′) = Min(Diffk(φ, φ′), ≤b).

The following proposition shows that the set of minimal differences of two proper ACDFs is the Cartesian product of the 
minimal differences of path formulas.

Let �V be a tree model of depth k. Let p be an alternating path of length ≤ k, and let V ′ be a valuation. We use �V [V ′/V p]
to denote the tree model which is the same as �V except that the valuation associated with p is V ′ .

Proposition 31. Let φ ⇔ ∧
p K pφp , and φ′ ⇔ ∧

p K pφ′
p , where p ranges over all alternating paths of length ≤ k. Let �V ∈ TModk(φ)

and �V ′ ∈ TModk(φ
′). Then Diff( �V , �V ′) ∈ MinDiffk(φ, φ′) iff for each p, Diff(V p, V ′

p) ∈ MinDiff(φp, φ′
p).

Proof. We prove Diff( �V , �V ′) /∈ MinDiff(φ, φ′) iff there exists p s.t. Diff(V p, V ′
p) /∈ MinDiff(φp, φ′

p). ⇒: Suppose that 
there exist �V 1 ∈ TModk(φ) and �V 2 ∈ TModk(φ

′) s.t. Diff( �V 1, �V 2) <b Diff( �V , �V ′). Then there exists p s.t. Diff(V 1p, V 2p) ⊂
Diff(V p, V ′

p). Thus Diff(V p, V ′
p) /∈ MinDiff(φp, φ′

p). ⇐: Suppose that there is p and there exist V 1p |= φp and V 2p |= φ′
p s.t. 

Diff(V 1p, V 2p) ⊂ Diff(V p, V ′
p). Now let �V 1 = �V [V 1p/V p] and �V 2 = �V [V 2p/V p]. Then Diff( �V 1, �V 2) <b Diff( �V , �V ′). By Proposi-

tion 29, �V 1 |= φ and �V 2 |= φ′ . Thus Diff( �V , �V ′) /∈ MinDiff(φ, φ′). �
The following is a semantic characterization for our higher-order revision operator. Like propositional revision, φ ◦ φ′

selects from the tree models of φ′ those that are closest to tree models of ψ .

Theorem 12. Let φ and φ′ be proper ACDFs of modal depth ≤ k. Then TModk(φ ◦ φ′) =
{ �V ′ ∈ TModk(φ

′) | ∃ �V ∈ TModk(φ) s.t. Diff( �V , �V ′) ∈ MinDiffk(φ,φ′)}.
Proof. Let φ ⇔ ∧

p K pφp , and φ′ ⇔ ∧
p K pφ′

p , where p ranges over all alternating paths of length ≤ k. By Theorem 9, 
φ ◦ φ′ ⇔ ∧

p K p[φp ◦s φ′
p]. Thus �V ′ ∈ TModk(φ ◦ φ′) iff for each path p, V ′

p |= φp ◦s φ′
p iff (by the definition of ◦s) for each p, 

V ′
p |= φ′

p and there exists V p |= φp s.t. Diff(V p, V ′
p) ∈ MinDiff(φp, φ′

p) iff (by Proposition 31) �V ′ |= φ′ and there exists �V |= φ

s.t. Diff( �V , �V ′) ∈ MinDiffk(φ, φ′). �
The following proposition shows that the set of minimal elements under ≤�V is the Cartesian product of the set of 

minimal elements under ≤V p for each path p.

Proposition 32. Let φ ⇔ ∧
p K pφp , where p ranges over all alternating paths of length ≤ k. Let �V and �V ′ be tree models of depth k. 

Then �V ′ ∈ Min(TModk(φ), ≤�V ) iff for each path p, V ′
p ∈ Min(Mod(φp), ≤V p ).

Proof. We prove that �V ′ /∈ Min(TModk(φ), ≤�V ) iff there is p s.t. V ′
p /∈ Min(Mod(φp), ≤V p ). ⇒: Suppose there is �V ′′ ∈

TModk(φ) s.t. �V ′′ < �V �V ′ . Then there exists path p s.t. V ′′
p <V p V ′

p . Thus V ′
p /∈ Min(Mod(φp), ≤V p ). ⇐: Suppose that 

there exist p and V ′′
p |= φp s.t. V ′′

p <V p V ′
p . Let �V ′′ = �V ′[V ′′

p/V ′
p]. Then �V ′′ |= φ (by Proposition 29) and �V ′′ < �V �V ′ . Thus 

�V ′ /∈ Min(TModk(φ), ≤�V ). �
The following is a semantic characterization for our higher-order update operator. Like propositional update, φ � φ′

selects, for each tree model �V of φ, the set of tree models of φ′ that are closest to �V .

Theorem 13. Let φ and φ′ be proper ACDFs of modal depth ≤ k. Then we have

TModk(φ � φ′) =
⋃

�V ∈TModk(φ)

Min(TModk(φ
′),≤�V ).

Proof. Let φ ⇔ ∧
p K pφp , and φ′ ⇔ ∧

p K pφ′
p , where p ranges over all alternating paths of length ≤ k. By Theorem 10, 

φ � φ′ ⇔ ∧
p K p[φp �w φ′

p]. Thus �V ′ ∈ TModk(φ � φ′) iff for each path p, V ′
p |= φp �w φ′

p iff (by the definition of �w ) 
for each p, there is V p ∈ Mod(φp) s.t. V ′

p ∈ Min(Mod(φ′
p), ≤V p ) iff (by Proposition 32) there is �V ∈ TModk(φ) s.t. �V ′ ∈

Min(TModk(φ
′), ≤� ). �
V
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5. Implementation and experimentation

Based on the theoretic work, we have developed EPDDL – an epistemic extension of PDDL [35], to describe multi-agent 
epistemic planning problems, and implemented a multi-agent epistemic planner MEPK.1

In this section, we introduce EPDDL, describe the overall architecture of MEPK, and give our experimental evaluation of 
MEPK.

5.1. EPDDL

An MEP problem specified in EPDDL consists of two parts: a domain file for specifying types, predicates and actions, and 
a problem file for specifying objects, agents, the initial KB and goal.

Below is the domain file for Example 3, where the detail for action right is omitted.

(define (domain ctc2)
(:types agent room box)
(:predicates (at ?ag - agent ?p - room) (in ?b - block ?p - room))

(:action left
:category (ontic)
:parameters (?i - agent)
:precondition (and (not(at ?i p1)) (K_?i (not(at ?i p1))))
:effect (<{at ?i p2} {and (at ?i p1) (K_?i (at ?i p1))}>

<{at ?i p3} {and (at ?i p2) (K_?i (at ?i p2))}>))

(:action right ...)

(:action find
:category (sensing)
:parameters (?i - agent ?b - box ?p - room)
:precondition (and (at ?i ?p) (K_?i (at ?i ?p)))
:observe_pos (and (in ?b ?p) (K_?i (in ?b ?p)))
:observe_neg (and (not (in ?b ?p)) (K_?i (not (in ?b ?p)))))

(:action tell
:category (communication)
:parameters (?i - agent ?j - agent ?b - box ?p - room)
:precondition (or (K_?i (in ?b ?p)) (K_?i (not (in ?b ?p))))
:effect (<{K_?i (in ?b ?p)} {K_?j (in ?b ?p)}>

<{K_?i (not (in ?b ?p))} {K_?j (not (in ?b ?p))}>))

The domain name is ctc2. There are three types: agent, room, and box. There are two predicates: binary predicate
at whose first parameter ?ag is of type agent and second parameter ?p is of type room, and binary predicate in. There 
are three categories of actions: ontic, communication, and sensing. The preconditions of actions, the conditions and effects 
of conditional effects, and the positive and negative results of sensing actions are represented with arbitrary multi-agent 
epistemic formulas. For example, (and (not (at ?i p1)) (K_?i (not (at ?i p1)))) represents the formula 
¬at(i, p1) ∧ Ki¬at(i, p1).

Then the following is the problem file for Example 3:

(define (problem ctc2)
(:domain ctc2)
(:objects b1 b2 - box p1 p2 p3 - room)
(:agents a b)

(:init (and (at a p2) (at b p2) (not (in b1 p2)) (not (in b2 p2))
(K_a (and (at a p2) (not (in b1 p2)) (not (in b2 p2))))
(K_b (and (at b p2) (not (in b1 p2)) (not (in b2 p2))))))

(:constraint (and
(or (and (in b1 p1) (not (in b1 p2)) (not (in b1 p3)))

(and (not (in b1 p1)) (in b1 p2) (not (in b1 p3)))
(and (not (in b1 p1)) (not (in b1 p2)) (in b1 p3))

(or (and (in b2 p1) (not (in b2 p2)) (not (in b2 p3)))
(and (not (in b2 p1)) (in b2 p2) (not (in b2 p3)))
(and (not (in b2 p1)) (not (in b2 p2)) (in b2 p3)))

...)

1 The link to our planner and domain sources is: https://github .com /sysulic /MEPK.
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(:goal (and (or (K_a (in b1 p1)) (K_a (in b1 p2)) (K_a (in b1 p3)))
(or (K_b (in b2 p1)) (K_b (in b2 p2)) (K_b (in b2 p3))))))

5.2. Overall architecture

The MEPK system consists of two modules: Compiler and Planner. The Compiler module parses the input, i.e., an MEP 
problem described with EPDDL. Then it does the following conversion: the initial KB, the effects of conditional effects of 
deterministic actions, and the positive and negative results of sensing actions into ACDFs, the preconditions of actions, the 
conditions of conditional effects, and the goal into the negation of ACDFs, and the constraint into a DNF formula. Finally, 
the compiler grounds the operators, namely parameterized actions, into actions, and grounds predicates into atoms. For the
ctc2 input, the operator left(i) will be grounded into left(a) and left(b).

Like [47], we adapt the PrAO algorithm for contingent planning [45] as our planning algorithm. PrAO extends AND/OR 
forward search with pruning techniques. It uses the so-called minimal DNF formulas to represent states and employs the 
following basic operations: reasoning, equivalence checking, update w.r.t. ontic actions, and update w.r.t. sensing actions. 
We use ACDFs to represent states, and for the above operations, we plug in our operations of reasoning, strong equivalence 
checking, the progression w.r.t. deterministic actions, and progression w.r.t. sensing actions.

Algorithm 1 presents our main procedure. Each node n is a knowledge base in ACDF. We use state(n) to indicate the 
state of n, which is one of the following values: goal meaning that the node is goal achievable, dead meaning that the node 
is not goal achievable, unexplored, and explored. We use connected(n) to denote whether the node n can be reached from 
the initial node. Lines 1-5 return an empty tree if I |= G; otherwise, initialize the search graph, i.e., set the initial node n0
to the initial KB, and let connected(n0) = true. Lines 6-14 build up the search graph until a solution is found or it is known 
that no solution exists. If there is no unexplored and connected node, the search graph cannot be further expanded and 
hence null is returned; otherwise, choose an unexplored and connected node n and explore it by calling Explore(n). With 
loop detection, Explore(n) generates the children of node n by applying any executable deterministic or sensing action. If 
state(n0) becomes goal, return a solution built from T by calling BuildPlan(T ); if state(n0) becomes dead, return null. See 
[45] for details of Explore(n) and BuildPlan(T ).

In line 9, we provide with two strategies to choose nodes: breadth-first search (BFS) and heuristic search. For heuristic 
search, we use greedy BFS, i.e., we choose an unexplored and connected node with the largest heuristic function value.

To define the heuristic function, we first define the degree of inconsistency of two ACDFs. The definition is inspired by 
the recursive algorithm to check if an ACDF entails the negation of another (see Proposition 22). Recall that if φ and φ′ are 
propositional terms, then φ |=γ ¬φ′ iff for each term t in γ , φ ∧ t ∧ φ′ has complementary literals.

Definition 30. Let φ and φ′ be two ACDFs, γ a DNF formula. The degree of inconsistency of φ and φ′ w.r.t. γ , denoted by 
dγ (φ, φ′), is recursively defined as follows:

1. For propositional terms φ and φ′ , dγ (φ, φ′) is the number of terms t in γ s.t. φ ∧ t ∧ φ′ has complementary literals.
2. When φ = φ0 ∧ ∧

a∈B∇a�a and φ′ = φ′
0 ∧ ∧

a∈B′∇a�
′
a, dγ (φ, φ′) .= dγ (φ0, φ′

0) +
∑

a∈B∩B′
∑

φa∈�a,φ′
a∈�′

a
dγ (φa, φ′

a).
3. When φ = ∨

� and φ′ = ∨
�′, dγ (φ, φ′) .= ∑

φi∈�,φ j∈�′ dγ (φi, φ j).

Let φ be a node generated from a node φ′ . The heuristic value of φ is measured by the gain of the degree of inconsistency 
with ¬G when we move from φ′ to φ.

Definition 31. Let φ be a node generated from a node φ′ , γ a constraint, and G the goal. The heuristic value of φ (w.r.t. γ
and G) is defined as: h(φ) = dγ (φ, ¬G) − dγ (φ′, ¬G).

5.3. Experimental evaluation

We evaluate MEPK with Selective-communication (SC) and Collaboration-and-communication (CC) domains adapted from 
[31], Coin-in-the-box adapted from [32], and Grapevine from [38], where SC is called “Corridor”. We also made up three 
domains: Assembly-line (AL), and domains adapted from the classic Gossip problem [2] and the knowledge game Hexa
[18]. We did not consider three domains from [31]: MuddyChildren, Sum, and WordRooms. The first two involve public 
announcements, which result in common knowledge, and so we are not able to model them. The third is a variant of CC. 
Below we give the description of each domain we use.

Selective-communication: SC(n). There are n rooms in a corridor. The agents can move from a room to a neighboring 
room. When agent i tells some information, all the other agents in the same room or in a neighboring room can hear what 
was told. Initially, each agent is in one of the rooms. The goal is that some agents get to know some information while 
some other agents do not. Versions of SC(n) with higher modal depth result from an approximation of common knowledge 
with higher-order knowledge.

Collaboration-and-communication: CC(k,n), *CC(k,n), †CC(k,n). These are variants of Example 3 where there are k boxes and 
n rooms. The *CC(k, n) variant uses sensing actions as in Example 3. The CC(k, n) variant imitates the version from [31]
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Algorithm 1: Plan(A, P, D, S, I, G, γ ).

Input: An MEP problem Q = 〈A, P, D, S, I, G, γ 〉.

Output: A solution or null.

1 if I |= G then
2 return an empty tree

3 else
4 Let n0 = I , state(n0) = unexplored,

5 connected(n0) = true, and T = {n0}
6 while true do
7 if there is no node n s.t. state(n) = unexplored and connected(n) = true then
8 return null

9 Choose an unexplored and connected node n
10 Explore(n)

11 if state(n0) = goal then
12 return BuildPlan(T )

13 if state(n0) = dead then
14 return null

in that with one action, an agent can see which boxes are in a room. So in this version, we replace sensing actions with 
ontic actions whose effect is knowing whether each box is in a room. We comment that this replacing is possible since this 
example has linear plans. Furthermore, we add a cheat action to *CC(k, n), leading to the variant †CC(k,n). The cheat(i, j, b, r)
action means agent i misleads agent j about whether box b is in room r.

Finding-the-truth: FT(k,n). There are k boxes and n rooms. Each box is placed in a room. The agents start with wrong 
beliefs of the positions of the boxes. The agents can move between the rooms and check if a box is in a room. The goal is 
for the agents to find out the true locations of the boxes.

Coin-in-the-box: Coin(k). There are three agents and a box containing a coin. Only one agent has the key to the box and 
one can peek into the box to check the face of the coin if the box is open. Agents can distract (resp. signal) others so that 
they won’t (resp. will) look at the box. One can announce that the coin is showing head or tail. Initially, some of the agents 
look at the box. The goal is to make certain agents know the face of the coin while others don’t. Different values of the 
parameter k correspond to different settings of the initial KB and goal.

Grapevine(n). A few guests attend a meeting in a villa with n rooms. Each guest has her own secret to share with others. 
Each guest can move between the rooms, and broadcast her secret to the guests in the same room. The goal is that only 
some of the guests obtain the designated secrets.

Hexa Game. There are k agents and k cards, each with a unique color. Initially, everyone is holding a card, and can only 
see the color of her own card. A player can ask a question to another player whether her card is of a certain color. The 
question should always be honestly answered. The goal is for some agents to know the cards of all players.

Assembly-line (AL). There are two agents, each responsible for processing a part of a product. It is possible that an agent 
fails in processing her part. An agent can inform the other agent of the status of her task. Two agents decide to assemble 
the product or restart depending on their knowledge of the status of the agents’ tasks.

Gossip. Each of several friends has her own secret to share. Instead of sharing in public, they are only allowed to make 
a call to each other. In each call, they exchange all the secrets they know. The goal is that everyone knows all the secrets of 
other friends.

Our experiments were run on a Linux machine with 3.60 GHz Intel Core i7 and 8 GB RAM. Our experimental results 
are shown in Table 1. The first 3 columns indicate the domain, the number of agents, and the maximal modal depth of the 
KBs. Their values uniquely determine a problem. The next two columns represent the number of sensing and deterministic 
actions, and the number of atoms. If the number of sensing actions is 0, the planning problem is conformant, else it is 
contingent. In the MEPK columns (one for BFS and one for heuristic search), A-B(X/Y /Z) stands for A seconds of total 
time, B seconds spent on search, depth X and Y nodes of solution tree, and Z nodes searched. The results show the 
viability of our approach. Nonetheless, our planner does not perform well on the CC domain due to complicated constraints 
and action effects. Also, our planner does not scale well on Finding-the-truth and Hexa Game. This is because the search 
performance is greatly influenced by the number of actions, the depth of the shallowest solutions, and the complexity of 
the goals. For example, in Hexa Game, there are 48 (resp. 100) sensing actions when there are 4 (resp. 5) agents.

We compare the performance of MEPK with those of the planner by Kominis & Geffner2 [31] and the RP-MEP planner by 
Muise et al.3 [38]. We reran the corresponding experiments of the two planners using the FF-X planner with their domain 
sources, and the comparison results are shown in Table 2. In the last two columns, (X) stands for plan length X , and “na” 

2 Available at https://bitbucket .org /filcom /fromonetomany.
3 Available at https://bitbucket .org /haz /pdkb -planning /src /default.
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Table 1
Experimental results of MEPK with BFS search and MEPK with heuristic search.

Domain |A| d |S|+|D| |P| MEPK (BFS) MEPK (Heu)

CC(2,4) 2 1 0+28 16 22.56-22.56 (6/7/263) 1.73-1.72 (8/9/45)
CC(3,4) 2 1 0+36 20 257.14-257.13 (6/7/263) 23.67-23.66 (8/9/45)
CC(4,4) 2 1 0+44 24 − 514.31-514.29 (8/9/45)
*CC(2,3) 2 1 8+16 12 0.48-0.47 (4/9/119) 0.15-0.15 (4/10/51)
*CC(2,3) 3 1 12+42 15 2.53-2.52 (5/11/1223) 0.07-0.07 (5/13/156)
*CC(2,4) 2 1 12+20 16 6.42-6.42 (7/20/1160) 2.23-2.22 (21/40/751)
*CC(3,3) 3 1 18+60 18 10.72-10.71 (5/13/1429) 0.19-0.19 (7/15/185)
†CC(2,3) 2 1 8+28 12 19.17-19.16 (4/10/642) 7.14-7.13 (6/11/471)
†CC(2,3) 3 1 12+78 15 0.22-0.21 (4/7/343) 0.06-0.05 (6/11/130)
†CC(2,4) 2 1 12+36 16 0.06-0.05 (3/6/49) 2.31-2.30 (8/14/850)
†CC(3,3) 3 1 18+114 18 0.65-0.63 (4/7/312) 0.37-0.36 (6/12/238)

FT(1,2) 1 1 2+2 4 0.01-0.01 (1/3/4) 0.01-0.01 (1/3/4)
FT(2,3) 1 1 6+2 9 0.08-0.08 (4/8/106) 0.03-0.03 (4/8/39)
FT(2,3) 2 1 12+4 12 7.42-7.42 (6/11/1423) 0.32-0.32 (10/16/251)

SC(4) 3 1 1+3 13 0.02-0.01 (5/10/26) 0.02-0.02 (5/10/22)
SC(4) 7 1 1+3 29 0.04-0.04 (5/10/26) 0.03-0.03 (5/10/22)
SC(4) 8 1 1+3 33 0.04-0.03 (5/10/30) 0.05-0.05 (5/10/32)
SC(4) 3 3 1+3 13 0.02-0.01 (5/10/26) 0.04-0.03 (5/10/32)
SC(4) 3 4 1+3 13 0.03-0.02 (5/10/26) 0.04-0.03 (5/10/23)
SC(8) 3 1 1+3 25 0.05-0.04 (10/19/40) 0.05-0.04 (10/19/43)

Coin(1) 3 1 0+25 8 0.01-0.01 (2/3/9) 0.01-0.01 (2/3/9)
Coin(2) 3 1 0+25 8 0.02-0.01 (3/4/31) 0.01-0.01 (3/4/18)
Coin(3) 3 1 0+25 8 0.05-0.04 (5/6/79) 0.05-0.04 (16/17/94)

Grapevine(2) 3 2 0+18 9 0.01-0.01 (2/3/15) 0.01-0.01 (2/3/15)
Grapevine(2) 4 1 0+40 12 1.80-1.80 (5/6/2607) 0.01-0.01 (6/7/61)
Grapevine(2) 4 2 0+56 12 0.03-0.01 (2/3/22) 0.05-0.02 (2/3/20)
Grapevine(2) 4 3 0+56 12 0.05-0.02 (2/3/22) 0.09-0.05 (2/3/20)
Grapevine(2) 4 4 0+56 12 0.06-0.03 (2/3/22) 0.09-0.05 (2/3/20)
Grapevine(3) 4 1 0+152 16 0.07-0.01 (2/3/27) 0.66-0.60 (16/17/472)

3 1 18+0 9 0.01-0.01 (1/3/3) 0.01-0.01 (1/3/3)
Hexa Game 4 1 48+0 16 0.02-0.02 (3/11/42) 0.02-0.02 (3/11/50)

5 1 100+0 25 9.69-9.68 (6/47/1670) −
2 2 2+4 4 0.01-0.01 (5/12/32) 0.02-0.02 (5/18/32)
2 3 2+4 4 0.02-0.02 (5/12/32) 0.03-0.03 (5/18/32)

Assemble Line 2 4 2+4 4 0.04-0.04 (5/12/32) 0.04-0.04 (5/18/32)
2 5 2+4 4 0.07-0.07 (5/12/32) 0.08-0.08 (5/18/32)
2 7 2+4 4 0.36-0.36 (5/12/32) 0.45-0.44 (5/18/32)
2 10 2+4 4 5.53-5.53 (5/12/32) 6.62-6.62 (5/18/32)

3 2 0+6 3 0.03-0.03 (3/4/11) 0.02-0.01 (3/4/7)
Gossip 4 2 0+24 4 1.84-1.83 (4/5/133) 0.20-0.20 (5/6/30)

5 2 0+120 5 − 1.10-1.09 (7/8/99)

means that the planning problem is not considered by the planner. For example, CC is not encoded by RP-MEP; as to SC, 
K&G only encodes SC(4) with 3 agents and d = 1. The results show that the searching performance of MEPK is reasonable, 
but still worse than the two other planners. This is because MEPK uses more general and complex KBs, and hence spends 
more time on reasoning and progression. However, when it comes to total time, MEPK performs better than the two other 
planners except for the CC domain. This is because MEPK saves from the expensive compilation into classical planning.

We also compare the performance of MEPK with those of the EFP and PG-EFP planners4 by Le et al. [32]. Since (PG-)EFP 
is only executable on macOS, the comparison experiments were run on macOS with 2.30 GHz Intel Core i5 and 8 GB RAM. 
We use the problem settings of the two planners,5 and the comparison results are illustrated in Table 3. We set the timeout 
bound to 30 minutes, and “−” means timeout. The results show that MEPK performs better in most instances.

Finally, we should note that the four planners use different encodings of MEP problems. Thus even for the same domain, 
the exact MEP problem considered by a planner might be different from that considered by another planner. For example, 
for the CC domain, the K&G and MEPK encodings do not specify the exact positions of boxes in the initial state, while the 
RP-MEP encoding has to since it cannot represent disjunctive beliefs. More details of the different encodings will be given 
in the next section.

4 Available at https://github .com /tiep /EpistemicPlanning.
5 Note the differences in the MEPK data for the CC(2,4) and SC(4) domains in Tables 2 and 3.
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Table 2
Comparison results with planners by Kominis & Geffner and Muise et al..

Domain |A| d MEPK (BFS) MEPK (Heu) K&G RP-MEP

CC(2,4) 2 1 22.56-22.56 (6/7/263) 1.73-1.72 (8/9/45) 0.02-0.01 (8) na
CC(3,4) 2 1 257.14-257.13 (6/7/263) 23.67-23.66 (8/9/45) 4.17-0.03 (8) na
CC(4,4) 2 1 − 514.31-514.29 (8/9/45) 726.14-0.71 (8) na

3 1 0.02-0.02 (5/10/27) 0.01-0.01 (5/10/27) 0.01-0.01 (9) 0.04-0.01 (5)
SC(4) 7 1 0.04-0.04 (5/10/26) 0.03-0.03 (5/10/22) na 0.05-0.01 (5)

3 3 0.02-0.01 (5/10/26) 0.04-0.03 (5/10/32) na 0.12-0.01 (5)

3 2 0.01-0.01 (2/3/15) 0.01-0.01 (2/3/15) na 0.18-0.01 (2)
Grapevine(2) 4 1 1.80-1.80 (5/6/2607) 0.01-0.01 (6/7/61) na 0.11-0.01 (5)

4 2 0.03-0.01 (2/3/22) 0.05-0.02 (2/3/20) na 0.53-0.02 (2)

Table 3
Comparison results with EFP and PG-EFP by Le et al..

Domain |A| d MEPK (BFS) MEPK (Heu) EFP PG-EFP

CC(2,4) 2 1 0.16-0.14 (3/4/15) 0.09-0.07 (3/4/9) − 42.85-40.86 (7)
CC(2,3) 3 1 0.68-0.59 (4/5/35) 0.37-0.28 (4/5/23) 12.92-12.34 (4) 2.42-1.84 (4)
CC(3,3) 3 1 47.01-46.70 (4/5/105) 6.43-6.12 (4/5/25) 770.57-770.43 (6) 2.35-2.19 (6)

SC(4) 3 1 0.03-0.03 (5/10/26) 0.04-0.03 (5/10/28) 0.06-0.06 (5) −
SC(6) 5 1 0.06-0.05 (6/12/55) 0.04-0.03 (7/13/34) 0.36-0.35 (6) 0.24-0.24 (6)
SC(8) 7 1 0.45-0.44 (9/18/159) 1.35-1.34 (11/20/253) 15.04-15.02 (9) −

3 2 0.02-0.01 (2/3/15) 0.10-0.10 (4/5/64) 0.20-0.17 (2) −
Grapevine(2) 4 1 8.08-8.08 (5/6/2607) 0.16-0.15 (10/11/209) − −

4 2 0.07-0.04 (2/3/22) 1.17-1.14 (4/5/179) 1.25-1.08 (2) −
Coin(1) 3 2 0.01-0.01 (2/3/9) 0.02-0.01 (2/3/9) 0.04-0.02 (2) 0.21-0.20 (2)
Coin(2) 4 2 0.03-0.02 (3/4/31) 0.02-0.01 (3/4/18) 0.17-0.16 (3) 0.88-0.87 (3)
Coin(3) 5 2 0.09-0.09 (5/6/79) 0.06-0.05 (6/7/50) 2.71-2.70 (5) 1.17-1.16 (5)

Assemble Line 2 2 0.03-0.03 (5/12/32) 0.03-0.03 (5/12/30) 1.48 - 1.47 (5) 0.70 - 0.69 (5)

Table 4
Comparison of four MEP systems.

System Approach Solution Action Knowledge/Belief Language

K&G compilation linear public knowledge LK

RP-MEP compilation linear private belief RMLd

MEPK native (KB) branching private belief LK

(PG-)EFP native (model) linear private belief LK

6. Comparison of four MEP systems

In this section, we compare the four MEP systems: K&G [31], RP-MEP [38], MEPK, and (PG-)EFP [32].
Table 4 illustrates a comparison of basic aspects of the four systems. Both K&G and RP-MEP rely on compilation into 

classical planning, while MEPK and (PG-)EFP are native planners that search in the space of knowledge bases and Kripke 
models, respectively. MEPK generates branching solutions as action trees, while the other systems all generate linear plans. 
K&G assumes all actions are public and hence handles knowledge, while the other systems consider private actions and 
hence beliefs. Finally, K&G, MEPK and (PG-)EFP all use the multi-agent epistemic language, while RP-MEP uses a restricted 
language RMLd , denoting restricted modal literals with bounded modal depth.

In the following, for each of K&G, RP-MEP and (PG-)EFP, we illustrate how the approach encodes a variant of Example 3, 
due to the difference in expressibility of different approaches.

We begin with K&G summarized that they deal with knowledge rather than belief. All the agents start with a common 
initial belief. In this approach, a sensing action sense(A, �) represents that agents in A sense in parallel the truth value of 
each formula of �, which is a set of multi-agent epistemic formulas. We formalize a variant of Example 3 with 4 rooms:

• The ontic actions are: left(i) and right(i), where
left(i) = 〈pre, {eff1, eff2, eff3}〉, with pre = ¬at(i, p1),
eff1 = 〈at(i, p2), {at(i, p1), ¬at(i, p2), ¬at(i, p3), ¬at(i, p4)}〉,
eff2 = 〈at(i, p3), {¬at(i, p1), at(i, p2), ¬at(i, p3), ¬at(i, p4)}〉, and
eff3 = 〈at(i, p4), {¬at(i, p1), ¬at(i, p2), at(i, p3), ¬at(i, p4)}〉.
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.

• The communication actions are: sense(i, {K jin(b, p)}), meaning agent j communicates to agent i whether j knows 
in(b, p).

• The sensing actions are: sense(i, {in(b1, p), in(b2, p)}) with precondition at(i, p), meaning agent i finds out in parallel 
whether each block is in p.

• The common initial belief is at(1, p2) ∧ at(2, p2) ∧ ¬in(b1, p2) ∧ ¬in(b2, p2) ∧ γ2, where γ2 expresses that each box has 
a unique location, as in Example 3.

• The goal is 
∧2

i=1
∨4

k=1 Ki in(bi, pk).
• A solution is: left(1), right(2), sense(1, {in(b1, p1), in(b2, p1)}), sense(2, {in(b1, p3), in(b2, p3)}), sense(1, {K2in(b1, p3)}), 

sense(2, {K1in(b2, p1)}). This is because: If agent 1 senses b1 is in p1, then she knows the position of p1. Otherwise, 
she knows that b1 is not in p1. If she senses K2in(b1, p3), then she also knows that b1 is in p3. Otherwise, she knows 
that b1 is not in p3. Since the common initial belief is that b1 is not in p2, she gets to know that b1 is in p4. The case 
for agent 2 is similar.

The RP-MEP approach makes use of restricted modal literals (RMLs) from the perspective of a single root agent �. Thus 
RP-MEP cannot represent the constraint in(b1, p1) ∨ in(b1, p2) ∨ in(b1, p3). Therefore, we formulate a variant of Example 3
where b1 is in p1 and b2 is in p3, which are represented by RMLs B�in(b1, p1) and B�in(b2, p3).

• The actions are (with action right(i) omitted):
left(i) = 〈¬at(i, p1), {eff1, eff2}〉, where eff1 = 〈at(i, p2), {B�at(i, p1), B�¬at(i, p2)}〉, and
eff2 = 〈at(i, p3), {B�at(i, p2), ¬B�at(i, p3)}〉;
tell(i, j, b, p) = 〈�, {eff1, eff2}〉, where eff1 = 〈Bi in(b, p), {B�B j in(b, p)}〉, and eff2 = 〈Bi¬in(b, p), {B�B j¬in(b, p)}〉;
find(i, b, p) = 〈pre, {eff1, eff2}〉, where pre = at(i, p), eff1 = 〈in(b, p), {B�Bi in(b, p)}〉, and eff2 = 〈¬in(b, p), {B�Bi¬in(b, p)}〉

• The initial KB is at(1, p2) ∧ at(2, p2) ∧ in(b1, p1) ∧ in(b2, p3) ∧ B1at(1, p2) ∧ B2at(2, p2).
• The goal is B1in(b1, p1) ∧ B2in(b2, p3).

(PG-)EFP encodes an MEP problem using mA [7], a multi-agent epistemic extension of the action language A [23], and 
finitary S5-theories. The initial state is specified by a finitary S5-theory, which is an S5-theory contains only formulas of the 
following forms: φ, C Kiφ, C(Kiφ ∨ Ki¬φ), where C is the common knowledge operator, and φ is a propositional formula. 
We formulate a variant of Example 3 as follows:

• Action preconditions (with action right(i) omitted):
executable left(i) if ¬at(i, p1),
executable find(i, b, p) if Kiat(i, p),
executable tell(i, j, b, p) if Ki in(b, p).

• Action effects (with action right(i) omitted):
left(i) causes at(i, p1) if at(i, p2), left(i) causes ¬at(i, p2) if at(i, p2),
left(i) causes at(i, p2) if at(i, p3), left(i) causes ¬at(i, p3) if at(i, p3),
tell(i, j, b, p) announces in(b, p), meaning in(b, p) becomes the common knowledge of the observers,
find(i, b, p) determines in(b, p), meaning the observers get to know the truth value of in(b, p).

• Action observability statements:
{i, j} observes tell(i, j, b, p),
i observes find(i, b, p).

• The initial epistemic state is specified by a finitary S5-theory:
initially at(1, p2) ∧ at(2, p2) ∧ in(b1, p1) ∧ in(b2, p3) ∧ Cat(1, p2) ∧ Cat(2, p2).

• The goal is expressed as: goal
∧2

i=1
∨3

k=1 Ki in(bi, pk).

7. Conclusions

In this paper, we have proposed a novel multi-agent epistemic planning framework based on higher-order belief change. 
In this framework, the initial KB and the goal, the preconditions and effects of actions can be arbitrary KD45n formulas, the 
progression of KBs w.r.t. actions is achieved through the operation of belief revision or update, and the solution is an action 
tree branching on sensing results.

Now we would like to compare the modeling approach of our paper with the DEL-based approach. In the DEL-based 
approach, an epistemic state is modeled by a Kripke model, an action is modeled by an action model, and the progression 
of an epistemic state w.r.t. an action is modeled by the product update of the Kripke model by the action model. Whereas in 
our approach, an epistemic state is modeled by a KB in multi-agent epistemic logic, an action is modeled by its preconditions 
and effects like in classical planning, and progression is modeled by high-level belief revision or update. In comparison with 
the DEL-based approach, we think ours is closer to the representation framework from the planning community, and more 
suitable for representing multi-agent epistemic planning problems.

To support efficient reasoning and progression, we resort to alternating cover disjunctive formulas (ACDFs). Any KD45n

formula φ can be transformed to an equivalent ACDF whose length is singly exponential in the length of φ, but doubly 
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exponential in the non-alternating factor of φ, i.e., the number of modal operators of an agent which directly occur inside 
those of the same agent. We propose reasoning, strong equivalence checking, and basic revision and update algorithms for 
ACDFs. The complexities of our algorithms are polynomial in the size of the formulas but exponential in the modal depth 
of the formulas, which we expect to be small, except that the complexity of the update algorithm is also exponential in the 
size of the update formulas, which are effects of actions and hence usually small formulas. Based on the theoretic work, we 
have implemented a native multi-agent epistemic planner MEPK, which does not rely on compilation into classical planning. 
Experimental results have demonstrated the viability of our approach.

In this paper, we give syntactic approaches for higher-order belief revision and update. The operators have basic prop-
erties that both return satisfiable formulas entailing the revision or update formula, revision has the conjunction property, 
and update has the distribution property. For proper ACDFs, we show that semantic characterizations for propositional belief 
change nicely carry over to higher-order belief change. This is achieved via introducing the concept of tree models, showing 
that a proper ACDF has a model iff it has a tree model, and then restricting our attention to tree models. We do not yet 
have general semantic definitions of higher-order belief change. Despite this, we think that we have made an important 
first step towards the study of higher-level belief change. In the future, we are interested in doing a general model-theoretic 
study of higher-order belief change and improving our revision and update algorithms.

Finally, by basing multi-agent epistemic planning on higher-order belief change, this paper exposes an interesting chal-
lenge – how to use revision and/or update to model sensing and communication actions. In this paper, we use revision 
for sensing and communication actions. However, there are arguments that update should be used for these actions, and 
arguments that both revision and update should be used for communication. In the future, we are interested in a more 
thorough exploration of this challenging issue.
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Appendix A. Proofs

Proof of Proposition 2. We prove by induction on |φ|. Basis: φ is p. No transformation is needed. Induction step: Let 
p1, . . . , pm be the atoms that appear in φ but not within the scope of any modal operator. Let Ka1φ1, . . . , Kan φn be the 
modal atoms that appear in φ but not within the scope of any modal operator. Let � = {φ1, . . . , φn}. For i = 1, . . . , n, let 
li = |φi |. Let l = n

i=1li . It is easy to prove by induction that |φ| ≥ 2(m + n) + l − 1. Firstly, we treat Ka1φ1, . . . , Kan φn as 
atoms and put φ into DNF. Let φ′ be the resulting formula. Then there are at most 2m+n disjuncts in φ′ , and each disjunct 
is of the form η = φ0 ∧ ∧

a∈B(Ka
∧

�a ∧ La�a), where B ⊆ A, φ0 is a term of p1, . . . , pm , �a and �a are disjoint subsets 
of �. By Proposition 1 (2), η ⇔ φ0 ∧ ∧

a∈B ∇a({∧�a} ∪ {∧�a ∧ ψ | ψ ∈ �a}). By induction, each formula β of 
∧

�a and ∧
�a ∧ ψ can be transformed to an equivalent CDF whose length is O (2|β|2 ). Clearly, |β| ≤ l + n − 1. In total, there are at 

most n such formulas. Thus we obtain a CDF φ′′ , equivalent to φ′ , and |φ′′| ∈ O (2m+nn2(l+n−1)2
), hence in O (2(l+2(m+n)−1)2

), 
which is O (2|φ|2 ). �
Proof of Proposition 3. 1. ⇐: If M, w |= Kaπ , obviously, M, w |= Ka(π ∨ α ∧ Kaβ). So let M, w |= Ka(π ∨ α) ∧ Kaβ . Now 

let v satisfy w Ra v . Then M, v |= π ∨α. Now let u satisfy v Rau. Since Ra is transitive, we have w Rau. From M, w |= Kaβ , 
we get M, u |= β . Thus M, v |= Kaβ . So M, w |= Ka(π ∨ α ∧ Kaβ).
⇒: Let M, w |= Ka(π ∨ α ∧ Kaβ). There are two cases: (1) M, w |= Kaβ . It is easy to show M, w |= Ka(π ∨ α). (2) 
M, w |= ¬Kaβ . Then there exists u s.t. w Rau and M, u |= ¬β . Now let v satisfy w Ra v . Since Ra is Euclidean, v Rau. 
Hence M, v |= ¬Kaβ . Since M, v |= π ∨ α ∧ Kaβ , we get M, v |= π . Hence M, w |= Kaπ .

2. ⇐: If M, w |= Kaπ , obviously, M, w |= Ka(π ∨ α ∧ Laβ). So let M, w |= Ka(π ∨ α) ∧ Laβ . Then there exist v s.t. w Ra v
and M, v |= β . Now let u satisfy w Rau. Since Ra is Euclidean, uRa v . So M, u |= Laβ . Since M, u |= π ∨ α, we get 
M, w |= Ka(π ∨ α ∧ Laβ).
⇒: Let M, w |= Ka(π ∨ α ∧ Laβ). There are two cases: (1) M, w |= Laβ . It is easy to show M, w |= Ka(π ∨ α). (2) 
M, w |= ¬Laβ . Now let u satisfy w Rau. Then M, u |= π ∨ α ∧ Laβ . Then for all v s.t. uRa v , since Ra is transitive, w Ra v , 
and hence M, v |= ¬β because M, w |= ¬Laβ . So M, u |= ¬Laβ . Thus M, u |= π . Therefore, M, w |= Kaπ . �
31



H. Wan, B. Fang and Y. Liu Artificial Intelligence 301 (2021) 103562
Proof of Proposition 4. We prove by induction on |φ|. When φ is p, ¬ψ , or (ψ ∧ ψ ′), the proof is easy. Now let φ be 
Kaψ . If na(φ) = 0, no transformation is needed. Otherwise, Kaψ must be of the form Ka(π ∨ α ∧ Kaβ) or Ka(π ∨ α ∧ Laβ), 
where π might be ⊥ and α might be �. We only prove the first case, the second case is similar. By Proposition 3, Kaψ ⇔
Ka(π ∨α) ∧ Kaβ ∨ Kaπ ∧ ¬Kaβ . Let n1 = na(Kaπ), n2 = na(Kaα), and n3 = na(Kaβ); let l1 = |π |, l2 = |α|, and l3 = |β|. Then 
na(Kaψ) = n1 + n2 + n3 + 1, and |Kaψ | = l1 + l2 + l3 + 4. By induction, each of Ka(π ∨ α), Kaβ , Kaπ is equivalent to an 
alternating formula. Hence Kaψ is equivalent to an alternating formula η, and

|η| ≤2n1+n2(l1 + l2 + 2) + 2 · 2n3(l3 + 1) + 2n1(l1 + 1) + 4

=(2n1+n2 + 2n1)l1 + 2n1+n2 l2 + 2n3+1l3 + 2n1+n2+1 + 2n3+1 + 2n1 + 4

≤2n1+n2+n3+1(l1 + l2 + l3 + 4) = 2na(φ)|φ|. �
Proof of Proposition 10. {Dif f (ψi, μ j) | ψi ∈ ψ, μ j ∈ μ} can be computed in time O (|ψ | · |μ|), hence MinPairs(ψ, μ) and 
so ψ ◦s μ can be computed in time O (|ψ |2 · |μ|2). In the worst case, each of Dif f (ψi, μ j) is empty, and so ψ ◦s μ is of size 
O (|ψ | · |μ|). �
Proof of Proposition 12. revise(ψi, μ j) and Dif f (μ j, ψi) can be computed in time O (|ψi | · |μ j |). patchψi (μ j) can be com-
puted in time O (|μ| · (|ψi | + |μ j|)). Note that patchψi (μ j) is a sub-expression of ¬ 

∧
k �= j μk . Hence revise(ψi, μ j) ∧

patchψi (μ j) can be put into DNF in O (|ψi | · 2|μ|). Therefore, the DNF formula of ψ �w μ can be computed in time 
O (|ψ | · 2|μ|), and the resulting formula is of size O (|ψ | · 2|μ|). �
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