
Strategy Representation and Reasoning
in the Situation Calculus

Liping Xiong and Yongmei Liu1

Abstract. Strategy representation and reasoning has been one of
the most active research areas in AI and multi-agent systems. Rep-
resentative strategic logics are ATL and the more expressive Strat-
egy Logic SL which reasons about strategies explicitly. In this pa-
per, by a simple extension of the situation calculus with a strategy
sort, we develop a general framework for strategy representation and
reasoning for complete information games. This framework can be
used to compactly represent both concurrent and turn-based possibly
infinite game structures, specify the internal structure of strategies,
reason about strategies explicitly, and reason about strategic abilities
of coalitions under commitments to strategy specifications. We show
that our framework is strictly more expressive than SL, and inspired
by the work of De Giacomo et al. on bounded action theories, give
a decidable fragment of our framework.

1 INTRODUCTION

Strategy representation and reasoning has been one of the most ac-
tive research areas in AI and multi-agent systems, and many strategic
logics have been proposed recently. From the representation side, the
following are some desiderata of a strategic logic: modeling strategic
abilities of coalitions; representation and reasoning about strategies
explicitly and even the internal structures of strategies; capability to
deal with both concurrent games and turn-based games; compact rep-
resentation of game structures, even infinite ones. Yet hardly any ex-
isting strategic logic has all these desiderata.

Most strategic logics are built upon Alternating-time Temporal
Logic (ATL) [2] where formula 〈〈A〉〉ϕ expresses that coalition A
can ensure temporal formula ϕ holds no matter what the other agents
do. However, strategies are treated implicitly in ATL.

To model strategies explicitly, there are mainly two approaches.
The first approach is to treat a strategy as an explicit first-order object
in which a strategy is a function from states (or sequences of states) to
actions [43, 45, 6, 30]. In particular, based on the work of [6] which
introduces first-order quantifications over strategies, Mogavero et al.
[30] propose Strategy Logic SL, which is a very expressive logic for
strategic reasoning and strictly contains ATL∗, an extension of ATL.
Yet this approach cannot model the internal structure of strategies.
The second approach is to treat a strategy as a program so that pro-
gram connectives can be used to obtain combined strategies from
simple ones [44, 33, 41].

Nonetheless, the above strategic logics represent game structures
with concrete game models which suffer from the state explosion
problem. For example, in the Chess game, there are almost 1030 s-
tates. To model games compactly, the Game Description Language
(GDL) has been proposed as a practical language for encoding the

1 Department of Computer Science, Sun Yat-sen University, China, email:
xionglp3@mail2.sysu.edu.cn & ymliu@mail.sysu.edu.cn.

rules of arbitrary finite games [16]. Based on GDL, Zhang and
Thielscher [47, 48] use propositional modal logic formulas to repre-
sent strategies, and introduce prioritised connectives for combining
strategies. However, their works can only model turn-based games,
and cannot model strategic abilities of coalitions.

Other than modal logics, another main family of logics in AI
is action formalisms. A prominent example of action formalisms
is the situation calculus [34], which is a first-order language with
some second-order ingredients suitable for reasoning about action
and change. Based on the situation calculus, a logic programming
language Golog [22] has been designed for high-level agent control.
There have been a few works [37, 17, 10] studying strategic rea-
soning in the situation calculus. However, all these works deal with
turn-based games. The first work does not support ATL-like reason-
ing, the second one focuses on the coordination problem, and the
third one does not support explicit reasoning about strategies.

In this paper, we propose a framework based on the situation cal-
culus for representation and reasoning about strategies for complete
information games with all the four desiderata. We first propose a
simple extension of the situation calculus with a strategy sort, which
can be used to compactly represent both concurrent and turn-based
possibly infinite game structures, and to reason about strategies ex-
plicitly. We show that SL can be embedded into the extended situa-
tion calculus. Then we use a simple fragment of Golog as a strategy
specification language, and define the strategy verification and syn-
thesis problems. We illustrate our logical framework with examples
of both turn-based and concurrent games. Finally, inspired by the
work of De Giacomo et al. on bounded action theories [8], we give
a decidable fragment of our extended situation calculus.

2 PRELIMINARIES

In this section, we first introduce the situation calculus, and then re-
view the syntax and semantics of Strategy Logic.

2.1 The situation calculus

The situation calculus [34] is a many-sorted first-order logic lan-
guage (with some second-order elements) specifically designed for
representing dynamically changing worlds. There are three disjoint
sorts: situation for situations, action for actions, and object for ev-
erything else. Intuitively, a situation is a finite sequence of actions.
In this language, the constant S0 is used to denote the initial situation;
the binary function do(a, s) is used to denote the successor situation
of s resulting from performing action a, and do([a1, a2, ..., ak], s)
is used as a shorthand for do(ak, . . . , do(a2, do(a1, s))); the binary
predicate Poss(a, s) means that action a is possible in situation s.
Actions can be parameterized, e.g., repair(r, x) represents robot r
repairing object x. There are relational and functional fluents whose

ECAI 2016
G.A. Kaminka et al. (Eds.)

© 2016 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-672-9-982

982

values vary from situation to situation. These fluents are denoted by
symbols that take a situation term as their last argument. There are
also situation-independent predicates and functions. Finally, there is
a binary predicate � on situations: s � s′ means that s′ is the result
of some sequence of actions being performed in s. We use s � s′ as
a shorthand for s � s′ ∨ s = s′. We say that a situation s is exe-
cutable if it is possible to perform the actions in s one by one:

Exec(s)
.
= ∀a, s′.do(a, s′) � s ⊃ Poss(a, s′).

In this language, an application domain is specified by a basic ac-
tion theory (BAT) D consisting of five disjoint parts:
1. Σ, the foundational axioms of the situation calculus:

• ∀P.P (S0) ∧ ∀a, s[P (s)⊃P (do(a, s))]⊃(∀s)P (s),

• do(a, s) = do(a′, s′) ⊃ a = a′ ∧ s = s′,

• ¬s � S0 ∧ (s � do(a, s′) ≡ s � s′).

2. Dap, a precondition axiom for each action function specifying
when the action can be legally performed.

3. Dss, a successor state axiom for each fluent which describes how
fluent values change between situations.

4. Duna, unique name axioms for actions.
5. DS0 , axioms describing the initial situation S0.

2.2 Strategy logic (SL)

Strategy Logic [30] is a very expressive logic for reasoning explicitly
about strategies in multi-agent concurrent systems; it strictly contains
ATL∗, and can express the existence of deterministic multi-player
Nash equilibria that cannot be expressed in ATL∗.

We fix an SL signature 〈AP,AG, Var〉, here AP is a finite non-
empty set of atoms, AG = {1, . . . , n} is a finite non-empty set of
agents, and Var is a countable set of variables.
Definition 1 SL formulas are built inductively as follows:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ©ϕ | ϕUϕ | 〈〈x〉〉ϕ | (i, x)ϕ,
where p ∈ AP, i ∈ AG, and x ∈ V ar.

Syntactically, SL extends linear-time temporal logic LTL [32] (©
means next, U means until) with two operators. Intuitively, 〈〈x〉〉 and
(i, x) mean “there exists a strategy x”, and “bind agent i to the s-
trategy associated with variable x” respectively. We use � (resp. ⊥)
to represent true (resp. false). We use the universal quantifier [[x]] as
the dual of 〈〈x〉〉, i.e., [[x]] = ¬〈〈x〉〉¬, which means “for all strategies
x”. For a formula ϕ, we let free(ϕ) denote the set of free agents and
variables of ϕ, and we omit its formal definition here. For example,
free(〈〈x〉〉(1, x)(2, y)© p) = {y} ∪ (AG − {1, 2}).

Like ATL, the semantics of SL is based on the notion of concurrent
game structures.

Definition 2 A concurrent game structure (CGS) is a tuple G =
〈AC,W, λ, τ, w0〉, where AC and W are finite non-empty sets of ac-
tions and states respectively; w0 ∈ W is a designated initial state;
λ : W → 2AP is a labeling function; and τ : W × ACAG → W is
a transition function mapping a state and a decision (i.e., a function
from AG to AC) to a new state. We also denote ACAG as DC.

A CGS can be viewed as a multi-player game where players perform
concurrent actions strategically.

To define the semantics of SL, we begin with some definitions and
notations. A track h in a CGS G is a finite state sequence w0w1...wk

in W s.t. for all i, 0 ≤ i < k, there exists d ∈ DC s.t. wi+1 =
τ(wi, d). We let Trk(G) denote the set of all tracks in G beginning
from the initial state w0.

A strategy in G is a function f : Trk(G) → AC. Let Str(G)
denote the set of all strategies in G. Intuitively, a strategy is a plan for

an agent which contains the choice of action for any track starting
from the initial state.

Like a variable assignment in first-order logic, a strategy assign-
ment is a partial function χ : AG ∪ Var ⇀ Str(G), mapping agents
and variables to strategies. We use dom(χ) to denote the domain of
χ. If AG ⊆ dom(χ), χ is called complete. We use χ[x/f] to denote
an assignment exactly like χ except that it maps x to f .

Given a complete strategy assignment χ, it determines a unique
infinite state sequence w0w1w2 . . . and a unique infinite decision se-
quence d1d2 . . . as follows: w0 = w0, and for each j ≥ 1, dj is the
decision associated to the track w0 . . . wj−1, i.e., for each i ∈ AG,
dj(i) = χ(i)(w0 . . . wj−1), and wj = τ(wj−1, d

j). We use l(χ) to
denote this infinite state sequence, and let lj(χ) denote the j-th state
on the sequence.
Definition 3 Given a CGS G = 〈AC,W, λ, τ, w0〉, an SL formula
ϕ, a complete strategy assignment χ with free(ϕ) ⊆ dom(χ), and
a state w = lk(χ) for some k ≥ 0, the relation G, w, χ |= ϕ is
inductively defined as follows:

• G, w, χ |= p iff p ∈ λ(w);
• G, w, χ |= ¬ϕ iff G, w, χ �|= ϕ;
• G, w, χ |= ϕ1 ∧ ϕ2 iff G, w, χ |= ϕ1 and G, w, χ |= ϕ2;
• G, w, χ |= ©ϕ iff G, lk+1(χ), χ |= ϕ;
• G, w, χ |= ϕ1Uϕ2 iff there is an index k′ ∈ N with k ≤ k′

such that G, lk′(χ), χ |= ϕ2 and, for all indexes j ∈ N with
k ≤ j < k′, it holds that G, lj(χ), χ |= ϕ1;

• G, w, χ |= 〈〈x〉〉ϕ iff there exists a strategy f ∈ Str(G) such
that G, w, χ[x/f] |= ϕ;

• G, w, χ |= (i, x)ϕ iff G, w, χ[i/χ(x)] |= ϕ.

An SL formula ϕ is called a sentence if free(ϕ) is empty. Clearly,
for a sentence ϕ, whether G, w, χ |= ϕ does not depend on χ, hence
we omit χ. An SL sentence ϕ is valid if for any CGS G, we have
G, w0 |= ϕ. Denote G, w0 |= ϕ as G |= ϕ.
Example 1 The following are some SL sentences:

1. ϕ1 : 〈〈x〉〉[[y]](1, x)(2, x)(3, y) © p, which intuitively says that
agents 1 and 2 can share a strategy to ensure ©p no matter what
strategy agent 3 takes;

2. ϕ2 : 〈〈x〉〉[[y]]〈〈z〉〉(1, x)(2, y)(3, z)© p;
3. ϕ3 :〈〈x〉〉[[y]](1, x)(2, y)© p⊃〈〈x〉〉〈〈y〉〉(1, x)(2, y)© p is valid.
Finally, we introduce an important property of SL that is invariant
under local isomorphism, defined as follows:

Definition 4 [28] Let G1 = 〈AC1,W1, λ1, τ1, w
0
1〉 and G2 =

〈AC2,W2, λ2, τ2, w
0
2〉 be two CGSs. Then G1 and G2 are locally

isomorphic iff there is a relation ∼ ⊆ W1 × W2, and a function
g : ∼ → 2AC1×AC2 s.t. the following hold:

1. w0
1 ∼ w0

2;
2. for all w1 ∈ W1 and w2 ∈ W2, if w1 ∼ w2 then

(a) λ1(w1) = λ2(w2);
(b) for all a1 ∈ AC1, there is a2 ∈ AC2 s.t. (a1, a2)∈g(w1, w2);
(c) for all a2 ∈ AC2, there is a1 ∈ AC1 s.t. (a1, a2)∈g(w1, w2);
(d) for all (d1, d2) ∈ ĝ(w1, w2), it holds that τ1(w1, d

1) ∼
τ2(w2, d

2), where ĝ :∼→ 2DC1×DC2 mapping pairs of states in
∼ to relations between decisions such that (d1, d2) ∈ ĝ(w1, w2)
iff, for all i ∈ AG, it holds that (d1(i), d2(i)) ∈ g(w1, w2).

3. ∼ ∩ ({τ1(w1, d) : d ∈ DC1} × {τ2(w2, d) : d ∈ DC2}) is a
bijective function, for all w1 ∈ W1 and w2 ∈ W2 with w1 ∼ w2.

Theorem 1 [28] For SL, it is invariant under local-isomorphism.
That is, if two CGSs G1 and G2 are locally isomorphic, then for any
SL sentence ϕ, G1 |= ϕ iff G2 |= ϕ.

L. Xiong and Y. Liu / Strategy Representation and Reasoning in the Situation Calculus 983

3 AN EXTENSION OF THE SITUATION
CALCULUS

In this section, we present a simple extension of the situation calculus
with a strategy sort, denote as Lext, which can be used to compact-
ly represent both concurrent and turn-based possibly infinite game
structures, and to reason about strategies explicitly.

We fix a set of agents AG = {1, . . . , n}. We introduce two ad-
ditional sorts: a sort for joint actions and a second-order sort for s-
trategies. Intuitively, a joint action is an n-ary vector of actions, one
action for each agent. A strategy is a function from situations to ac-
tions. Let A ⊆ AG. A collective strategy of coalition A is a function
from A to strategies. A joint strategy is a collective strategy of AG.
We use variables d, d′, . . . for joint actions, g, g′, . . . for strategies,
gA, g′A, . . . for collective strategies of coalition A, and gall, g′all,
. . . for joint strategies. We treat gA the same as the set of strategy
variables {gi | i ∈ A}.

We introduce a function joint(a1, . . . , an) which maps n actions
into a joint action, and n projection functions pri(d), 1 ≤ i ≤ n,
which maps a joint action into its i-th component. For simplicity,
we write joint(a1, . . . , an) as 〈a1, . . . , an〉, and write pri(d) as di.
Situations are now sequences of joint actions; so the first argument
of the function do and the predicate Poss is of the joint action sort.

The set Σ of foundational axioms for situations is the same as
before except that we replace each action variable with a joint action
variable. We also add to Σ the following concerning joint actions:

• ∀d∃a1, . . . , an.d = 〈a1, . . . , an〉;
• 〈a1, . . . , an〉 = 〈a′

1, . . . , a
′
n〉 ⊃ a1 = a′

1 ∧ . . . ∧ an = a′
n;

• pri(〈a1, . . . , an〉) = ai, i = 1, . . . , n.

Reiter [34] presents an account of true concurrency where a con-
current action is modeled as a possibly infinite set of simple actions.
Our account of concurrent actions as joint actions can be considered
as a special case of Reiter’s account. ConGolog [7] is an extension
of Golog with a rich account of interleaved concurrency. In contrast
to interleaved concurrency, our framework is able to deal with the
issues of action precondition interaction and concurrent effect speci-
fication, which are discussed in [34]. Two simple actions may each be
possible, their preconditions may be jointly consistent, yet intuitive-
ly they should not be concurrently possible, e.g., each of two robots
can walk through a narrow door, but they cannot walk through the
door at the same time; also, the effect of concurrently executing two
simple actions, e.g., lifting the two ends of a table, might be different
from executing the two actions in sequence. Both examples can be
specified in our framework.

In the absence of the precondition interaction problem, we intro-
duce n predicates Possi(a, s), meaning that it is possible for agent
i to perform action a in situation s, and let Poss(〈a1, ..., an〉, s) ≡∧n

i=1Possi(ai, s). To represent turn-based games, we introduce an
action nop meaning doing nothing, and n fluents turni(s), i =
1, . . . , n, meaning that it’s agent i’s turn to make a move. We have
Possi(nop, s) ≡ ¬turni(s).

Let gA be a collective strategy of coalition A. The abbreviation
s �gA s′ is used to represent the formula

s � s′ ∧ ∀s′′∀d[s � do(d, s′′) � s′ ⊃ ∧
i∈Adi = gi(s

′′)].
Intuitively, this means that s is a subhistory of s′, and on the way

from s to s′, each agent i in A performs actions according to strategy
gi. Further, we introduce the abbreviation:

s ≤gA s′ .
= s �gA s′ ∧ Exec(s′).

We remark that our idea of extending the situation calculus with
joint actions and strategies originates from the literature. To reason
about general games, Schiffel and Thielscher [35, 36] introduce joint

actions into the situation calculus. To study ability and knowing how
in the situation calculus, Lespérance et al. [19] introduce strategies,
which they call action choice functions. Yet De Giacomo et al. [11]
present another approach to modeling concurrent game structures in
the situation calculus. They introduce a subsort move of the object
sort, representing agents’ moves. They assume only one action func-
tion tick(m1, ...,mn), representing that each agent i performs move
mi simultaneously.

To illustrate the expressiveness of our language for representing
strategic properties, we adapt an example from [30] concerning the
existence of deterministic multi-player Nash equilibria:
Example 2 Consider two agents: agent 1 has the temporal goal �p
(“eventually p”), and agent 2 has the temporal goal �q. Then, we can
express the existence of a strategy profile (g1, g2) that is a Nash equi-
librium for the two agents wrt their goals by the following sentence:

∃g1, g2.{(∃g)(∃s)[p(s) ∧ S0 ≤(g,g2) s] ⊃
(∃s)[p(s) ∧ S0 ≤(g1,g2) s]}∧

{(∃g)(∃s)[q(s) ∧ S0 ≤(g1,g) s] ⊃
(∃s)[q(s) ∧ S0 ≤(g1,g2) s]}

Informally, this asserts that each agent has the “best” strategy once
the strategy of the other agent has been fixed.

In the following, we illustrate with examples the expressiveness of
our situation calculus language for compactly representing possibly
infinite games.
Example 3 Consider the Chomp game [31]. As shown in Figure
1(a), cookies are laid out on a m × n or ω × ω grid, here ω is the
least infinite ordinal. The cookie in the top left position (0,0) is poi-
soned. Two players take turns making moves: at each move, a player
is required to eat a remaining cookie, together with all cookies to the
right and/or below it. The loser is the player who has no choice but
to eat the poisoned cookie.

Consider representing the Chomp game with concurrent game
structures. The ordinal version cannot be represented with a CGS.
A CGS representation of an m×m game would use m2 actions and
at least 2m states. Hence a CGS representation of the game needs
exponential space.

We now formalize this game in the situation calculus. Fluent
ck(j, k, s) means that there is a cookie at position (j, k). Action
eat(j, k) means eating the cookie at position (j, k) together with all
cookies to the right and/or below it. We use size(m,n, s) to denote
the formula ∀j, k.ck(j, k, s) ≡ j < m ∧ k < n, meaning that the
current cookies form an m× n grid. In addition to the second-order
axiomatization of Peano arithmetic, we have the following axioms:

Possi(eat(j, k), s) ≡ turni(s) ∧ ck(j, k, s), i = 1, 2;

turni(do(d, s)) ≡ ¬turni(s), i = 1, 2;

ck(j, k, do(d, s)) ≡ ck(j, k, s) ∧ ¬∃j′, k′.[(j′ ≤ j

∨ k′ ≤ k) ∧ (d1 = eat(j′, k′) ∨ d2 = eat(j′, k′))];

turn1(S0) ∧ ¬turn2(S0);

(∀j, k)ck(j, k, S0) ∨ (∃m,n)size(m,n, S0).

We use Dch to denote the BAT of Chomp, and we use Dmm
(resp. D2m) to denote Dch with the last axiom replaced by
∃m.size(m,m, S0) (resp. ∃m.size(2,m, S0)). The abbreviation
below says that agent i wins in situation s:

Wini(s)
.
= ¬turni(s) ∧ size(1, 1, s).

It’s easy to prove by a non-constructive proof that for Chomp
game, player 1 always has a winning strategy. So we have

Dch |= ∃g1∀g2∃s.S0 ≤(g1,g2) s ∧Win1(s).

L. Xiong and Y. Liu / Strategy Representation and Reasoning in the Situation Calculus984

(a) (b)

Figure 1. The Chomp and Thieves Games

Finally, we present an example of concurrent games.

Example 4 In a two-dimensional world, three thieves (agents 1-3)
attempt to steal a treasure, which is protected by a guard (agent 4),
and can only be lifted by at least two agents. As shown in Figure
1(b), the treasure is located at (3,1); initially, the thieves are located
at (0,0), (0,2), (0,3) respectively, and the guard is located at (2,1).
Any agent can stay at his current position. The thieves can move
right, up, or down a unit, when they are not caught by the guard.
A thief is caught by the guard if they share the same location. The
guard can move left, up, or down a unit; he can also move right a
unit when he is to the left of the treasure. We use fluent loci(p, q, s)
to represent that in situation s, agent i is located at (p, q); use fluent
cati(s) to mean that thief i is caught by the guard; and use fluent
win(s) to mean that the thieves successfully get the treasure. For
illustration purpose, we only present some axioms of the BAT of this
game, denoted by Dtg:

Possi(right, s) ≡ ¬cati(s), i = 1, 2, 3;

Poss4(right, s) ≡ ∃p, q.loc4(p, q, s) ∧ p < 2;

loci(p, q, do(d, s)) ≡ φi(p, q, d, s), where φi(p, q, d, s) is

loci(p, q, s) ∧ di = stay∨
loci(p+ 1, q, s) ∧ di = left ∨ . . . , i = 1, 2, 3, 4;

cati(do(d, s)) ≡ ∃p, q.φi(p, q, d, s) ∧ φ4(p, q, d, s)∨
cati(s), i = 1, 2, 3;

win(do(d, s)) ≡ d1 = lift ∧ d2 = lift ∨ d2 = lift∧
d3 = lift ∨ d1 = lift ∧ d3 = lift ∨ win(s);

loc1(0, 0, S0) ∧ ¬cat1(S0).
Finally, we illustrate that in our situation calculus language, we can
specify different notions of strategies, such as memoryless and per-
fect recall strategies. We first introduce two abbreviations:
1. Eqst(s, s′)which says that the states of s and s′ are the same[26]:

Eqst(s, s′) .
=

∧n
i=1 ∀	xi.(Fi(xi, s) ≡ Fi(xi, s

′)) ∧∧m
j=1 ∀	yj .(fj(yj , s) = fj(yj , s

′))
Here Fi(xi, s), 1 ≤ i ≤ n are the finitely many relational fluents,
and fj(yj , s), 1 ≤ j ≤ m are the finitely many functional fluents.

2. Eqlev(s, s′) which says that s and s′ are situations at the same
level, i.e., situations resulting from performing the same number
of joint actions: Eqlev(s, s′) .

= ∀P.P (S0, S0) ∧
∀s1, s′1, d, d′.[P (s1, s

′
1) ⊃ P (do(d, s1), do(d

′, s′1))] ⊃ P (s, s′).
Then we can describe different notions of strategies according to

different statewise memory abilities (ignoring actions) as follows:
• Statewise memoryless strategy:

M0(g)
.
= ∀s, s′.Eqst(s, s′) ⊃ g(s) = g(s′).

• Statewise perfect recall strategy:
PR(g)

.
= ∀s, s′.[∀s1, s′1.s1 � s ∧ s′1 � s′ ∧ Eqlev(s1, s

′
1)

⊃ Eqst(s, s′)] ∧ Eqlev(s, s′) ⊃ g(s) = g(s′).

• Statewise perfect recall strategy wrt agent j:
PRj(g)

.
= ∀s, s′.[∀s1, s′1, d, d′.do(d, s1)�s∧ do(d′, s′1)�s′ ∧

Eqlev(s1, s
′
1) ∧ dj = d′j ⊃ Eqst(s, s′)]

∧ Eqlev(s, s′) ⊃ g(s) = g(s′).

• K-bounded-memory strategy (take the example of K = 1):
M1(g)

.
= ∀s, s′.Eqst(s, s′) ∧ ∀s1, s′1, d, d′.[do(d, s1) = s ∧

do(d′, s′1) = s′ ⊃ Eqst(s1, s
′
1)] ⊃ g(s) = g(s′).

4 EMBEDDING SL INTO THE SITUATION
CALCULUS

In this section, we show that Strategy Logic can be embedded in-
to our extended situation calculus, i.e., our framework is expressive
enough to contain SL. With this result, we establish formal connec-
tions between our work and existing works.

Firstly, we give an encoding of a concurrent game structure G into
a BAT DG ; then we present a translation function which maps an SL
sentence ϕ into a situation calculus formula ϕ′; finally, we prove that
for any CGS G and SL sentence ϕ, G, w0 |= ϕ iff DG |= ϕ′.

We fix an SL signature 〈AP,AG, V ar〉. Given a CGS
G = 〈AC,W, λ, τ, w0〉, where AC = {a0, . . . , am−1} and W =
{w0, . . . , wl−1}, the vocabulary of our situation calculus language
includes the following: a set of action constants {ac0, . . . , acm−1},
and a set of state constants {sc0, . . . , scl−1}; a functional fluent
State(s), representing the state of the game in situation s; for each
p ∈ AP, a relational fluent p(s), denoting that p holds in situation s.

We let φ(x, d, y) denote the following formula, which says y is
the state resulting from performing joint action d in state x, i.e.,
φ(x, d, y) represents the transition function τ :∨{x = scj ∧ d = 〈acj1 , . . . , acjn〉 ∧ y = sck |

j < l, j1 < m, . . . , jn < m, τ(wj , 〈aj1 , . . . , ajn〉) = wk}.
Definition 5 Given a CGS G = 〈AC,W, λ, τ, w0〉, the BAT DG in-
cludes the following domain-specific axioms:

(A0) scj �= sck, acj �= ack, j �= k;

(A1) Possi(acj , s) ≡ �, i = 1, . . . , n, j < m;

(A2) (State(do(d, s)) = x) ≡ φ(State(s), d, x);

(A3) p(do(d, s)) ≡
∨

{φ(State(s), d, scj) | p ∈ λ(wj)}, p ∈ AP;

(A4) State(S0) = sc0;

(A5)
∧

{p(S0) | p ∈ λ(w0)} ∧
∧

{¬p(S0) | p �∈ λ(w0)}.
Here A0 consists of the unique name axioms for states and actions.

A1 says that each action is always possible. A2 is the successor state
axiom for fluent State(s), saying that x is the state after executing
joint action d in situation s iff x is the state resulting from performing
d in the state of s. A3 is the successor state axiom for fluent p(s),
saying that p holds after doing d in s iff the new state is one of the
states where p holds. A4 states that the initial state is w0 and A5
specifies the initial truth values of p ∈ AP according to λ(w0).

Given an SL formula ϕ, a joint strategy gall, and a situation s, we
define a situation calculus formula T (ϕ, gall, s), which intuitively
means that when the agents commit to the joint strategy gall, ϕ holds
in situation s. We use V ar as the set of strategy variables in our
situation calculus language. Let x ∈ V ar. We let gall[i/x] denote
the joint strategy exactly like gall except that agent i adopts strategy
x. Finally, we use gall(s) to represent the joint action at situation s,
i.e., 〈g1(s), . . . , gn(s)〉.
Definition 6 Given an SL formula ϕ, a joint strategy gall, and a
situation s, we define a situation calculus formula T (ϕ, gall, s) in-
ductively as follows:

• T (p, gall, s) = p(s), for each p ∈ AP ;

• T (¬ϕ, gall, s) = ¬T (ϕ, gall, s);
• T (ϕ1 ∧ ϕ2, gall, s) = T (ϕ1, gall, s) ∧ T (ϕ2, gall, s);

L. Xiong and Y. Liu / Strategy Representation and Reasoning in the Situation Calculus 985

• T (©ϕ, gall, s) = T (ϕ, gall, do(gall(s), s));

• T (ϕ1Uϕ2, gall, s) = ∃s′.s ≤gall s
′ ∧ T (ϕ2, gall, s

′)
∧ ∀s′′[s � s′′ � s′ ⊃ T (ϕ1, gall, s

′′)];

• T (〈〈x〉〉ϕ, gall, s) = ∃x.T (ϕ, gall, s);
• T ((i, x)ϕ, gall, s) = T (ϕ, gall[i/x], s).

Given the semantics of SL (Definition 3), the above translation is
quite straightforward.
Example 5 We illustrate the above translation with the SL sentence
ϕ : 〈〈x〉〉[[y]]〈〈z〉〉(1, x)(2, y)(3, z)© p. Let gall be the joint strategy
〈u, v, w〉. Then we have:
1. T (©p, gall, s) = p(do(〈u(s), v(s), w(s)〉, s));
2. T ((1, x)(2, y)(3, z)© p, gall, s) = p(do(〈x(s), y(s), z(s)〉, s));
3. T (ϕ, gall, s) = ∃x∀y∃z.p(do(〈x(s), y(s), z(s)〉, s)).

Note that if ϕ is a sentence, then T (ϕ, gall, s) does not depend on
gall and it does not have free strategy variables. In this case, we omit
gall and simply write T (ϕ, s).

We now state the embedding theorem as follows:

Theorem 2 Given a CGS G and an SL sentence ϕ, we have
G, w0 |= ϕ iff DG |= T (ϕ, S0).

A few remarks are in order before we prove the theorem. First of
all, the significance of Theorem 2 lies with that it formally shows
that SL can be embedded into the extended situation calculus and it
establishes the correctness of our translation function T (ϕ, gall, s).
Secondly, indeed, when encoding a CGS as a BAT, the states are
represented explicitly, and the size of our encoding is of the same
order as the size of the CGS. One may question that this brute-force
encoding does not make use of the advantage of the situation calcu-
lus in compactly representing large state spaces. However, this is the
best we can do given an arbitrary CGS. To represent a specific game
structure, we might very well have a more succinct representation
in the situation calculus than using a CGS. But given an arbitrary
CGS where states are individual objects rather than being factored
into atomic features, we cannot restore the original game structure
and give a succinct representation. Finally, the extended situation
calculus is more expressive than SL, which does not provide a way
to compactly represent game structures. In SL, we can only discuss
whether a game represented by a CGS has a certain property. In con-
trast, in the situation calculus, we can discuss properties of a class of
games represented by a BAT. For example, Dch represents the class
of Chomp games, either of any finite size or infinite, and Dmm the
class of Chomp games with square grids of any size.

To prove the theorem, we first prove a lemma.
A strategy assignment in a model M of DG is a partial func-

tion from V ar to the set of strategies in M . Given a CGS G =
〈AC,W, λ, τ, w0〉, a joint strategy gall, a complete strategy assign-
ment χ in G, and a state w = lk(χ) for some k ≥ 0, we construct
a model Ḡ of DG , a strategy assignment χ̄ in Ḡ s.t. gall ⊆ dom(χ̄),
and a situation w̄ in Ḡ as follows.

The action and object domains of Ḡ are AC and W respectively.
We also call an object a state. The joint action domain of G is the
set of n-ary vectors of actions, and the situation domain of G is the
set of finite sequences of joint actions. We interpret acj as aj , scj as
wj , and S0 as the empty sequence. The � predicate and the do, joint
and projection functions get their natural interpretations. We interpret
Possi(acj , s), the fluents State(s) and p(s) according to axioms
A1-A5 of Definition 5. Clearly, Ḡ is a model of DG . Intuitively, there
is a one-to-one correspondence between the situations of Ḡ and the
tracks of G starting from the initial state. So there is a one-to-one
correspondence between strategies of Ḡ and G.

For a strategy κ in G, we define a strategy κ̄ in Ḡ as follows. Let
μ be a situation in Ḡ. Then there exist joint actions d1, . . . , dk s.t.
μ is [d1, ..., dk]. We get a track h = w0 . . . wk in G s.t. w0 = w0,
wj = τ(wj−1, d

j), 1 ≤ j ≤ k. Let κ̄(μ) = κ(h). We now define
χ̄ as follows. For any i ∈ AG, χ̄(gi) = κ̄, where κ = χ(i); and for
any x ∈ AG ∪ (V ar − gall), χ̄(x) = κ̄, if χ(x) is defined and κ =
χ(x), otherwise χ̄(x) is undefined. As discussed before Definition
3, χ determines a unique infinite state sequence w0w1w2 . . . and a
unique infinite decision sequence d1d2 Since w = lk(χ), i.e.,
w = wk, we let w̄ be the situation [d1, ..., dk]. By induction on ϕ:

Lemma 1 Given an SL formula ϕ, a CGS G, a joint strategy gall,
a complete strategy assignment χ in G, and a state w = lk(χ) for
some k ≥ 0, we have G, w, χ |= ϕ iff Ḡ, w̄, χ̄ |= T (ϕ, gall, s).

Note that any model of DG is isomorphic to Ḡ. Hence Theorem 2
follows immediately from Lemma 1.

Therefore, this extended situation calculus is at least as expressive
as SL. In the following, we show that our extended situation calculus
is strictly more expressive than SL.
Example 6 Consider the following sentence ϕ0 in our extended sit-
uation calculus: ∃x, y.x(S0) �= y(S0) ∧ ∀z∃s, s′.S0 �(x,z) s ∧
S0 �(y,z) s′ ∧ p(s) ∧ p(s′). Intuitively, this sentence means that a-
gent 1 has two different strategies where agent 1 performs different
actions at S0 to ensure that eventually p holds.
Proposition 1 There exist two CGSs G1 and G2 such that no SL sen-
tence can distinguish between G1 and G2 but ϕ0 distinguishes be-
tween Ḡ1 and Ḡ2.
Proof: Given a signature 〈{p}, {1, 2}, V ar〉, let G1 =
〈AC,W, λ, τ1, w0〉 and G2 = 〈AC,W, λ, τ2, w0〉, where
AC = {a0, a1, a2}, W = {w0, w1, w2}. λ(w1) = {p}, and
λ(w0) = λ(w2) = ∅. τ1(w0, (a0, ∗)) = τ1(w0, (a1, ∗)) =
τ2(w0, (a0, ∗)) = τ2(w0, (a1, a1)) = w1, τ1(w0, (a2, ∗)) =
τ2(w0, (a2, ∗)) = τ2(w0, (a1, a0)) = τ2(w0, (a1, a2)) = w2,
τ1(wi, (∗, ∗)) = τ2(wi, (∗, ∗)) = wi, i = 1, 2, where ∗ denotes
any action. We can easily see that Ḡ1 satisfies ϕ0, but Ḡ2 does
not. However, G1 and G2 are locally isomorphic, because we can
let ∼ = {(si, si) : i = 0, 1, 2}, function g : ∼ → 2AC×AC ,
g(si, si) = {(a0, a0), (a1, a1), (a2, a2)}. By Theorem 1, no SL
sentence can distinguish between G1 and G2.
By Theorem 2 and Proposition 1, we get
Corollary 1 The extended situation calculus is strictly more expres-
sive than SL.

5 STRATEGY SPECIFICATION

In this section, we propose a simple strategy specification language
based on Golog, and define the strategy verification and synthesis
problems.

A situation-suppressed formula ϕ is a situation calculus formula
with all situation arguments suppressed, and ϕ[s] denotes the formula
obtained from ϕ by taking s as the situation arguments of all fluents
mentioned in ϕ.
Definition 7 Strategy specifications are defined inductively as fol-
lows: δ ::= (ϕ?;α) | (α;ϕ?) | (δ | δ) | (πx.δ(x)), where ϕ is a
situation-suppressed formula, and α is an action term.

Intuitively, ϕ?;α means that if ϕ holds then performing α, α;ϕ?
means performing α so that ϕ holds, δ1|δ2 represents nondeterminis-
tic choice of two strategies, and πx.δ(x) stands for nondeterministic
choice of stratgy arguments.

Note that our strategy specification language does not use the se-
quence or iteration constructs of Golog. As argued by van Benthem

L. Xiong and Y. Liu / Strategy Representation and Reasoning in the Situation Calculus986

[42], such a flat language often suffices for the purpose of strategy
specifications: a strategy prescribes one move at a time, subject to
local conditions; then local iterations make little sense, and local se-
quences only make sense when a player has consecutive turns.

The formal semantics of strategy specifications is defined by an
abbreviation Doesi(δ, s, a), which intuitively means that action a
forms a legal execution of δ by agent i in situation s.

Definition 8 Doesi(δ, s, a) is defined inductively as:
• Doesi(ϕ?;α, s, a) = ϕ[s] ∧ Possi(α, s) ∧ a = α;
• Doesi(α;ϕ?, s, a) = ∀d.(Poss(d, s) ∧ di = α ⊃

ϕ[do(d, s)]) ∧ Possi(α, s) ∧ a = α;
• Doesi(δ1 | δ2, s, a) = Doesi(δ1, s, a) ∨Doesi(δ2, s, a);
• Doesi(πx.δ(x), s, a) = ∃x.Doesi(δ(x), s, a).

We now formally define the notion that a strategy g satisfies a
specification δ for agent i.

Definition 9 The condition of specification δ for agent i in situation
s, denoted Condi(δ, s), is defined inductively as:
• Condi(ϕ?;α, s) = ϕ[s] ∧ Possi(α, s);
• Condi(α;ϕ?, s, a) =

∀d.(Poss(d, s) ∧ di = α ⊃ ϕ[do(d, s)]) ∧ Possi(α, s);
• Condi(δ1 | δ2, s) = Condi(δ1, s) ∨ Condi(δ2, s);
• Condi(πx.δ(x), s) = ∃x.Condi(δ(x), s).

Definition 10 Given a strategy g and a specification δ for agent i,
Sati(g, δ)

.
= ∀s.Condi(δ, s) ⊃ Doesi(δ, s, g(s)).

Intuitively, Sati(g, δ) means that strategy g satisfies specification δ
for agent i, that is, for any situation s, under the condition of δ in s,
action g(s) forms a legal execution of δ.

In the following, according to Sati, we give two relations between
two strategy specifications.

Definition 11 Given a BAT D, and a strategy constant f for agent i,
two strategy specifications δ, δ′ are equivalent with respect to f and
i, if D |= Sati(f, δ) ≡ Sati(f, δ

′) holds. Call δ, δ′ are equivalent
w.r.t. agent i, if D |= ∀g.Sati(g, δ) ≡ Sati(g, δ

′).
Two strategy specifications δ, δ′ for agent i are called disjoint, if
D |= ∀s.¬(Condi(δ, s) ∧ Condi(δ

′, s)).
Intuitively, two specifications δ, δ′ are equivalent with the strategy
f for agent i, which means these two specifications satisfy the f at
the same time; and two specifications equivalent w.r.t. agent i means
that they specify the same set of strategies for agent i. Two specifi-
cations for agent i are disjoint, which means the conditions of two
specifications for i are inconsistent.

For any disjoint specifications δ1, δ2 for agent i, a strategy for i
satisfies δ1 | δ2 iff the strategy satisfies both δ1 and δ2.

Proposition 2 For disjoint strategy specifications δ1, δ2 for agent i,
given any strategy constant f for i, we have

D |= Sati(f, δ1 | δ2) ≡ Sati(f, δ1) ∧ Sati(f, δ2).

In fact, any strategy specification for agent i has an equivalent
canonical specification for it.
Definition 12 A strategy specification δ is called standard if the δ is
of the following form, δ1 | ... | δn, in which for any i ∈ {1, ..., n},
δi is like the following ϕ1?; a, a;ϕ? or π	x.ϕ2(x)?; a(x), where ϕ1

and ϕ2(x) are uniform situation suppressed formulas.

Proposition 3 Given a basic action theory D and any strategy spec-
ification δ for agent i, there must exist an equivalent standard speci-
fication δ′ for agent i.

A collective strategy specification δA for coalition A is a function
from A to strategy specifications. Below we formalize the concept of
winning strategies. Recall we use gall to denote a joint strategy.

Definition 13 (Winning strategy) Given a basic action theory D, a
situation-calculus formula ϕ(gall, s), a coalition A, and a collective
strategy specification δA for A, we say that δA is a winning strategy
for A wrt ϕ if D |= ∀gall.

∧
i∈A Sati(gi, δi) ⊃ ϕ(gall, S0) holds.

Here ϕ(gall, s) is a general situation-calculus formula whose free
variables are among gall and s. An example of such a formula is
∃s.S0 ≤gall s ∧ φ(s), which means that via the joint strategy gall,
φ eventually holds at some executable situation. Other examples are
∀s.S0 ≤gall s ∧ φ(s), meaning that via gall, φ always holds, and
φ(do(gall(s), s)), meaning that via gall, φ holds next.

According to Propositions 2 and 3, when we want to find a winning
strategy for A wrt ϕ, we can try attempt to combine those disjoint
specifications of the forms ϕ?; a or a(x);ϕ(x)? to get one standard
specification δA, then verify whether δA is a winning strategy.

We now illustrate strategy specifications with the Chomp, Thieves
games, and the Nim game.
Example 3 Cont′d. For the chomp game, although the first play-
er always has a winning strategy, nobody has been able to describe
one that applies for all rectangular grids. Yet winning strategies can
be specified when the grid is square or only has two finite rows or
columns. When the grid is square, player 1’s winning strategy is as
follows: first do eat(1, 1), and on subsequent moves, if player 2 does
eat(0, k) (resp. eat(k, 0)), then react with action eat(k, 0) (resp.
eat(0, k)). When the grid has two rows and m columns, player 1’s
winning strategy is this: begin with eat(1,m − 1), and on subse-
quent moves, if player 2 does action eat(0, k) (resp. eat(1, k)), then
respond with eat(1, k − 1) (resp. eat(0, k + 1)). We now present
specifications for the above strategies. We first give an abbreviation:
Prev(i, a, s)

.
= ∃s′∃d.s = do(d, s′) ∧ di = a, saying that a is the

last action performed by agent i in situation s.
Let δ′ = δ1 | δ2 | δ3, and δ′′ = δ4 | δ5 | δ6, where

• δ1 = �?; eat(1, 1).
• δ2 = πk.Prev(2, eat(0, k)) ∧ k > 0?; eat(k, 0).
• δ3 = πk.Prev(2, eat(k, 0)) ∧ k > 0?; eat(0, k).
• δ4 = πk.k ≥ 1 ∧ size(2, k)?; eat(1, k − 1).
• δ5 = πk.Prev(2, eat(0, k)) ∧ k > 0?; eat(1, k − 1).
• δ6 = πk.Prev(2, eat(1, k))?; eat(0, k + 1).

Here, these six strategy specifications are pairwise disjoint. Both δ′

and δ′′ are standard. The following properties say that δ′ (resp. δ′′) is
a winning strategy for player 1 for any m×m (resp. 2×m) game:

• Dmm |= ∀gall.Sat(g1, δ′) ⊃ ∃s.S0 ≤gall s ∧Win1(s);
• D2m |= ∀gall.Sat(g1, δ′′) ⊃ ∃s.S0 ≤gall s ∧Win1(s).

Example 4 Cont′d. The following is a winning strategy for the
thieves. Each thief behaves as follows: moves right when he is to the
left of the treasure and no matter where the guard is, moves up (resp.
down) when he is to the due south (resp. north) of the treasure, and
lifts the treasure when he gets to its location. In this way, at least two
thieves will escape the guard and seize the treasure.

For i = 1, 2, 3, let δi = δ1i | δ2i | δ3i | δ4i , where

• δ1i = ϕ1
i ?; right, where ϕ1

i = ∃p, q.loci(p, q) ∧ p ≤ 2.
• δ2i = ϕ2

i ?;up, where ϕ2
i = ∃q.loci(3, q) ∧ q < 1.

• δ3i = ϕ3
i ?; down, where ϕ3

i = ∃q.loci(3, q) ∧ q > 1.
• δ4i = loci(3, 1)?; lift.

Here for each i ∈ {1, 2, 3}, {δji : j = 1, 2, 3, 4} are pairwise dis-
joint, and each δi is standard. The following says that when each thief
i adopts strategy δi, they are guaranteed to win:
Dtg |= ∀gall.

∧3
i=1 Sat(gi, δi) ⊃ ∃s.S0 ≤gall s ∧ win(s).

Example 7 Consider the Nim game [13]. The Nim game is played as
follows. There are three piles of chips containing k1, k2, and k3 chips

L. Xiong and Y. Liu / Strategy Representation and Reasoning in the Situation Calculus 987

respectively. Two players take turns moving. Each move consists of
selecting one of the three piles and removing one or more chips from
it as desired. The winner is the player who removes the last chip.

We now formalize this game in the situation calculus. There is a
fluent rm(k, j, s) meaning that there are k chips remaining in the
jth pile, j = 1, 2, 3. There is an action take(k, j), k > 0, mean-
ing taking k chips from the jth piles. Here we also give a situation-
independent function bin(k1, k2, k3), which is their addition without
carry in base 2 calling it as the nim-sum of them. For example, for
(5, 7, 9), bin(5, 7, 9) = 101 + 111 + 1001 = 1011.

In [5], Bouton shows that in the Nim game with three piles, the
first player has a winning strategy iff for the initial chips (k1, k2, k3),
their addition without carry in base 2 is not zero.

In addition to the second-order axiomatization of Peano arith-
metic, we have the following axioms:
Possi(take(k, j), s) ≡ turni(s) ∧ ∃k′.rm(k′, j, s) ∧ k′ ≥ k,
turni(do(d, s)) ≡ ¬turni(s), i = 1, 2, j = 1, 2, 3;

rm(k, j, do(d, s))≡∃k′, k′′.rm(k′, j, s)∧k = k′−k′′∧ϕ0(k
′′, j)

∨ (rm(k, j, s) ∧ ¬∃k′.ϕ0(k
′, j));

turn1(S0) ∧ ¬turn2(S0),
where ϕ0(k, j)

.
= d1 = take(k, j)∨d2 = take(k, j). We use Dnim

to denote the BAT of the Nim game. Two abbreviations are
• ϕ1(s)

.
= ∃k1, k2, k3.∧3

j=1 rm(kj , j, s) ∧ bin(k1, k2, k3) = 0.

• ϕ2(s)
.
= ∃k1, k2, k3.∧3

j=1 rm(kj , j, s)∧¬bin(k1, k2, k3) = 0.

Intuitively, they mean that in the situation s, the addition of the re-
maining chips in each pile without carry in base 2 is 0 or not 0.

Denote Dnim ∪ ϕ1(S0) as Dnim1, denote Dnim ∪ ϕ2(S0) as
Dnim2. The abbreviation below says that agent i wins in situation
s: Wini(s)

.
= executable(s) ∧ ¬turni(s) ∧∧3

j=1 rm(0, j, s).
Then we can give a strategy specification δi (i=1,2):

πk, j.take(k, j);ϕ1?. Intuitively, δi means that if agent i can ensure
ϕ1 holds next by performing take(k, j), then he does this action.

The following properties say that δ1 (resp. δ2) is a winning strategy
for player 1 for game with the initial nim-sum is zero (resp. not zero):

• Dnim1 |= ∀gall.Sat(g1, δ1) ⊃ ∃s.S0 ≤gall s ∧Win1(s);
• Dnim2 |= ∀gall.Sat(g2, δ2) ⊃ ∃s.S0 ≤gall s ∧Win2(s).
For (5, 7, 9), initially, bin(5, 7, 9) �= 0, to make zero, we should
take 7 chips away from the 3rd pile, such that the remaining
bin(5, 7, 2) = 0, and in the next, no matter what player 2 does, the
remaining addition will be not zero.

Finally, we formalize the strategy verification and synthesis prob-
lems in our framework.

Definition 14 (Strategy verification) Given a BAT D, a situation-
calculus formula ϕ(gall, s), a coalition A, and a collective strategy
specification δA for A, verify if δA is a winning strategy for A wrt ϕ.

Definition 15 (Strategy synthesis) Given a basic action theory D, a
situation-calculus formula ϕ(gall, s), a coalition A, generate a win-
ning strategy for A wrt ϕ.

6 A DECIDABLE FRAGMENT

In this section, we give a decidable fragment of our extended situa-
tion calculus inspired by the work of De Giacomo et al. [8, 9].

In [8], De Giacomo et al. define a notion of bounded action theory
in the situation calculus, where the theory entails that in all situation-
s, the number of fluent atoms which hold is bounded by a constant,
and then prove that verification of an expressive class of first-order
μ-calculus temporal properties in such theories is decidable. Rough-
ly, they prove their result by focussing on the active domain of situa-
tions, i.e., the set of objects occurring in the extension of some fluent,

which is bounded. Essentially, they abstract situations whose active
domains are isomorphic into a single state, and by abstracting also
actions, they obtain an abstract finite transition system that satisfies
exactly the same formulas of their query language.

We strengthen the notion of bounded action theory with the further
restriction that the action theory should entail that in all situations,
the number of actions executable by any agent is bounded. By similar
ideas as in [8], we prove that verification of SL-like situation calculus
formulas in such theories is decidable. The further restriction is due
to the need of strategic reasoning.

We assume that there are no functions other than constants and
there are no situation-independent predicates, there is a finite set
F of relational fluents, and there is a finite set of action functions.
Moreover, we assume that the terms of the object sort are in fact a
countably infinite set N of standard names. We restrict our attention
to standard interpretations of the object sort, where there is a
bijection between the set of objects and N . As shown in [20], this
restriction can be captured by the set of unique name axioms for
constants in N , which we denote by Duno. We use D |=uno φ to
denote D ∪ Duno |= φ. We say that DS0 is a database, if it consists
of axioms, one for each fluent F , of the form ∀	x.F (x, S0) ≡ 	x =
	c1 ∨ . . . ∨ 	x = 	cm, where each 	ci is a vector of constants from N .

Definition 16 We say that an action theory D is strictly bounded by
a constant b if D entails that in any executable situation s, for each
fluent F , the number of F (x, s) which holds is less than b; and for
each agent i and each action type A, the number of Possi(A(x), s)
which holds is less than b.

We now define the class SL of SL-like situation calculus for-
mulas. Recall that in Definition 6, we define a translation function
T (ϕ, gall, s) which maps an SL formula ϕ into a situation calculus
formula. Firstly, we extend SL to SL+ so that in the base case, in-
stead of an atom p, we have a situation-suppressed sentence ϕ, which
we call a state sentence, and we let T (ϕ, gall, s)=ϕ[s]. Note that a
state sentence is a first-order sentence. Now we say φ is an SL-like
situation calculus formula if it is T (ϕ, gall, σ) for some SL+ formu-
la ϕ and situation term σ. Note that because of our extension of SL to
SL+, SL is more expressive than SL. Recall that if ϕ is a sentence,
then T (ϕ, gall, s) does not depend on gall and it does not have free
strategy variables. In this case, we simply write T (ϕ, gall, s) as ϕ[s].

Theorem 3 Verifying if D |=uno φ, where D is a strictly bounded
action theory with an initial database about S0, and φ is an SL-like
situation calculus sentence, is decidable.

We prove the theorem by showing that the verification problem can
be reduced to the model checking problem of SL, which is decidable
[29]. Suppose that D is a strictly bounded action theory with an initial
database, and ϕ is an SL+ sentence. Then D has a unique standard
model M whose domain for the object (resp. situation) sort is N
(resp. S). Thus D |=uno ϕ[S0] iff M |= ϕ[S0]. The following are
the main steps of the proof.

1. M induces a concurrent transition system G with an infinite num-
ber of states, each of which is associated with a first-order struc-
ture with domain N s.t. M satisfies ϕ[S0] iff G satisfies ϕ.

2. ϕ̂ is constructed from ϕ via converting each state sentence of ϕ
into an equivalent domain-independent one.

3. Based on D, a finite domain �̂ ⊆ N can be constructed, and
G can be abstracted into a concurrent transition system Ĝ with a
finite number of states each of which is associated with a first-
order structure with domain �̂ s.t. G satisfies ϕ iff Ĝ satisfies ϕ̂.
Note that Ĝ can be directly constructed from D.

L. Xiong and Y. Liu / Strategy Representation and Reasoning in the Situation Calculus988

4. By using the domain �̂, Ĝ can be ground into a CGS, and ϕ̂ can
be ground into an SL sentence, hence whether Ĝ satisfies ϕ̂ can be
checked via SL model checking.
Firstly, we observe that the evaluation of any ϕ(x, s), a uniform

FO formula of the situation calculus, does not depend on s, but on-
ly on the corresponding interpretation Is = 〈�, ·Is〉 of F . For any
fluent F in F , F Is = {	u | M |= F (u, s)}. By successor state ax-
ioms, for any joint action d, if Is1 = Is2 , then Ido(d,s1) = Ido(d,s2).
For any joint action d, by operating on Is, we evaluate the situation-
suppressed successor states axioms to generate another Ido(d,s).

After this, considering all situations in S and joint actions, we
can define a CGS-like system CGS G = 〈�, Q, q0, {κi}i∈AG, τ, λ〉.
Here the object domain is �= N ; Q = S; q0 is just S0; κi is a
function mapping a state to a set of actions which can be execut-
ed by agent i in the state, here κi(s) is bounded; τ is a transition
function τ(s, d) = s′ iff s′ = doM(d, s), and di ∈ κi(s); and
λ : Q → IntF� is the function λ(s) = Is. G retains all the infor-
mation necessary to evaluate Φ on M. Next the semantics of SL+

according to CGSs is defined as in Definition 3 except for the state
sentence ϕ: G, χ, w |= ϕ iff λ(w) |= ϕ.

Lemma 2 If G is as above, then for any SL+ sentence ϕ, and the
corresponding SL sentence ϕ[S0], M |= ϕ[S0] iff G |= ϕ.

Thus, to check whether Duno |= ϕ[S0], we can check whether G |=
ϕ. However, the G is infinite. In the following, we should abstract
this G to a finite CGS Ĝ under the strict boundedness.

Let adom(I) denote the active domain of I , i.e., the set of all
objects occurring in some fluent extension F I . And denote by C ⊆
N the finite set of all constants, appearing in D. We say that I and J
are ad-isomorphism [8], if there exists a bijection i : adom(I)∪C →
adom(J) ∪ C, s.t., i(c) = c, c ∈ C, and 	o ∈ F I iff i(o) ∈ F J .
The notion of A-local-isomorphism ≈ is like local-isomorphism in
Definition 4, except that if two states are A-local-isomorphism, then
their corresponding interpretations should be ad-isomorphism, and in
any state, the bisimulation relations gi on actions are given for each
agent i, for instance, for s1 ≈ s2, for any a1 ∈ κi(s1), there is a
a2 ∈ κi(s2), such that (a1, a2) ∈ gi(s1, s2).

A first-order sentence ϕ is said to be domain-independent [1] if
for each interpretation I = 〈�, ·I〉, I |= ϕ iff Î |= ϕ, where Î =
〈adom(I), ·I〉. And an SL+ sentence is said domain-independent
if so are all of its first-order components. Then we can prove that
A-local-isomorphism CGSs preserve domain-independent SL+ sen-
tence as in [28].
Lemma 3 Given two A-local-isomorphism CGSs G,G′, and a
domain-independent SL+ sentence ϕ, G |= ϕ iff G′ |= ϕ.
In [25], Libkin shows, through syntactic manipulations, any FO
sentence ϕ can be effectively turned into a logically equivalent
domain-independent formula ϕ′. By adapting his approach to each
FO component of an SL sentence, we can generalise this result.
Lemma 4 For any SL sentence Φ, there exists a logically equiva-
lent domain-independent SL sentence Φ′.
Next, we construct the finite CGS abstraction Ĝ of the induced G as
the tuple 〈�̂, Q̂, q̂0, {κ̂i}i∈AG, τ̂ , λ̂〉. Here the finite object domain
is �̂ ⊂ N , satisfying C ⊆ �̂ and | �̂ |>| C | +β + nβ1 + η. Here
β = ΣF∈Fb · aF , with aF the arity of situation suppressed fluent F ,
to ensure A-local-isomorphism, each state of G must have a match-
ing ad-isomorphism state in Ĝ; β1 = ΣAb · aA, aA is the arity of
action function A; and η is the maximal number of distinct variables
occurring in the righthand side of action precondition and successor
state axioms to abstract all the possible combinations of the objects
used in some action, and mentioned in the axioms. Let q̂0 = 〈�, I0〉,

here � is a special symbol, and I0 = 〈�̂, ·I0〉 is a FO interpretation
over �̂. For any 	o ∈ �̂|�o|, and F ∈ F , 	o ∈ F I0 iff M0 |= F (o),
then in I0, by boundness, for each action type A(x) and agent i,
there exist bounded number instances 	o ∈ �̂|�x|, s.t., I0 |= φA,i(o),
here Possi(A(x), s) ≡ φA,i(x, s). So let A(o) ∈ κi(〈�, I0〉). And
there exist bounded executable joint actions for I0, after executing
each such d, we get another interpretation I , then we give another
state 〈d, I〉, and have τ̂(〈�, I0〉, d) = 〈d, I〉. By applying this
procedure recursively, due to the strictly boundness and �̂ finite, we
can generate all such finite 〈d, I〉, give κi and the transition function
τ̂ . Finally, define λ(〈d, I〉) = I . Then the property below holds.
Lemma 5 G and Ĝ are A-local-isomorphism.

In fact, when the initial situation is incomplete, the verification of
SL is also decidable. More details are referred to [8].

7 CONCLUSION

In this paper, by a simple extension of the situation calculus with a
strategy sort, we have developed a general framework for strategy
representation and reasoning for complete information games. We
have shown that Strategy Logic can be embedded into our frame-
work. The framework can be used to compactly represent both con-
current and turn-based possibly infinite game structures, specify the
structure of strategies, reason about strategies explicitly, and reason
about strategic abilities of coalitions under strategy specifications. In
a companion paper [46], we have extended this framework to deal
with strategic reasoning for incomplete information games.

Action formalisms like the situation calculus and modal logic-
s have been two main families of logics in AI. Van Benthem [40]
proposes the idea that the situation calculus and modal logics meet
and merge. Recent works in this direction, e.g., [27, 12], connec-
t dynamic epistemic logic to the situation calculus. Based on earlier
works, this paper presents another work in this line connecting s-
trategic logics to the situation calculus. Compared with modal logics
for strategic reasoning, the most distinguished feature of our work is
expressiveness and compactness in representing game structures and
strategies. Many of existing works based on multi-agent situation cal-
culus, e.g., [18, 4], are mainly concerned with epistemic reasoning.
Others [37, 14, 17, 10] deal with strategic reasoning, but they either
focus on different issues such as the computation of Nash equilibria
or the coordination problem or do not support ATL-like or SL-like
reasoning about strategies.

In this paper, we focus on the representation side of our strategy
formalism. From the reasoning side, our framework is highly unde-
cidable since it is based on an extension of the situation calculus with
a second-order strategy sort. Nonetheless, it can serve as the theoretic
foundation for strategy verification and synthesis based on first-order
theorem proving and fix-point computation techniques. In the soft-
ware engineering community, there has been considerable progress
on program verification via automatic discovery of loop invariants
[3, 15, 38]. In recent years, progress has also been made on automat-
ed reasoning in the situation calculus and automatic verification of
Golog programs [23, 24]. In the planning community, various tech-
niques such as generating and testing [21], and object abstraction
[39], have been developed for planning with loops. Inspired by these
works, we would like to explore automatic strategy verification and
synthesis.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for helpful comments. This work
received support from the Natural Science Foundation of China un-
der Grant No. 61572535.

L. Xiong and Y. Liu / Strategy Representation and Reasoning in the Situation Calculus 989

REFERENCES

[1] S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases,
Addison-Wesley, 1995.

[2] R. Alur, T.A. Henzinger, and O. Kupferman, ‘Alternating-time temporal
logic’, J. ACM, 49(5), 672–713, (2002).

[3] T. Ball, R. Majumdar, T.T. Millstein, and S.K. Rajamani, ‘Automatic
predicate abstraction of C programs’, in Proceedings of the ACM SIG-
PLAN Conference on Programming Language Design and Implemen-
tation (PLDI), pp. 203–213, (2001).

[4] V. Belle and G. Lakemeyer, ‘Reasoning about imperfect information
games in the epistemic situation calculus’, in Proc. of AAAI’2010.

[5] C.L. Bouton, ‘Nim, a game with a complete mathematical theory’, An-
nals of Mathematics, 3(1), 35–39, (1901).

[6] K. Chatterjee, T.A. Henzinger, and N. Piterman, ‘Strategy logic’, Inf.
Comput., 208(6), 677–693, (2010).

[7] G. De Giacomo, Y. Lespérance, and H.J. Levesque, ‘Congolog, a con-
current programming language based on the situation calculus’, Artif.
Intell., 121(1-2), 109–169, (2000).

[8] G. De Giacomo, Y. Lespérance, and F. Patrizi, ‘Bounded situation cal-
culus action theories and decidable verification’, in Proc. of KR’2012.

[9] G. De Giacomo, Y. Lespérance, and F. Patrizi, ‘Bounded situation cal-
culus action theories’, Artif. Intell., 237, 172–203, (2016).

[10] G. De Giacomo, Y. Lespérance, and A.R. Pearce, ‘Situation calculus
based programs for representing and reasoning about game structures’,
in Proc. of KR’2010.

[11] G. De Giacomo, Y. Lespérance, and A.R. Pearce, ‘Synchronous games
in the situation calculus’, in Proc. of AAMAS’2015.

[12] L. Fang and Y. Liu, ‘Multiagent knowledge and belief change in the
situation calculus’, in Proc. of AAAI’2013.

[13] T.S. Ferguson, Game Theory, UCLA, 2008.
[14] A. Finzi and T. Lukasiewicz, ‘Game-theoretic agent programming in

golog’, in Proc. of ECAI’2004.
[15] C. Flanagan and S. Qadeer, ‘Predicate abstraction for software veri-

fication’, in Conference Record of POPL 2002: The 29th SIGPLAN-
SIGACT Symposium on Principles of Programming Languages.

[16] M.R. Genesereth, N Love, and B Pell, ‘General game playing:
Overview of the AAAI competition’, AI Magazine, 26(2), 62–72,
(2005).

[17] H Ghaderi, H.J. Levesque, and Y. Lespérance, ‘A logical theory of co-
ordination and joint ability’, in Proc. of AAAI’2007.

[18] R.F. Kelly and A.R. Pearce, ‘Asynchronous knowledge with hidden ac-
tions in the situation calculus’, Artif. Intell., 221, 1–35, (2015).

[19] Y. Lespérance, H.J. Levesque, F. Lin, and R.B. Scherl, ‘Ability and
knowing how in the situation calculus’, Studia Logica, 66(1), 165–186,
(2000).

[20] H.J. Levesque, ‘A completeness result for reasoning with incomplete
first-order knowledge bases’, in Proc. of KR’1998.

[21] H.J. Levesque, ‘Planning with loops’, in Proc. of IJCAI’2005.
[22] H.J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R.B. Scherl,

‘GOLOG: A logic programming language for dynamic domains’, J.
Log. Program., 31(1-3), 59–83, (1997).

[23] N. Li, Y. Fan, and Y. Liu, ‘Reasoning about state constraints in the
situation calculus’, in Proc. of IJCAI’2013.

[24] N. Li and Y. Liu, ‘Automatic verification of partial correctness of golog
programs’, in Proc. of IJCAI’2015.

[25] L. Libkin, ‘Embedded finite models and constraint databases’, in In
Finite Model Theory and Its Applications, 257–338, Springer, (2007).

[26] F. Lin and H.J. Levesque, ‘What robots can do: Robot programs and
effective achievability’, Artif. Intell., 101(1-2), 201–226, (1998).

[27] Y. Liu and H.J. Levesque, ‘Incorporating action models into the situa-
tion calculus’, in Johan van Benthem on Logic and Information Dynam-
ics, Outstanding Contributions to Logic, eds., Alexandru Baltag and
Sonja Smets, volume 5, chapter 21, 569–590, Springer, (2014).

[28] F. Mogavero, Logics in Computer Science - A Study on Extensions of
Temporal and Strategic Logics, volume 3 of Atlantis Studies in Com-
puting, Atlantis Press, 2013.

[29] F. Mogavero, A. Murano, G. Perelli, and M.Y. Vardi, ‘Reasoning about
strategies: On the model-checking problem’, ACM Trans. Comput.
Log., 15(4), 34:1–34:47, (2014).

[30] F. Mogavero, A. Murano, and M.Y. Vardi, ‘Reasoning about strategies’,
in Proc. of FSTTCS’2010.

[31] R.J. Nowakowski, Games of No Chance, Cambridge University Press,
1998.

[32] A. Pnueli, ‘The temporal logic of programs’, in Proc. of FOCS’1977.
[33] R. Ramanujam and S.E. Simon, ‘Dynamic logic on games with struc-

tured strategies’, in Proc. of KR’2008.
[34] R. Reiter, Knowledge in Action: Logical Foundations for Specifying and

Implementing Dynamical Systems, The MIT Press, 2001.
[35] S. Schiffel and M. Thielscher, ‘Reasoning about general games de-

scribed in GDL-II’, in Proc. of AAAI’2011.
[36] S. Schiffel and M. Thielscher, ‘Representing and reasoning about the

rules of general games with imperfect information’, J. Artif. Intell. Res.,
49, 171–206, (2014).

[37] O. Schulte and J.P. Delgrande, ‘Representing von neumann-
morgenstern games in the situation calculus’, Ann. Math. Artif. Intell.,
42(1-3), 73–101, (2004).

[38] S. Srivastava and S. Gulwani, ‘Program verification using templates
over predicate abstraction’, in Proc. of PLDI’2009.

[39] S. Srivastava, N. Immerman, and S. Zilberstein, ‘A new representa-
tion and associated algorithms for generalized planning’, Artif. Intell.,
175(2), 615–647, (2011).

[40] J. van Benthem, ‘Mccarthy variations in a modal key’, Artif. Intell.,
175(1), 428–439, (2011).

[41] J. van Benthem, ‘Reasoning about strategies’, in Computation, Log-
ic, Games, and Quantum Foundations. The Many Facets of Samson
Abramsky - Essays Dedicated to Samson Abramsky on the Occasion
of His 60th Birthday, pp. 336–347, (2013).

[42] J. van Benthem, Logic in Games, The MIT Press, 2014.
[43] W. van der Hoek, W. Jamroga, and M. Wooldridge, ‘A logic for strategic

reasoning’, in Proc. of AAMAS’2005.
[44] J. van Eijck, ‘PDL as a multi-agent strategy logic’, in Proc. of

TARK’2013.
[45] D Walther, W van der Hoek, and M. Wooldridge, ‘Alternating-time tem-

poral logic with explicit strategies’, in Proc. of TARK’2007.
[46] L. Xiong and Y. Liu, ‘Strategy representation and reasoning for incom-

plete information concurrent games in the situation calculus’, in Proc.
of IJCAI’2016.

[47] D. Zhang and M. Thielscher, ‘A logic for reasoning about game strate-
gies’, in Proc. of AAAI’2015.

[48] D. Zhang and M. Thielscher, ‘Representing and reasoning about game
strategies’, J. Philosophical Logic, 44(2), 203–236, (2015).

L. Xiong and Y. Liu / Strategy Representation and Reasoning in the Situation Calculus990

