
Automatic Verification of Golog Programs
via Predicate Abstraction

Peiming Mo and Naiqi Li and Yongmei Liu1

Abstract. Golog is a logic programming language for high-level
agent control. In a recent paper, we proposed a sound but incomplete
method for automatic verification of partial correctness of Golog
programs where we give a number of heuristic methods to strengthen
given formulas in order to discover loop invariants. However, our
method does not work on arithmetic domains. On the other hand,
the method of predicate abstraction is widely used in the software
engineering community for model checking and partial correctness
verification of programs. Intuitively, the predicate abstraction task
is to find a formula consisting of a given set of predicates to
approximate a given first-order formula. In this paper, we propose
a method for automatic verification of partial correctness of Golog
programs which use predicate abstraction as a uniform method to
strengthen given formulas. We implement a system based on the
proposed method, conduct experiments on arithmetical domains and
examples from the paper by Li and Liu. Also, we apply our method
to the verification of winning strategies for combinatorial games.

1 Introduction

Among the various AI approaches, high-level programming tries to
enable agents to understand and follow human’s high-level instruc-
tions, and thus process intelligent behaviours. In the programming
language Golog [12], the idea of high-level control is embodied in
the statements of nondeterministic choices of actions and arguments,
based on which the concrete actions to be performed are automati-
cally generated by the interpreter. For robot programs which are ex-
pected to terminate, their partial correctness naturally becomes an
important concern. Roughly speaking, a program is partially correct
if desirable properties hold when it terminates on the condition that
some properties hold before the execution of the program.

In a recent paper [13], we proposed a sound but incomplete
method for automatic verification of partial correctness of Golog pro-
grams where we give a number of heuristic methods to strengthen
given formulas in order to discover loop invariants. In our paper, the
verification of Golog programs is achieved by the extended regres-
sion operator, which has a property similar to that of regression in
the situation calculus: a formula holds after a program is executed,
if its extended regression holds before the execution. With extended
regression, we reduce partial correctness verification to a first-order
theorem-proving task. When extended regression is applied to a loop
statement, our method will repeatedly try to strengthen a candidate
formula until it becomes a loop invariant. However, the heuristics
that we developed to strengthen given formulas appear to be quite
nonuniform, and our method does not work on arithmetic domains.
1 Dept. of Computer Science, Sun Yat-sen University, China, e-

mail: mopeim3@mail2.sysu.edu.cn & linaiqi@mail2.sysu.edu.cn & ymli-
u@mail.sysu.edu.cn.

On the other hand, the method of predicate abstraction is widely
used in the software engineering community for model checking and
partial correctness verification of programs. Intuitively, the predicate
abstraction task is to find a formula consisting of a given set of pred-
icates to approximate a given first-order formula. The main practical
problem in model checking is the state explosion problem, and pred-
icate abstraction has been successfully used by Ball et al. [2], Clarke
et al. [3, 4], etc, in reducing the size of the state space via capturing
only relevant features. The most difficult step for partial correctness
verification is to discover a proper loop invariant for each loop state-
ment. While the search space of invariants is generally infinite, the
technique of predicate abstraction tries to approximate the intended
invariant based on a finite set of predicates, and thus the search space
becomes finite. Flanagan and Qadeer [9] propose a heuristic method
to generate appropriate predicates for each program loop, and then
use these predicates to infer the loop invariants. According to their
experimental results, predicate abstraction can lead to a very effec-
tive verification system, which can infer the necessary invariants for
all except 31 of the 396 routines in a 44,380 LOC program within one
hour. Srivastava and Gulwani [17] combine templates and predicate
verification to infer very expressive loop invariants.

There are also a few works about the verification of Golog pro-
grams. Liu [14] presents a Hoare-style proof system for partial cor-
rectness of Golog programs. In [5], Claßen and Lakemeyer propose a
logic based on the situation calculus variant called ES to verify tem-
poral properties of non-terminating Golog programs, and this line of
research is continued by some recent publications [6, 19]. However,
notably, all these works are mainly theoretic studies.

In this paper, we propose a method for automatic verification of
partial correctness of Golog programs which uses predicate abstrac-
tion as a uniform method to strengthen given formulas. Specifically,
the predicate abstraction method is used when a loop is being re-
gressed. Obtaining the extended regression of a loop is equivalent
to discovering a proper loop invariant, and we follow the idea pro-
posed in [13]: start from an initial formula, and then repeatedly try to
strengthen it until it becomes a loop invariant. While in that paper, the
proper loop invariants are generated by handcrafted heuristics, in this
paper we try to discover them by the method of predicate abstraction.

We also make use of small models and the technique of small mod-
el progression as in the previous paper. Intuitively, small models can
be viewed as possible program states during the execution. Given a
set of initial small models, which can be viewed as some initial test
inputs, small model progression will run the given Golog program
on the small models and thus associate a set of possible states with
each loop statement. The associated small models can accelerate the
process of predicate abstraction: if a candidate formula generated by
the predicate abstraction is not satisfied by some of the small model-

ECAI 2016
G.A. Kaminka et al. (Eds.)

© 2016 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-672-9-760

760

s, it is not a proper loop invariant and can be discarded immediately.
It is important to emphasize that although our method makes use of
small models, it is still capable of verifying properties of programs
over arbitrarily large finite domains and even infinite domains. The
reason is that small models only serve for the purpose of filtering out
formulas which cannot be loop invariants, and we need to resort to
first-order theorem-proving to verify a formula is a loop invariant.
This also makes our work fundamentally different from the method
of model checking, where the systems being verified must be finite.

We implement a verification system based on the proposed method
and conduct a set of experiments on it. Experimental results show
that our method can prove all the Hoare-triples reported in [13]. The
potential of our approach is further demonstrated by experiments on
some other domains that involves functions and arithmetical loop in-
variants. We also apply our system to verify properties of strategies
in two famous games Pick-up Stone and Chomp, in which the ver-
ification of winning strategies is reduced to the verification of partial
correctness of Golog programs.

The paper is organized as follows. In Section 2, we will intro-
duce some background knowledge of our work. In Section 3, we will
present the related concepts of predicate abstraction, and how to use
them to infer loop invariants and thus verify the given Golog pro-
grams. In Section 4, we will discuss some technical details. Section
5 will present our experimental results in both arithmetical and non-
arithmetical domains. In Section 6 we will show how to apply our
method to verify game properties. Finally we will conclude this pa-
per with a summary of contributions and a discussion of future work.

2 Preliminaries

In this section, we will first introduce the preliminaries knowledge.
Then we will define Golog program and its partial correctness. In
the third subsection we will discuss extended regression, which is
introduced in our previous work and will play an important role in
this paper. Finally we will introduce small model and its progression.

2.1 The Situation Calculus

The situation calculus [16] is a second-order language specifically
designed for representing dynamic worlds. It includes a binary
predicate s � s′ meaning that situation s is a subhistory of situation
s′; a binary predicate Poss(a, s) meaning that action a is possible
in situation s; a countable set of action functions, e.g., move(x, y);
a countable set of relational fluents, i.e., predicates taking a situation
term as their last argument, e.g., ontable(x, s); and a countable set
of functional fluents, i.e., functions taking a situation term as their
last argument, e.g., height(x, s) = y.

Often, we need to restrict our attention to formulas that do not
refer to any situations other than a particular one τ , and we call such
formulas uniform in τ . We use φ(τ) to denote that φ is uniform
in τ . We call a uniform formula φ with all situation arguments
eliminated a situation-suppressed formula, and use φ[s] to denote
the uniform formula with all situation arguments restored with term
s. A situation s is executable if it is possible to perform the actions
in s one by one: Exec(s)

.
= ∀a, s′.do(a, s′) � s ⊃ Poss(a, s′).

In the situation calculus, a particular domain of application is
specified by a basic action theory (BAT) of the form:
D = Σ ∪ Dap ∪ Dss ∪ Duna ∪ DS0 ,where

1. Σ is the set of the foundational axioms for situations.

2. Dap contains a single precondition axiom of the form
Poss(a, s) ≡ Π(a, s), where Π(a, s) is uniform in s.

3. Dss is a set of successor state axioms (SSAs).
For each relational fluent F :
F (�x, do(a, s)) ≡ ΦF (�x, a, s),
For each functional fluent f :
f(�x, do(a, s)) = y ≡ Φf (�x, y, a, s),
where ΦF (�x, a, s) and Φf (�x, y, a, s) are uniform in s.

4. Duna is the set of unique names axioms for actions.

5. DS0 , the initial KB, is a set of sentences uniform in S0.

In the situation calculus, state constraints are formulas that hold
true in every executable situation. We follow the definition of state
constraints in [16].

Definition 1 (state constraint) Given a BAT D and a formula φ(s),
φ(s) is a state constraint for D if D |= ∀s.Exec(s) ⊃ φ(s).

We use DSC to denote a set of verified state constraints, and abuse
DSC as its conjunction.

Regression is an important computational mechanism for reason-
ing about actions and their effects, and here we present the one step
regression operator and a simple form of the regression theorem
stated in [13], and we add the functional regression in the definition.

Definition 2 We use RD[φ] to denote the formula obtained from φ
by the following steps:

1. Replace each functional fluent atom f(�t, do(α, σ)) with
(∃y).Φf (�t, y, α, σ) ∧ φ[f(�t, do(α, σ))/y], where φ[x/y] means
that all x’s in φ are replaced by y.

2. Replace each relational fluent atom F (�t, do(α, σ)) with
ΦF (�t, α, σ).

3. Replace each precondition atom Poss(α, σ) with Π(α, σ), and
further simplify the result by using Duna.

Theorem 1 If RD[φ] is the formula regressed from φ, then D |=
φ ≡ RD[φ] holds.

2.2 Golog Programs and Partial Correctness

The formal semantics of Golog is specified by an abbreviation
Do(δ, s, s′), which is inductively defined as follows:

1. Primitive actions: For any action term α,
Do(α, s, s′)

.
= Poss(α, s) ∧ s′ = do(α, s).

2. Test actions: For any situation-suppressed formula φ,
Do(φ?, s, s′)

.
= φ[s] ∧ s = s′.

3. Sequence:
Do(δ1; δ2, s, s

′)
.
= ∃s′′.Do(δ1, s, s

′′) ∧Do(δ2, s
′′, s′).

4. Nondeterministic choice of two actions:
Do(δ1|δ2, s, s′) .

= Do(δ1, s, s
′) ∨Do(δ2, s, s

′).

5. Nondeterministic choice of action arguments:
Do((πx)δ(x), s, s′)

.
= (∃x)Do(δ(x), s, s′).

6. Nondeterministic iteration:
Do(δ∗, s, s′)

.
= (∀P).{(∀s1)P (s1, s1) ∧ (∀s1, s2, s3)

[P (s1, s2) ∧Do(δ, s2, s3) ⊃ P (s1, s3)]} ⊃ P (s, s′).

Conditionals and loops are defined as abbreviations:

P. Mo et al. / Automatic Verification of Golog Programs via Predicate Abstraction 761

if φ then δ1 else δ2 fi ≡ [φ?; δ1]|[¬φ?; δ2],
while φ do δ od ≡ [φ?; δ]∗;¬φ?.
Then, the partial correctness of a Hoare triple is defined as below:

Definition 3 A Hoare-triple is of the form {P}δ{Q}, where P and
Q are situation-suppressed formulas, and δ is a Golog program. A
Hoare-triple {P}δ{Q} is said to be partially correct wrt D if D |=
∀s, s′.P [s] ∧Do(δ, s, s′) ⊃ Q[s′].

2.3 Extended Regression

Li and Liu [13] extended the regression of primitive actions to that
of programs, which is called extended regression:

Definition 4 Given D and DSC , the extended regression of formula
φ(s) wrt program δ, denoted as R̂D[φ(s), δ], is defined as follows:

• R̂D[φ(s), α] = RD(Poss(α, s) ⊃ φ(do(α, s))).

• R̂D[φ(s), ψ?] = ψ[s] ⊃ φ(s).

• R̂D[φ(s), δ1; δ2] = R̂D[R̂D[φ(s), δ2], δ1].

• R̂D[φ(s), δ1|δ2] = R̂D[φ(s), δ1] ∧ R̂D[φ(s), δ2].

• R̂D[φ(s), (πx)δ(x)] = (∀x)R̂D[φ(s), δ(x)].

• R̂D[φ(s),while ϕ do δ od] is a formula (denoted as η(s)) satis-
fying the following two conditions:

1. |=FOL ∀s.η(s) ∧ ϕ[s] ∧ DSC ⊃ R̂D[η(s), δ].

2. |=FOL ∀s.η(s) ∧ DSC ⊃ φ(s) ∨ ϕ[s].

Intuitively, in the definition of loop statement the first condition
ensures the regression is a loop invariant, and the second condition
guarantees this invariant is strong enough to entail the formula being
regressed when the loop ends.

In the situation calculus, a formula holds after a sequence of
actions are performed iff its regression can be entailed by the initial
knowledge base. The extended regression has a similar property [13]:

Theorem 2 A Hoare-triple {P}δ{Q} is partially correct wrt D, if
DSC is a set of verified state constraints, and |=FOL ∀s.P [s]∧DSC ⊃
R̂D[Q[s], δ].

2.4 Small Model Progression

As aforementioned, small models can be viewed as possible program
states during the execution. In this paper, a small model is represent-
ed as a finite set of ground atoms that excludes arithmetical relations.
We also make the closed world assumptions to our small models,
which means that any non-arithmetical relation that does not appear
is regarded as false.

Li and Liu [13] present the notion of small model progression, and
use progS [M,α] to denote the new model generated by updating
small model M according to primitive action α, prog[M, δ] to
denote a set of small models resulting from the progression of M
wrt program δ. In this paper, the initial small models are provided
by hand for the reason of convenience.

Definition 5 We assume the ground terms are all constants from a
finite set D. Given a small model M and a program δ, the progression
of M wrt δ, denoted as prog[M, δ], results in a set of small models:

• prog[M,α] = 1. ∅ if M [s] �|= Poss(α, s).
2. {progS [M,α]} if M [s] |= Poss(α, s).

• prog[M,ψ?] = 1. ∅ if M [s] �|= ψ[s].
2. {M} if M [s] |= ψ[s].

• prog[M, δ1; δ2] = prog[prog[M, δ1], δ2].

• prog[M, δ1|δ2] = prog[M, δ1] ∪ prog[M, δ2].

• prog[M, (πx)δ(x)] =
⋃
{prog[M, δ(c)]|c ∈ D}.

• prog[M, δ∗] =
⋃

n≥0
prog[M, δn], where δn is an abbreviation

of jointing n copies of δ sequentially.

When M is a set of small models, we define
prog[M, δ] =

⋃
{M′|M ∈ M, prog[M, δ] = M′}.

When progressing wrt a loop the computation may n-
ever stop. In practice we preset a constant K, and let
prog[M, δ∗] =

⋃K

n=0
prog[M, δn].

The first usage of prog[M, δ] in our methods is that they can infor-
m us the Hoare triple {P}δ{Q} is not partial correct before starting
the static analyses, which derives from the following theorem [13]:

Theorem 3 If a Hoare-triple {P}δ{Q} is partially correct, and M
is a small model that M [s] |= P [s] ∧ DSC , then for all M ′ ∈
prog[M, δ] we have M ′[s] |= Q[s], where M [s] is a small model
with situation s restored.

Besides, the small models can largely improve the efficiency of
predicate abstraction because we use the small models to filter the
wrong candidates before calling an SMT solver in the process of
predicate abstraction. We can see these details in the next section.

3 Infer Invariants via Predicate Abstraction

In this section, we will first introduce the standard predicate abstrac-
tion, and how we adapt it to the bounded predicate abstraction to
serve our purpose. And then we will present a concrete algorithm to
compute the bounded predicate abstraction. Finally, we will see how
it is used to discover loop invariants and thus verify the Hoare-triple.

The definition of standard predicate abstraction we use is the one
presented in [9]:

Definition 6 (Standard Predicate Abstraction) Given a set of
predicates P = {p1, ..., pn}, for any formula Q, its abstraction
α(Q) is defined as the strongest boolean combination on P such that
Q ⊃ α(Q) is valid.

Now we present the predicate abstraction defined in our paper, and
discuss how it is different from the standard one.

We say a formula φ is a ∀∗∃∗ formula, if φ is of the form
∀x1...∀xn∃y1...∃ymψ, where n,m ≥ 0 and ψ is a quantifier-free
formula.
Definition 7 (Predicate Abstraction) Given a set of predicate P , a
formula φ, and a set of small models M, we say a formula ∀∗∃∗C is
the predicate abstraction of φ and M under P , if C is a clause over
P s.t. M |= ∀∗∃∗C and DSC |= ∀∗∃∗C ⊃ φ, and there is no shorter
clause C′ over P s.t. ∀∗∃∗C′ satisfies these conditions.

The predicate abstraction we developed differs from the standard
one in the following ways: 1. in the standard predicate abstraction all
free variables in α(Q) are implicitly regarded as universally quan-
tified, but in our definition both universal and existential quantifiers
are possible; 2. the predicate abstraction in our approach results in a
quantified clause, while the standard predicate abstraction results in

P. Mo et al. / Automatic Verification of Golog Programs via Predicate Abstraction762

a formula; 3. the conditions in our definition are different from that
in the standard definition.

The concept of predicate abstraction is already enough to solve
many non-arithmetical verification problems. But during our re-
search we observe that many loop invariants in arithmetical domains
are of a particular form, which inspires us a more general definition.

Definition 8 (Bounded Predicate Abstraction) Let Fun0 and
Const denote the sets of 0-ary functional fluents and constants
respectively, and P , φ and M as before. A bounded predi-
cate abstraction of φ and M under P is a formula of the form
ϕ = ∀∗∃∗bound(�x) ⊃ C(�x) s.t. M |= ϕ and DSC |= ϕ ⊃ φ,
where C(�x) is a clause over P , and bound(�x) is of the form∧

i
lbi ≤ xi ≤ hbi where lbi, hbi ∈ {�x} ∪ Fun0 ∪ Const.

There is no shorter C′(�x) s.t. it has a bound that makes
∀∗∃∗bound′(�x) ⊃ C′(�x) satisfy these conditions.

In the algorithms below, we assume that D and DSC are given
without providing them in the arguments explicitly.

Algorithm 1 is used to compute the bounded predicate abstrac-
tion. In our implementation, we only consider ∀∗ and ∀∗∃ formulas
because of efficiency. The idea is quite simple: we enumerate claus-
es from short ones to long ones, and then enumerate the different
combinations of the quantifiers, until a formula that satisfies the con-
ditions is found. In line 5, the algorithm calls an SMT solver to check
whether the first-order entailment does hold (an SMT solver can de-
cide whether a first-order formula is satisfiable with respect to some
background theory such as linear arithmetic). If the SMT solver does
not terminate in a given time, we treat the result as false. Similar
cases are treated in the same way during algorithms 2 and 3.

Algorithm 1: boundPA(φ,M,P)

Input: φ - formula to be strengthened; M - the set of small
models; P the set of predicate candidates

Output: The bounded predicate abstraction ϕ′

1 repeat Enumerate a clause C(�x) over P (enumerate from short
ones to long ones)

2 repeat Enumerate a bound bound(�x)
3 Let ϕ = bound(�x) ⊃ C(�x)
4 repeat Enumerate ϕ′ as ∀∗ϕ or ∀∗∃ϕ
5 if M |= ϕ′ and DSC |= ϕ′ ⊃ φ then

6 return ϕ′

7 return false

Next we will see how to apply the bounded predicate abstraction
to strengthen a formula into loop invariant. The procedure infer
listed as Algorithm 2 is similar to the corresponding algorithm in
[13]. It is used to infer a loop invariant when a loop statement is
being regressed.

In Algorithm 2, we use the association function asso(δl) to map
each loop statement δl to a set of small models M. Intuitively M is
the set of small models that are progressed to the beginning of the
loop. For every loop, the loop invariant should be satisfied by all the
associated small models. In Line 2, we will first discover a set of lin-
ear and inequality invariants Δinv with a high efficient method, the
detail of which will be discussed in the next section. The idea here is
to discover the simple linear and inequality invariants first, and then
use them to discover the difficult ones later. In Line 3, we start with
the candidate loop invariant as φ(s) ∨ ϕ[s], and we try to repeatedly

Algorithm 2: infer(φ(s), δl, asso)

Input: φ(s) - formula being regressed; δl - loop statement being
regressed; asso - maps each while construct to a set of
small models

Output: A loop invariant for δl.
1 Let δl = while ϕ do δ od

2 Δinv ← getLinearInvs(δl, asso(δl))
3 η(s) ← φ(s) ∨ ϕ[s];counter ← 0
4 while counter < K do

5 counter ← counter + 1

6 reg(s) ← R̂D(η(s), δ)
7 if |=FOL η(s) ∧ ϕ[s] ∧ DSC ∧Δinv ⊃ reg(s) then

8 return η(s) ∧Δinvs

9 Let reg(s) ≡ A1(s) ∧ ... ∧An(s), choose a Ai(s) s.t.
�|=FOL η(s) ∧ ϕ[s] ∧ DSC ⊃ Ai(s)

10 P ← genPredicate(Ai(s), δl)
11 ϕ(s) ← boundPA(Ai(s), asso(δl),P)
12 if ϕ(s) = ∅ then

13 return unknown

14 η(s) ← η(s) ∧ ϕ(s)

15 return unknown

strengthen it until it becomes an invariant in the following loop. In the
following loop that starts from Line 4, the variable counter and a p-
reset constant K are used to make sure that the procedure always ter-
minates (with the premise that the underlying theorem prover always
terminates). In each iteration, if the regressed result can be entailed
at Line 7, we return η(s) ∧ Δinvs as the loop invariant. If the en-
tailment cannot be proved, in Line 9 we select one of the unentailed
conjunct Ai(s), and then use the information of Ai(s) and the loop
δl to generate a predicate set P . Line 11 is our abstraction algorith-
m. If the abstraction result is empty, it means the predicate set P we
generated is not precise or the Hoare-triple is wrong, then we return
unknown in Line 13 under that situation, else we apply the predicate
abstraction on it to obtain a strengthening at Line 14. The bounded
predicate abstraction requires a set of small models and a set of pred-
icate candidates. The set of small models is retrieved from the asso
function, and the predicate candidates are automatically generated in
Line 10. We will discuss how to generate predicates in further details
in the next section.

Finally a Hoare-triple is verified by the following main algorithm,
which can be regarded as a simplified version of the main algorithm
in [13]. Intuitively, the main algorithm will first try to use small mod-
els and progression to find a counterexample. If no counterexample
is found, it will apply the extended regression and reduce the verifi-
cation problem to first-order entailment problem. If all such attempts
fail, the algorithm simply returns non-deter. In this algorithm, the
procedure prog is almost the same as the definition of small mod-
el progression, except that it also updates the association function
during the process. The procedure returns no if a counterexample is
found at Line 3, and returns yes if the regressed result can be entailed
by the precondition. For other cases, the system returns non-deter.

Theorem 4 veri(P, δ,Q,M) returns yes only if {P}δ{Q} is par-
tial correct; returns no only if {P}δ{Q} is not partially correct.

Proof: Firstly, if veri(P, δ,Q,M) returns yes, it means that |=FOL
∀s.P [s]∧DSC ⊃ reg(s). Then according to Theorems 2, {P}δ{Q}

P. Mo et al. / Automatic Verification of Golog Programs via Predicate Abstraction 763

Algorithm 3: veri(P, δ,Q,M)

Input: Hoare-triple {P}δ{Q}; M - initial small models that
satisfy P and DSC .

Output: Returns yes if Hoare-triple is proved to be correct;
returns no if Hoare-triple is proved to be wrong;
otherwise returns non-deter

1 Let asso maps each while construct in δ to ∅
2 〈M′, asso〉 ← prog(M, δ, asso)
3 if ∃M ′ ∈ M′ s.t. M ′[s] �|= Q[s] then return no

4 reg(s) ← R̂D(Q[s], δ, asso)
5 if |=FOL ∀s.P [s] ∧ DSC ⊃ reg(s) then return yes
6 return non-deter

is partial correct. Secondly, according to Theorems 3, if {P}δ{Q} is
partial correct, then ∀M ′ ∈ M′ we should have M ′[s] |= Q[s]
(we guarantee that all initial small models satisfy P and DSC). So if
∃M ′ ∈ M′ s.t. M ′[s] �|= Q[s], then {P}δ{Q} is not partial correct.

4 Technical Details

In this section, we will discuss some technical issues of our algo-
rithm in further details. Firstly we will show how to generate predi-
cate candidates. Secondly we will discuss the bound generation and
disturbance problem. Finally we will present a method to efficiently
discover linear and inequalities loop invariants.

4.1 Generate Predicate Candidates

The success of Algorithm 1 largely depends on the given predicate
candidates. The following shows how we generate this set.

Let p be a predicate symbol with k arguments. We say a ground
atom p(t1, ..., tk) is a predicate candidate, where t1, ..., tk are terms.
Our system will automatically generate a set of predicate candidates
and use them in the predicate abstraction.

We use genPredicate(φ, δl) to denote the set of predicate candi-
dates generated by the formula φ and the loop statement δl. Intuitive-
ly, formula φ is the formula being abstracted and δl is the loop being
regressed. Suppose the Hoare-triple being verified is {P}δ{Q}, we
regard formulas P and Q as globally accessible and will use them in
the generation process. The set of predicate candidates is computed
in the following steps:

1. Initialize P as an empty set.
2. P ← P ∪ {p|p is a predicate appears in P,Q or φ}.
3. P ← P ∪ {p|ψ? is a test action in δl and p is a predicate in ψ}.
4. Suppose that the predicate candidates generated in the previous

steps are P = {p1(�t1), ..., pn(�tn)}. We collect all the terms
that appear as arguments of some predicates, which is T ←
{t|∃pi(�ti) ∈ P.t ∈ �ti}.

5. The final set of predicate candidates is P ′ ← {pi(�ti
′
)|�ti

′ ∈ T }.

Example 1 Suppose that the predicates generated in the first three
steps are {in(x, f(y)), x < f(y)}. The set of terms is {x, f(y)},
so we will generate {in(x, x), in(x, f(y)), in(f(y), x), f(y) <
x, x < f(y), in(f(y), f(y))} as the set of new predicates. Theo-
retically x < x and f(y) < f(y) should also be generated, but with
the knowledge of mathematics it is easy to verified that they are e-
quivalent to false, so we will remove them during the process.

4.2 Generate Bounds

When generating bounds in the process of bounded predicate abstrac-
tion, there are two problems worth noting. The first problem is how
to construct the set Const as the constants being enumerated. The
second problem is that in most verifications, the bounds will be ‘dis-
turbed’ so we also need to consider the disturbance of bounds.

Recall that in bounded predicate abstraction, a bound is of the for-
m
∧

i
lbi ≤ xi ≤ hbi where lbi, hbi ∈ {�x}∪Fun0∪Const. In this

formula, {�x} and the set of 0-ary functional fluents Fun0 can be ob-
tained from the clause C(�x) and the domain description respectively.
However, it is impossible to construct Const as all the constants in
the domain, since the set of constants may be huge or even infinite. In
order to restrict the number of bounds being enumerated, we heuris-
tically assign different variables with different sets of Const, and
make use of the information in the small models. The approach can
be better demonstrated by the example below.

Example 2 Suppose the clause C(�x) = vis(x, y), and the
associated small models of the loop that being regressed is
{vis(1, 1), vis(1, 2), vis(1, 3), vis(2, 1), vis(2, 2), vis(2, 3)}.
Variable x is the first argument of predicate vis, and from the small
model we know the range of the first argument of predicate vis
is [1, 2]. So for variable x, we will construct its Const as {1, 2}.
Similarly, for variable y its Const is {1, 3}. As a result, the bounded
predicate abstraction method will finally generate formulas like
∀x, y.1 ≤ x ≤ 2 ∧ 1 ≤ y ≤ 3 ⊃ vis(x, y).

Another problem is the disturbance of the bounds. In many verifi-
cations, the actually desired bound may be just a little different from
that generated by the previous method. For example, we may gener-
ate 0 ≤ x ≤ xpos, while the desired bound is 1 ≤ x ≤ xpos + 1.
In order to enable our system discover such bounds, we will also
enumerate bounds with disturbance ±k, where k is a small constan-
t, but we replace k with 1 under the consideration of efficiency and
experience. To put it more formally, if lbi ≤ x ≤ hbi is enumerat-
ed by the previous method, we will also enumerate other 4 bounds
lbi ± 1 ≤ x ≤ hbi ± 1 as its disturbance.

4.3 Discover Linear Relations and Inequalities

To further improve the performance, we treat the loop invariants that
are linear relations and inequalities specially. In the software engi-
neering community, there are many available works on efficiently
discovering linear and inequality invariants, such as [8] and [18].

Since the linear and inequality invariants can be discovered with
special method much faster than by using predicate abstraction, our
algorithm try to discover them in advance. This is demonstrated as
function getLinearInvs at Line 2 of Algorithm 2. Our implemen-
tation of getLinearInvs follows the guess-and-check paradigm.

Firstly, the system will guess a set of candidate invariants based on
dynamic checking and linear regression as follows. Suppose the set
of small models is M = {M1, ...,Mk}. From each small model Mi,
we obtain a set of function-value pairs of all 0-ary functional fluents,
such as {f0 = v0i, f1 = v1i, ..., fn = vni}. The inequality and
linear invariant candidates are generated by the following methods:

• Inequality candidates: We consider inequality invariant candidates
of the forms fu < fv and fu < C, where fu, fv are 0-ary func-
tional fluents and C is a constant in the Hoare-triple. An inequality
formula will be included as an invariant candidate if it is satisfied
in every model.

P. Mo et al. / Automatic Verification of Golog Programs via Predicate Abstraction764

• Linear candidates: In our implementation, we consider all linear
relations of the form A · fu + B · fv + C · fw +D = 0. This is
equivalent to solving the following system of linear equations:

A · vu1 +B · vv1 + C · vw1 +D = 0
......

A · vuk +B · vvk + C · vwk +D = 0

Suppose 〈a, b, c, d〉 is the solution of the system, we will include
the linear relation a · fu + b · fv + c · fw + d = 0 as an invariant
candidate.

After the guessing step, we obtain a set of candidate invariants Δ,
and then each formula in Δ will be checked statically. The checking
step is also an application of the extended regression. Suppose the
loop is while ϕ do δ, for every candidate invariant η ∈ Δ we will
compute its regression reg(s) = R̂D[η[s], δ] and then check that
whether the entailment |=FOL η[s] ∧ ϕ[s] ∧ DSC ⊃ reg(s) can be
proved. If we can prove the entailment, we know η[s] is indeed a loop
invariant. Otherwise, we will simply give up the candidate.

To ensure the efficiency, we will not try to strengthen the candidate
invariant as Algorithm 2 does when the system fails to prove the en-
tailment. However, experiments show that even such simple strategy
is enough to discover and validate lots of useful linear and inequality
invariants.

5 Experimental Results

We have implemented our algorithms to a system by using SWI-
Prolog, Java and Z3. Java is used to discover linear relations because
of its efficiency and powerful API, and Z3 [7] is the SMT solver
which is used to prove the first-order entailments. They use the I/O
interface to work together.

Our system has run on six arithmetical domains (with five succeed
and one failed) and all the non-arithmetic domains used in [13].
Among all the arithmetical domains, 1D, PrizeA1, Arith and
Sort are adapted from those used in [10]. Find is a modified
version from [9], and Addition is designed by ourselves. All
experiments were conducted on a machine with 3.30 GHz CPU and
4.00GB RAM under Linux. In all our experiments the initial small
models are manually provided, and only 1 or 2 simple initial small
models are sufficient for each domain.

5.1 Arithmetical Domains

The arithmetic experiments are derived from the following domains:
1D: The program is to visit all the elements in an array from right to
left.
PrizeA1: This program is to visit all the N · N cells from row 1 to
row N in the outer loop, and from left to right during every row in
the inner loop.
Arith: This program is to increase a variable numy (initialized as
0) to 2N . It contains a single loop, and numy will increase by two
during each iteration.
Find: This program sets the i-th element of a boolean array inb to
be true if the i-th element of an integer array ina is nonzero, and
to false otherwise. And we treat ina(X) as a 1-ary functional fluent
and inb(X) as a 1-ary relational fluent.
Addition: This program is to increase a variable sum (initialized by
0) to A ·B through a nested loop. The outer loop repeats A times and
the inner loop B times, the variable sum is increased by one during
every inner loop’s iteration.
Sort: The program sorts an array by using a single loop.

In the experiments of the arithmetical domains, we provide the set
of state constraints as DSC in advance. For all the experiments, we
only provide constraints of type information. For example in the 1D
domain, the argument x of vis(x) is expected to be an integer, so we
will include the constraint ∀x.vis(x) ⊃ int(x). In the following, we
will use ∀x ∈ int.φ(x) to denote ∀x.int(x) ⊃ φ(x).

We will take 1D and Sort as examples to demonstrate our sys-
tem, while the results are summarized in Table 1. We only mention
the situation arguments explicitly in the precondition axioms and
successor state axioms, and omit them in the Hoare-triple and the
loop invariant formulas.

Figure 1 presents the Hoare-triple and verification results of the
1D domain. It only contains one loop. The constant len denotes the
length of the array. The action move left has two effects: firstly it
decreases xpos(s) by one, where xpos(s) is a 0-ary functional fluent
used as a pointer, and then it makes the predicate vis(xpos(s), s)
to be true. The resulted loop invariant is the conjunction of Invs
and Linear, where Invs is discovered by the predicate abstraction
algorithm, while Linear is a set and the conjunction of its elements
denotes the useful linear relations between terms. This domain is
verified by our system in 1.0s.

Hoare-triple:

{xpos = len}
while 0 < xpos do move left od

{∀x ∈ int.0 < x < len+ 1 ⊃ vis(x)}
Action Precondition Axiom:

Poss(move left, s) ≡ xpos(s) > 0
Successor State Axiom:

xpos(do(a, s)) = y ≡ xpos(s) = y∨
xpos(s) = y + 1 ∧ a = move left

vis(x, do(a, s)) ≡ vis(x, s)∨
¬vis(x, s)∧ a = move left∧ xpos(s) = x+1

Invs: ∀x ∈ int.xpos < x < len+ 1 ⊃ vis(x)
Linear: {xpos < len+ 1}

Figure 1. Example of the 1D Domain

In Figure 2, the program sorts an array with length len in
a single loop. During each iteration, xpos(s) moves right if
in(xpos(s), s) < in(xpos(s) + 1, s), otherwise, it swaps the value
of in(xpos(s), s) and in(xpos(s) + 1, s) and then resets xpos(s)
to be 1. After 224.0s, an invariant (the conjunction of Invs and
Linear) is found and the triple is verified.

Now we report our experimental results on some other arithmetic
domains. We can see in Table 1 that every domain has two rows
in its Invariant column. They are Invs and Linear, and their
meanings are as discussed in 1D domain. Recall that to generate the
invariants, our system firstly tries to discover linear and inequality
relations with more efficient method. We can see the results of
Arith and Addition in Table 1 that this process is efficient. If there
is no any useful linear relations, the system then will go on to call
the predicate abstraction method which can discover more general
invariants, and it will still be a fast process if the predicate set is
small and the length of the resulted clause is short, such as the case
in 1D. But it will cost lots of time if the predicate set is large and
the resulted clause is complex, such as the cases in Find and Sort.

The failure of PrizeA1 is mainly because its verification requires
a conjunction of two clauses (ϕ1 ∧ ϕ2) to strengthen the given
formula by doing the abstraction only once, but Algorithm 1 can
merely output ϕi which can not be found here because neither

P. Mo et al. / Automatic Verification of Golog Programs via Predicate Abstraction 765

Hoare-triple:

{xpos = 1}
while xpos < len do

π(x1, x2 ∈ int.〈xpos = x1 ∧ x1 + 1 = x2〉?)
〈in(x1) < in(x2)〉?;move right|
〈−(in(x1) < in(x2))〉?; swap(x1, x2); re set

od

{∀a1, a2 ∈ int.a1 < a2 ⊃ in(a1) < in(a2)}
Action Precondition Axiom:

Poss(move right, s) ≡ xpos(s) < len
Poss(re set, s) ≡ 0 < xpos(s) < len
Poss(swap(x, y), s) ≡ true
Successor State Axiom:

xpos(do(a, s)) = y ≡ xpos(s) = y ∨ y = 1 ∧ a = re set∨
xpos(s) = y − 1 ∧ a = move right

in(x, do(a, s)) = y ≡
in(x, s) = y ∨ ∃z.in(z, s) = y ∧ a = swap(x, z)

Invs: ∀a1, a2 ∈ int.a1 < a2 < xpos+ 1 ⊃ in(a1) ≤ in(a2)
Linear: {0 < a1, 0 < xpos}

Figure 2. Example of the Sort Domain

Domain Invariant Time

1D ∀x ∈ int.xpos < x ⊃ vis(x) 1.0{xpos < len+ 1}
PrizeA1 - -

Arith
numy = 10 ∨ i < N

1.0{0 ≤ i, i < N + 1,
−10 · i+ 5 · numy = 0}

Find
∀i ∈ int.i < xpos ⊃

444.0¬inb(i) ∨ ina(i) = 0
{0 ≤ xpos, xpos < length+ 1}

Addi-
inner

sum = A ·B∨

2.0

i+ 1 < A ∨ j < B

tion

{0 ≤ i, i < A, 0 ≤ j,
j < B + 1, 0 ≤ sum,
i ≤ sum, j ≤ sum,

20 · i+ 4 · j − 4 · sum = 0}
outer sum = A ·B ∨ i < A

{−25 · i+ 5 · sum = 0}

Sort
∀a1, a2 ∈ int.a1 < a2 < xpos+ 1 ⊃

230.0in(a1) ≤ in(a2)
{0 < a1, 0 < xpos}

Table 1. Performance of the Arithmetic Domains

ϕ1 ⊃ φ nor ϕ2 ⊃ φ holds. If we adjust Algorithm 1 to search the
conjunctions of clauses, its search space will explode.

5.2 Comparisons on the Non-Arithmetic Domains

In the experiments of non-arithmetic domains, we also manually pro-
vide the state constraints in advance. The constraints we use here are
exactly those reported in our previous work [13], where all the con-
straints are automatically discovered and verified.

We can see in Table 2 that our method can successfully cover all
the domains used in [13]. #A is the number of all Hoare-triples we
tested, and T.avg and T.max are the average and maximal time costs
of all verifications. Time costs are measured in seconds. All verifica-
tions in domains CornerA, Transport and Trash are trivial, i.e,
during the extended regression, every R̂D[φ(s),while ϕ do δ od]
returns φ(s) ∨ ϕ[s] as its loop invariant, so T.maxs and T.avgs are
reported to be 0. Because our method can generate more general
predicates during the verification, it can discover more general
invariants theoretically. But as we can see in Table 2 that the

generality is at the cost of efficiency due to the large search space.
When comparing our new experimental results with the previous

ones, both machines we use are equipped with 4.00GB RAM and
operate under Linux. But our new machine is equipped with an Intel
i5, 3.30 GHz CPU, while the old one uses i7, 2.60 GHz CPU.

Domain Old Method New Method
#A T.max T.avg #A T.max T.avg

CornerA 1 1.0 1.0 1 0 0
Delivery 4 3.0 1.5 4 514.0 150.2

Green 3 46.0 24.7 2 1388.0 1062.0
Gripper 3 6.0 3.0 3 2138.0 815.7

Logistics 2 7.0 6.0 2 23.0 11.5
Recycle 2 18.0 15.5 2 964.0 483.5

Transport 2 1.0 0.5 2 0 0
Trash 2 0 0 2 0 0

Table 2. Performance of the Non-Arithmetic Domains

6 Applications in Strategy Verification

In this section we use our method to verify the winning property and
executability of strategies in combinatorial games.

Giving a strategy, our first job is to encode it into a Golog program
δ that can be recognized by our system.

Definition 9 A strategy S of a player A is a finite set (with size m)
that denotes the moves of A under some given conditions, i.e, every
element of S is a pair 〈φi, σi〉 which means that A will choose σi as
her next move under the condition of φi, where φi is a formula that
is true in the given game state, and σi is an action according to φi.

Then a winning strategy (WS) of A is a strategy such that no
matter how the opponent plays, A is guaranteed to win. It can be
encoded into a Golog program δWS as below:

• δWS
.
= [φ1?;σ1]|...|[φm?;σm]

For example, in the Pick-up Stone game, there are two players
A and B taking turns to pick up i stones on the table (i ∈ {1, 2, 3}).
We use the variable n to denote the number of stones left on the table
(n > 0 initially). The one who picks the last stone loses the game. We
say that A has a winning strategy if n satisfies the property (n%4 �=
1) every time in her turn. Then the WS of A should be {〈n%4 =
0, pick(3)〉, 〈n%4 = 2, pick(1)〉, 〈n%4 = 3, pick(2)〉}.

6.1 Partial Correctness of WS

To verify the partial correctness of WS, we should construct a
Hoare-triple {P}δP {Q}, where {P} is the pre-condition that al-
ways denotes the initial state of the game, {Q} is the post-condition
that we call win-condition, and δP is as below:

• δP1

.
= while ϕ do (π

−→
X)a(

−→
X); δWS od, or

• δP2

.
= while ϕ do δWS ; (π

−→
X)a(

−→
X) od

where ϕ is the termination condition of the game, a(−→X) is the action
in the game, and the choice of δP1 or δP2 depends on which player
moves first. Specifically, if the player of the strategy being verified
moves first we will use δP2 , and otherwise we will use δP1 .

Take the previous Pick-up Stone game as an example, the
{P}δP {Q} of A can be encoded as:

{n%4 �= 1 ∧ turn(A)}δP2{turn(A)}

P. Mo et al. / Automatic Verification of Golog Programs via Predicate Abstraction766

Domain
Partial Correctness Executability

Inv T Inv T

Pick-up Stone
(n > 0 ∨ turn(A))∧ ∀x ∈ int.

(n%4 = 0 ∨ turn(B))∧ 13.0 (n ≥ x ∧ (x = 1 ∨ x = 2 ∨ x = 3)) ⊃ 3.0
(n%4 �= 0 ∨ n = 0) (n− x)%4 = 0 ∨ (n− x)%4 = 2 ∨ (n− x)%4 = 3

Chomp 2×N
(length(row[1]) > 0 ∨ turn(A))∧

6.0 #T 1.0
(length(row[1]) = 0 ∨ turn(B))

Chomp N ×N
(length(row[1]) = 0 ∨ turn(A))∧

8.0 #T 1.0
(length(row[1]) = 0 ∨ turn(B))

Table 3. Experimental Results of WSs

where δP2

.
= while n > 0 do δWS ; (πx)pick(x); od, and δWS

.
=

[n%4 = 0?; pick(3)]|[n%4 = 2?; pick(1)]|[n%4 = 3?; pick(2)].
Here the win-condition is {turn(A)} because after B picking the
last stone it should be A’s turn.

Nevertheless, how does it make sure that every time in her turn, A
(the winner) can take a move according to her WS, i.e, every time
in A’s turn, the game state s can entail the disjunction of situations
in her WS (s ⊃

∨
φi)? And is it enough to say that WS is really

a winning strategy of A by only proving the partial correctness of
{P}δP {Q}? The answer is no. Assume that we change the WS of A
to a wrong WS′ by replacing its first element 〈n%4 = 0, pick(3)〉
by 〈n%4 = 0, pick(2)〉, there will be a counterexample if B per-
forms pick(1) under the pre-condition of {n = 4∧turn(A)}, which
leaves only one stone to A’ last turn. Since A has no strategy to deal
with such situation in WS′, the executability of δP will be invalid.

Therefore, in order to ensure the correctness of a WS, it is the
executability that should also be taken into consideration.

6.2 Executability of WS

Since we have specified WS, we can use our system to verify the
executability of WS too. But now, the Hoare-triple may be a little
different. Because it is the executability that we want to verify, the
post-condition should be the disjunction of situations in WS, and
the while loop in δP should be replaced by a non-deterministic loop.
With the same pre-condition, now the Hoare-triple is {P}δE{

∨
φi},

where δE is:

• δE1

.
= [(π

−→
X)a(

−→
X); δWS]

∗; (π−→X)a(
−→
X)

• δE2

.
= [δWS ; (π

−→
X)a(

−→
X)]∗

Similarly, which of the two should be used depends on which play-
er moves first. If player being analysed moves first we will use δE2 ,
and otherwise we will use δE1 .

When referring to the WS of A in the Pick-up Stone game, we
can encode its Haore-triple {P}δE{Q} as:

{n%4 �= 1 ∧ turn(A)}δE2{n%4 = 0 ∨ n%4 = 2 ∨ n%4 = 3}

where δE2

.
= [δWS ; (πx)pick(x)]

∗ and δWS as before.

6.3 Summary of Experiments

Besides Pick-up Stone, we have tried another game Chomp [15],
which has two versions as below:
Chomp 2×N: There is a 2 × N grid, and each point contains a
cookie. The positions of them can be represented as a two dimen-
sional array row[2][N] that starts from 1, and the one in row[1][1]is
poisonous. There are two players A and B taking turns to pick one
of the remaining cookies, and once she picks row[a][b], she must
eat all the cookies in row[i][j], where a ≤ i ≤ 2 and b ≤ j ≤ N .
The one who has to eat the poisonous cookie loses the game. We say

that the first player A has a winning strategy by keeping the number
of the first row of cookies one greater than the number of the second
row every time after her move.
Chomp N×N: This game is similar to Chomp 2 × N , but this
time there are N rows of cookies initially. Player A has a winning
strategy too, that is to eat row[2][2] in her first step and then keep
the length of the first row equivalent to the length of the first column
every time after her move.

Table 3 shows that the WSs of these three games are cor-
rect. And interestingly, when proving their partial correctness,
the discovered invariants are much simpler than we thought
(for example in Pick-up Stone, the intuitive invariant is
n = 0 ⊃ turn(A)∧n > 0 ⊃ turn(B)∧n%4 = 1), but the results
are valid according to the proof system introduced in [1]. #T means
that a verification is trivial, i.e, during the extended regression, every
R̂D[φ(s),while ϕ do δ od] returns φ(s)∨ϕ[s] as its loop invariant.

7 Conclusion

In this paper, we propose a uniform method to verify the partial cor-
rectness of Golog programs that may involve functions and arith-
metic. We summarize our main contributions as follows: Firstly,
we combine the extended regression with the predicate abstraction
method, which results in a uniform verification method that is capa-
ble of handling programs with functions and arithmetic. Secondly,
to make our approach effective and feasible, we develop some tech-
niques like generating predicates, generating bounds and efficiently
discovering linear and inequality invariants. Thirdly, we have imple-
mented a verification system, conducted a set of experiments and
compared it with our previous work, showing the capability and po-
tential of our approach. Lastly, we have also applied the method to
the verification of winning strategies in two famous games, Pick-
up Stone and Chomp.

As for the future work, we would like to further improve the per-
formance of our system and make the approach more practical. One
possible direction is to introduce human-machine interaction to the
process of predicate abstraction. For example, a user may analyse the
output of the system and add new predicates into the candidate set,
or provide some invariant templates to accelerate the search. Another
direction we have in mind is to combine our method with algorith-
mic learning, such as applying the CDNF algorithm as in the work of
[11], where the intended loop invariant is learned by interacting with
a mechanical teacher. We believe that by posing informative queries
during the interaction, the algorithmic learning method can guide and
thus speed up the search process.

Acknowledgments

We thank the anonymous reviewers for helpful comments. This work
received support from the Natural Science Foundation of China un-
der Grant No. 61572535.

P. Mo et al. / Automatic Verification of Golog Programs via Predicate Abstraction 767

REFERENCES

[1] Krzysztof R. Apt, Frank S. de Boer, and Ernst-Rüdiger Olderog, Ver-
ification of Sequential and Concurrent Programs, Texts in Computer
Science, Springer, 2009.

[2] Thomas Ball, Rupak Majumdar, Todd D. Millstein, and Sriram K. Raja-
mani, ‘Automatic predicate abstraction of C programs’, in Proceedings
of the 2001 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), Snowbird, Utah, USA, June 20-22,
2001, pp. 203–213, (2001).

[3] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut
Veith, ‘Counterexample-guided abstraction refinement’, in Computer
Aided Verification, 12th International Conference, CAV 2000, Chicago,
IL, USA, July 15-19, 2000, Proceedings, (2000).

[4] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Hel-
mut Veith, ‘Counterexample-guided abstraction refinement for symbol-
ic model checking’, J. ACM, 50(5), 752–794, (2003).

[5] Jens Claßen and Gerhard Lakemeyer, ‘A logic for non-terminating
golog programs’, in Principles of Knowledge Representation and Rea-
soning: Proceedings of the Eleventh International Conference, KR
2008, Sydney, Australia, September 16-19, 2008, pp. 589–599, (2008).

[6] Jens Claßen, Martin Liebenberg, Gerhard Lakemeyer, and Benjamin
Zarrieß, ‘Exploring the boundaries of decidable verification of non-
terminating golog programs’, in Proceedings of the Twenty-Eighth
AAAI Conference on Artificial Intelligence., pp. 1012–1019, (2014).

[7] Leonardo Mendonça de Moura and Nikolaj Bjørner, ‘Z3: an efficient
SMT solver’, in Tools and Algorithms for the Construction and Anal-
ysis of Systems, 14th International Conference, TACAS 2008, Held as
Part of the Joint European Conferences on Theory and Practice of Soft-
ware, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Pro-
ceedings, pp. 337–340, (2008).

[8] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant,
Carlos Pacheco, Matthew S. Tschantz, and Chen Xiao, ‘The daikon sys-
tem for dynamic detection of likely invariants’, Sci. Comput. Program.,
69(1-3), 35–45, (2007).

[9] Cormac Flanagan and Shaz Qadeer, ‘Predicate abstraction for software
verification’, in Conference Record of POPL-02, pp. 191–202, (2002).

[10] Yuxiao Hu, Generation and Verification of Plans with Loops, Ph.D.
dissertation, Department of Computer Science, University of Toronto,
2012.

[11] Wonchan Lee, Bow-Yaw Wang, and Kwangkeun Yi, ‘Termination anal-
ysis with algorithmic learning’, in Computer Aided Verification - 24th
International Conference, pp. 88–104, (2012).

[12] Hector J. Levesque, Raymond Reiter, Yves Lespérance, Fangzhen Lin,
and Richard B. Scherl, ‘GOLOG: A logic programming language for
dynamic domains’, Journal of Logic Programming, 31, 59–83, (1997).

[13] Naiqi Li and Yongmei Liu, ‘Automatic verification of partial correct-
ness of golog programs’, in Proc. of IJCAI-15, pp. 3113–3119, (2015).

[14] Yongmei Liu, ‘A hoare-style proof system for robot programs’, in Pro-
ceedings of the Eighteenth National Conference on Artificial Intelli-
gence and Fourteenth Conference on Innovative Applications of Artifi-
cial Intelligence, July 28 - August 1, 2002, Edmonton, Alberta, Cana-
da., pp. 74–79, (2002).

[15] Richard J Nowakowski, Games of no chance, volume 29, Cambridge
University Press, 1998.

[16] Raymond Reiter, Knowledge in Action: Logical Foundations for Spec-
ifying and Implementing Dynamical Systems, MIT Press, 2001.

[17] Saurabh Srivastava and Sumit Gulwani, ‘Program verification using
templates over predicate abstraction’, in PLDI, pp. 223–234, (2009).

[18] Westley Weimer ThanhVu Nguyen, Deepak Kapur and Stephanie For-
rest, ‘Using dynamic analysis to discover polynomial and array invari-
ants’, in ICSE, pp. 683–693, (2012).

[19] Benjamin Zarrieß and Jens Claßen, ‘Verifying CTL* properties of
GOLOG programs over local-effect actions’, in ECAI 2014 - 21st Eu-
ropean Conference on Artificial Intelligence, pp. 939–944, (2014).

P. Mo et al. / Automatic Verification of Golog Programs via Predicate Abstraction768

