
WINOLOGIC: A Zero-Shot Logic-based Diagnostic Dataset for Winograd
Schema Challenge

Weinan He1, Canming Huang1, Yongmei Liu1, Xiaodan Zhu2

1Dept. of Computer Science, Sun Yat-sen University, Guangzhou 510006, China
2ECE & Ingenuity Labs Research Institute, Queen’s University, Canada

{heweinan, huangcm}@mail2.sysu.edu.cn, ymliu@mail.sysu.edu.cn,
xiaodan.zhu@queensu.ca

Abstract
The recent success of neural language mod-
els (NLMs) on the Winograd Schema Chal-
lenge has called for further investigation of
the commonsense reasoning ability of these
models. Previous diagnostic datasets rely on
crowd-sourcing which fails to provide coherent
commonsense crucial for solving WSC prob-
lems. To better evaluate NLMs, we propose
a logic-based framework that focuses on high-
quality commonsense knowledge. Specifically,
we identify and collect formal knowledge for-
mulas verified by theorem provers and translate
such formulas into natural language sentences.
Based on these true knowledge sentences, ad-
versarial false ones are generated. We propose
a new dataset named WINOLOGIC with these
sentences. Given a problem in WINOLOGIC,
NLMs need to decide whether the plausible
knowledge sentences could correctly solve the
corresponding WSC problems in a zero-shot
setting. We also ask human annotators to
validate WINOLOGIC to ensure it is human-
agreeable. Experiments show that NLMs still
struggle to comprehend commonsense knowl-
edge as humans do, indicating that their reason-
ing ability could have been overestimated.

1 Introduction

Recently, large-scale neural language models
(NLMs) have shown promising results on many
challenging tasks, including the Winograd Schema
Challenge (WSC), a multiple-choice coreference
resolution problem that is designed to test nat-
ural language understanding and reasoning with
commonsense knowledge (Levesque et al., 2012;
Levesque, 2014). Each problem depicts a daily sit-
uation with an ambiguous pronoun to be resolved.
For example, in the WSC sentence “the trophy
doesn’t fit into the brown suitcase because it is
too large”, the pronoun “it” could plausibly re-
fer to either “the trophy” or “the suitcase”. The
lack of training examples in WSC has driven re-
searchers to fine-tune NLMs on similar datasets,

which achieved near-human performance (Sak-
aguchi et al., 2020).

Still, the opacity of the NLMs has raised ques-
tions about whether they truly capture common
sense or merely exploit biases. Such concerns were
confirmed for the natural language inference task,
as McCoy et al. (2019) discovered an LM could
provide correct answers using fallible heuristics.
To investigate if NLMs understand the reasons for
solving WSC, Zhang et al. (2020) crowd-sourced
reasons for the WSC problems and built a new
dataset WinoWhy.

While in the correct direction, crowd-sourcing is
far from perfect for collecting reliable explanations.
Consider the following WinoWhy example.
Example 1 (WinoWhy). The trophy doesn’t fit into
the brown suitcase because it is too large. The it
is more likely to refer to the trophy than the brown
suitcase because
(a) the brown suitcase is too large.
(b) it is a game.
(c) The trophy is not fit into the suitcase.

Given a WSC sentence with its correct answer,
crowd-workers and NLMs are prompted to write a
piece of text as the “reason” to justify the answer,
e.g., (a), (b), and (c). Another group of crowd-
workers was tasked to decide if each reason ex-
plains the answer. In Example 1, all three reasons
are labeled as correct. However, upon closer in-
spection, all of them are incorrect: Reason (a) con-
tradicts with the correct answer; (b) is irrelevant;
(c) circularly repeats the situation. These charac-
teristics, namely, the lack of coherence, the lack of
relevance, and circularity render the explanations
useless (Srinivasan and Chander, 2020).

The discouraging quality of these reasons has
led us to the logic-based path. Compared to ca-
sually crowd-sourced justifications, we regard reli-
able commonsense knowledge as the key to solving
WSC, and thus the key to constructing a diagnostic
dataset. We employ first-order logic (FOL) to en-



code commonsense knowledge for two purposes:
(1) FOL as a formal logic provides verifiability of
the knowledge to ensure its reliability, and (2) Such
knowledge serves as a better explanation since FOL
enables us to see how the correct answer is derived
from the problem description and the knowledge.

In this paper, we propose WINOLOGIC, a diag-
nostic dataset to evaluate NLMs’ ability to under-
stand and reason with commonsense knowledge for
WSC. Common sense in WINOLOGIC is encoded
in natural language sentences named knowledge
sentences, based on their counterparts in FOL for-
mulas. Consider the following example.

Example 2 (Knowledge Sentence). When someone
is trying to fit an object X into a container Y, if X is
too large then it wouldn’t be possible to fit X into Y.

This knowledge sentence is translated from a log-
ical formula whose reliability is verified by a theo-
rem prover. It is coherent, relevant and unambigu-
ous compared to those in Example 1. Moreover,
such knowledge also applies to other similar situa-
tions due to its abstract nature, while justifications
such as those in Winowhy are bound to specific
entities in the problem. Translating formulas into
sentences not only improves the readability of the
commonsense knowledge but also paves the way
for evaluation. Since NLMs might not be exposed
to variable symbols (X, Y, etc.) in pre-training, we
provide two additional variants with variable-free
knowledge sentences.

To generate reliable knowledge sentences, we
use FOL to encode the knowledge and perform
verifications before converting it into readable text.
Specifically, we follow these steps: (1) Provide
formalizations and suitable commonsense knowl-
edge formulas for WSC problems; (2) Verify these
knowledge formulas using a theorem prover; (3)
Translate these formulas into knowledge sentences
in natural language; (4) Generate adversarial false
knowledge sentences with only subtle differences.
WINOLOGIC is then constructed as a text classifi-
cation dataset, where each problem is composed
of a WSC sentence, its answer, and a plausible
knowledge sentence. The task is to decide whether
the knowledge supports the correct answer. Ad-
ditionally, we ask human annotators to validate
the dataset to ensure that the knowledge sentences
are human-agreeable. Therefore the reliability of
WINOLOGIC is guaranteed by both the formal ver-
ification in FOL and human validation.

WINOLOGIC, with its high-quality knowledge,

is suitable for diagnosing NLMs in a zero-shot
setting. Just as educators don’t need large-scale
examinations to test students, the small scale of
WINOLOGIC doesn’t invalidate its usage. What
matters in tests and evaluation datasets is the qual-
ity of the problems. Focusing on the small amount
of knowledge that is key for solving WSC, WINO-
LOGIC provides more reliable diagnostic problems.
This also aligns with the few-shot or zero-shot
evaluation settings, where large-scale task-specific
fine-tuning is intentionally avoided. After all, peo-
ple could solve WSC273 tasks without large-scale
training or fine-tuning (Bender, 2015).

Experiments with three high-performing NLM
architectures show that they still struggle to under-
stand knowledge in WINOLOGIC. Even when they
are fine-tuned on WinoWhy, we observe no im-
provement on WINOLOGIC, suggesting that they
may learn little from the crowd-sourced reasons.

2 Related Work

Since its inception, WSC is gaining more and more
attention. In 2016, a competition was held at the
IJCAI-16 conference, but no systems qualified for
the second round, as accuracies were below 60%
(Davis et al., 2017). Davis (2017) collected 285
WSC problems available online, the first 273 of
them are commonly referred to as WSC273. Rah-
man and Ng (2012) proposed the Definite Pronoun
Resolution (also known as WSCR) dataset, con-
taining 1886 problems that are considered easier
than those in WSC273. Sakaguchi et al. (2020)
crowd-sourced WinoGrande, a large-scale WSC-
like dataset with 44k problems. An NLM-based
filtering algorithm was used to identify “unbiased”
problems among them. WSC problems are also
incorporated into NLP benchmarks. The Super-
GLUE benchmark includes a subtask SuperGLUE-
WSC (804 problems), where WSC problems are
cast into binary classification problems (Wang
et al., 2019). While WSC273 and SuperGLUE-
WSC have significant overlap, they are not entirely
the same.

Recent SOTA results are achieved with fine-
tuned NLMs. Two such examples are the BERT
and RoBERTa models (Devlin et al., 2019; Liu
et al., 2019), which have shown improvements af-
ter being fine-tuned on similar datasets. Specif-
ically, the RoBERTa models have over 90% ac-
curacy on SuperGLUE-WSC when fine-tuned on
WinoGrande (Sakaguchi et al., 2020).



There are also analyses about the problems in
WSC273 and human performance. The very first
human baseline evaluation reports 92% accuracy
(Bender, 2015). They noticed that for certain
problems, the correct answers are only evident
after the pair of questions are revealed together.
Trichelair et al. (2019) discovered the associative
subset of WSC problems where statistical corre-
lations between the problem and the candidates
could reveal the answer. Zhang et al. (2020) asked
crowd-workers to classify WSC problems into dif-
ferent knowledge types, and they discovered spa-
tial knowledge is particularly difficult for NLMs.
Liu et al. (2020) experimented with several for-
mulations of WSC problems and reported that
task-framing has an impact on the performance of
NLMs, e.g., multiple-choice setting leads to better
performance.

3 Logic-based Commonsense Knowledge
for WSC273

In this section, we introduce how explicit common-
sense knowledge could be written in FOL and how
verification is done using theorem provers. We first
formalize each WSC problem into a set of logical
formulas, then we provide the necessary common-
sense knowledge. To ensure the correctness and
validity of such knowledge, we use Z3 (de Moura
and Bjørner, 2008), a theorem prover, to ensure
that the formulas of knowledge could be used to
derive correct answers.

Situation Calculus. We use the situation cal-
culus (SC), a variant of FOL, as the representa-
tion language (Reiter, 2001). SC provides suitable
constructs for modeling dynamic worlds: Entities
in SC belong to either objects, actions or situa-
tions. Both the WSC scenario and the common-
sense knowledge are represented using SC.

Example 3. “The father couldn’t lift his son be-
cause he was too weak.”

The scene in Example 3 before the father tried
to lift his son involves the following entities:
• Objects: Father and Son;
• Action: lift(x, y) where x is the subject and y

is the object of the action;
• Situations: S0 is the situation where the action
lift has not yet happened.
To describe this scenario in SC, we use spe-

cial predicates where the last argument is always
a situation. For example, we could say that

the son is not lifted in the initial situation S0:
¬Lifted(Son, S0).

WSC Formalization. We formalize Example 3
with formulas:

∃x.¬Strong(x, S0)∧(x≡Father⊕x≡Son). (1)

¬Poss(lift(Father, Son), S0). (2)

Formula (1) says in S0 someone was weak and
that person was either the father or the son. For-
mula (2) states that it was not possible for the father
to lift his son. To deduce that x in Formula 1 refers
to Father, we still need suitable commonsense
knowledge.

Commonsense Knowledge. Often the common-
sense knowledge for WSC could be encoded using
the characterizations of actions. Consider the ef-
fects and preconditions of the action of x lifts y. To
express the commonsense that the subject x should
be in a good physical condition for the action lift:

Poss(lift(x, y), s) ≡ Strong(x, s), (3)

where Poss(lift(x, y), s) represents the precondi-
tions of the action.

Verification. Given the WSC scenario formal-
ization (Formula 1 Formula 2) and the suitable
commonsense knowledge (Formula 3), we use the
theorem prover Z3 to formally verify the validity
of commonsense knowledge. In this example, the
result of Z3 indicates that the commonsense knowl-
edge in Formula 3 supports the correct answer.

Knowledge Engineering. Each WSC problem is
formalized into a set of logical formulas. With suit-
able commonsense knowledge, the reasoner would
be able to provide correct answers. Since sophisti-
cated automatic translation is not possible yet, we
manually provide the formalization of WSC prob-
lems and the commonsense knowledge through
knowledge engineering, relying on experts that are
fluent in FOL. We collect all the commonsense
knowledge formulas that are verified by Z3.

4 Knowledge Sentences and WINOLOGIC

In this section, we present the creation of positive
and negative knowledge sentences as in Figure 1,
then we describe the resulting WINOLOGIC.



“The father
couldn’t lift his
son because he
was too weak.”

1. ∃x.¬Strong(x, S0) ∧ (x ≡
Father ⊕ x ≡ Son)

2. ¬Poss(lift(Father, Son), S0)
. . .

WSC Formalization

Poss(lift(x, y), s) ≡ Strong(x, s).
. . .

Commonsense Knowledge

Theorem
Prover

Z3
“the father”

“If X is not strong enough, then it wouldn’t be possible for X to lift Y.”True X

“If X is way too strong, then it wouldn’t be possible for X to lift Y.”False

translate

transform

Figure 1: The process of generating both true and false
knowledge sentences. We first create the formalization
of WSC problems and provide the commonsense knowl-
edge formulas. Together they are verified by a theorem
prover to be able to reason the correct answer. Then we
translate the commonsense into natural language sen-
tences, where the false ones are derived.

4.1 Knowledge Sentences with Variables

To better evaluate NLM’s ability to understand com-
monsense, we transform the logical knowledge for-
mulas into natural language sentences.

For each WSC problem, we pick the essential
commonsense knowledge formulas and translate
them into natural language sentences. For example,
the formula Poss(lift(x, y), s) ≡ Strong(x, s)
translates to the knowledge sentence “When person
X is about to lift person Y up, if X is not strong
enough, then it wouldn’t be possible for X to lift
Y”. We adhere to rules in translation to preserve
coherence:

1. The variables (of sort objects) x, y, z in the for-
mulas are preserved. By doing so, sentences
retain a certain level of abstraction. This not
only aligns with the idea that knowledge should
be widely applicable but also provides the neces-
sary means to reduce the ambiguity in sentences
involving multiple people, objects, etc.

2. The symbols of the predicates are usually re-
tained in the sentence whenever it is possible
and natural to do so.

3. In some cases, extra information is added to the
knowledge sentences, such as the type informa-
tion “person”, “object”, etc.

For each true knowledge sentence, we gener-
ate a false one that is still plausible. These false
knowledge sentences should be 1) relevant to the
WSC problem as much as possible and 2) obvi-
ously wrong; That is, false knowledge sentences

will not help the reasoning process. For relevance,
we adopt one of the following transformations for
each knowledge sentence.

Negation. Negating the meaning of the sentence
will create a contradicting statement, following the
Natural Logic inference system of Angeli and Man-
ning (2014). For example, “X is tall enough” is
transformed into “X is not tall enough”.

Swapped or Replaced. Swap the positions of the
two parties either in the antecedent or the conse-
quent. Or replace one with the other. For example,
“X is larger than Y” becomes “Y is larger than X”;
and “X is angry” becomes “Y is angry”.

Changed. Change the content of the sentence
while preserving relevance. For example, “person
X is a suspect of criminal” becomes “person X is
hurt by a criminal”.

Others. Use multiple transformations.

We manually provide a pair of true and false
knowledge sentences based on the verified logi-
cal formulas for each WSC problem, but for some
problems, more than one knowledge formula is
considered. In the end, we obtain a total of 562
knowledge sentences, half of which are true, and
the other half false. We denote this set of knowl-
edge sentences as the variable set.

4.2 Grounded and Natural Knowledge
Sentences

To better understand how well NLMs handle com-
monsense, we also provide two more sets of knowl-
edge sentences, the grounded and the natural sets,
based on the variable set.

Grounded. In the grounded set, the occurrences
of variables are substituted with their correspond-
ing mentions, the noun phrases in the WSC prob-
lem. E.g., “it wouldn’t be possible for the father to
lift the son”.

Natural. To generate sentences that are more nat-
ural while preserving the unambiguous nature, vari-
ables in the sentences are removed. If there are
multiple parties, we use ordinal numbers to differ-
entiate between them. For example, if a sentence
involves multiple persons, we use “the first person”,
“the second person” etc. E.g., “When someone is
trying to fit an object into a container, if the object
is too large then it wouldn’t be possible to fit the
object into the container.”



Variant Jaccard
Similarity

Edit
Distance

Length
Differ-
ence

Variable 0.9325 2.4626 0.3203
Grounded 0.9270 2.6050 0.5125
Natural 0.9178 2.5730 0.4769

Table 1: Statistics of knowledge sentences; Average
Jaccard similarity coefficient, average edit distance, av-
erage length difference are reported between a pair of
true and false knowledge sentences. All values are re-
ported on the token level.

4.3 Analysis of Knowledge Sentences

Table 1 shows the statistics of the knowledge sen-
tences. The Jaccard similarity coefficient measures
the overlap of words between the two sentences.
These numbers imply that the similarity between
the true and false knowledge sentences is rather
high, which comes as no surprise as the false sen-
tences are generated by design to be close to the
true ones.

4.4 WINOLOGIC and Validation

We concatenate the WSC sentence, its correct an-
swer, and a plausible knowledge sentence, resulting
in a binary classification problem in WINOLOGIC.
Example 4 shows a pair of WINOLOGIC-Natural
problems corresponding to the same WSC problem,
differing only in the small change of a few words.
This also reflects the designing characteristics of
WSC.

Example 4. The man couldn’t lift his son because
he was so weak. The he is more likely to refer to
the man than the son because
(a) when a person is about to lift another person

up, if the first person is not strong enough, then
it wouldn’t be possible for the first person to
lift the second person. X

(b) when a person is about to lift another person
up, if the first person is way too strong, then it
wouldn’t be possible for the first person to lift
the second person.

We construct three variants of WINOLOGIC

from the three sets of knowledge sentences: (1)
WINOLOGIC-variable, (2) WINOLOGIC-grounded,
and (3) WINOLOGIC-natural. Each variant con-
tains 562 binary classification problems.

In addition to using formally verified knowledge
formulas, we also conduct human validations on
the original WINOLOGIC-variable variant. Six un-

dergraduate students1 are asked to decide if the
knowledge sentence adheres to commonsense and
if it is valid to support the answer. Between an-
notators and the ground labels, the average raw
percentage agreement is 93.86% while the aver-
age Cohen’s kappa coefficient is 0.8772, showing
that the WINOLOGIC knowledge is rather human-
agreeable. Among the 562 problems, 518 (92.17%)
are deemed valid as at least 5 out of 6 annotators
agree with the ground labels. It contains 249 prob-
lems that are labeled true and 269 false. In the
next section, we use this human-validated subset
of WINOLOGIC for evaluation.

5 Evaluation

In this section, we describe baseline implementa-
tions for WINOLOGIC and present the evaluation
results. The dataset, code, and hyper-parameters
are available in the supplementary materials.

5.1 Neural Language Models

We consider the three transformer-based NLM ar-
chitectures: GPT-2, BERT, and RoBERTa, as they
show promising results on WSC (Kocijan et al.,
2020). In addition to their unique training objec-
tives, we also utilize the sequence-to-sequence out-
put of these architectures.
1. GPT-2 (Radford et al., 2019): GPT-2 was shown

to achieve 70.7% of accuracy on WSC273 (Rad-
ford et al., 2019). We employ the pre-trained
objective of GPT-2 that was designed for tradi-
tional language modeling tasks.

2. BERT and RoBERTa (Devlin et al., 2019;
Liu et al., 2019): We utilize the masked lan-
guage modeling and sequence classification pre-
trained objectives. BERT was shown to achieve
comparable accuracy as GPT-2, while RoBERTa
has maintained the SOTA performance on WSC.
All vanilla pre-trained models are obtained from

the Transformers library (Wolf et al., 2020).
Besides the sequence-to-sequence NLMs, we also
utilize the LM heads provided by the library. These
LM heads take the input from the NLM and return
desired results according to the pre-training task
objective. For example, the BertForMaskedLM
returns the prediction scores for the masked tokens
along with BERT sequence-to-sequence output.

As fine-tuning shows promising results on WSC,
we also fine-tuned BERT and RoBERTa on WSCR

1For more detail about the annotators, please refer to the
Appendix.



Table 2: Accuracies of 14 NLMs using the first two baseline methods on 3 variants of WINOLOGIC. Values in
parentheses for baseline 2 are standard deviations. “Majority” is a voting ensemble of the NLMs. WR=WSCR,
WG=WinoGrande.

NLM Baseline 1 Baseline 2
Variable Grounded Natural Variable Grounded Natural

Majority 54.63% 57.53% 53.67% 50% (0.0087) 49.34% (0.0063) 49.03% (0.0042)
BERT (base) 50.97% 54.44% 51.54% 50.46% (0.0111) 48.69% (0.0075) 49.42% (0.0076)
BERT (large) 50.77% 54.25% 49.61% 49.42% (0.0089) 48.88% (0.01) 49.54% (0.0169)
RoBERTa (base) 50.58% 54.05% 51.54% 49.58% (0.0077) 49.77% (0.0023) 49.38% (0.0116)
RoBERTa (large) 52.12% 55.98% 52.12% 47.84% (0.0043) 47.61% (0.0072) 48.53% (0.0076)
GPT-2 (base) 51.35% 47.88% 52.32% 49.31% (0.0083) 48.92% (0.0065) 48.92% (0.0079)
GPT-2 (large) 50.39% 51.74% 51.74% 50.39% (0.0156) 49.03% (0.0116) 49.46% (0.0143)
BERT (base) + WR 49.23% 51.93% 50.58% 48.88% (0.0087) 47.88% (0.0129) 48.26% (0.0118)
BERT (large) + WR 51.16% 52.7% 49.61% 48.65% (0.0127) 49.31% (0.0097) 48.92% (0.0113)
RoBERTa (base) + WR 52.12% 53.28% 49.61% 49.38% (0.0077) 49.07% (0.0114) 49.73% (0.013)
RoBERTa (large) + WR 52.9% 56.76% 55.21% 48.26% (0.0047) 48.11% (0.0072) 48.46% (0.004)
BERT (base) + WG 51.35% 55.98% 51.35% 49.92% (0.0066) 48.84% (0.0061) 50% (0.0142)
BERT (large) + WG 50.39% 54.25% 51.74% 50.42% (0.0114) 49.81% (0.0106) 49.23% (0.0093)
RoBERTa (base) + WG 51.35% 54.05% 51.35% 49.58% (0.0109) 49.31% (0.0111) 49.46% (0.0097)
RoBERTa (large) + WG 55.79% 57.14% 55.98% 52.66% (0.0318) 53.98% (0.0389) 52.16% (0.0202)

or WinoGrande (Kocijan et al., 2019; Sakaguchi
et al., 2020). Additionally, we use two natural lan-
guage inference (NLI) datasets, MNLI and QNLI,
for fine-tuning (Wang et al., 2018; Williams et al.,
2018). “BERT (large) + WR” denotes the large
BERT model fine-tuned on WSCR. We first intro-
duce two baseline methods inspired by Zhang et al.
(2020).

5.2 Baseline 1: Using Pre-trained Objectives
GPT-2. Given a WINOLOGIC problem, we first
tokenize it into a sequence of token t1, t2, . . . , tn
as the input. The language modeling head
(GPT2LMHead) predicts the tokens from start to
end. We only calculate the cross-entropy values
starting from the token m, where m is the first
token immediately after the unknown pronoun in
the WSC sentence. This partial prediction scheme
turns out to have better performance than predict-
ing the whole sentence (Zhang et al., 2020). In
Example 4, the tokens starting from “was” are pre-
dicted and the corresponding cross-entropies are
calculated.

BERT and RoBERTa. For BERT and RoBERTa,
we use the masked token prediction objective. In
the token sequence t1, t2, . . . , tn for a given WINO-
LOGIC problem, we mask the candidate tokens and
use the masked LM head to predict them. For exam-
ple, a WINOLOGIC problem contains the answer
part of form: “... the 〈pronoun〉 is more likely to
refer to 〈cand1〉 than 〈cand2〉 because ...” where
• 〈pronoun〉 is the unknown pronoun,

• 〈cand1〉 is the correct reference and
• 〈cand2〉 is the incorrect reference.

Both 〈cand1〉 and 〈cand2〉 are masked and the
masked LM heads are used to predict the cross-
entropy losses for them.

NLM Baseline 3
Variable Grounded Natural

Majority 52.32% 53.67% 51.35%
BERT (base) + QNLI 50.97% 51.54% 49.23%
RoBERTa (base) + QNLI 53.67% 48.65% 52.7%
BERT (base) + MNLI 51.93% 51.74% 50.58%
RoBERTa (base) + MNLI 51.74% 52.32% 51.93%
RoBERTa (large) + MNLI 51.93% 54.63% 52.32%

Table 3: Accuracies of 5 NLMs using the third baseline
method on 3 variants of WINOLOGIC. “Majority” is a
voting ensemble of the NLMs.

Classifying WINOLOGIC Problems For a
WINOLOGIC problem, if the knowledge sentence
is correct, it should support the correct answer
“the 〈pronoun〉 is more likely to refer to 〈cand1〉
than 〈cand2〉”, instead of the incorrect one where
〈cand1〉 and 〈cand2〉 are swapped. Thus, we cre-
ate two texts soriginal and sswap where the former
is the same as the original WINOLOGIC problem
while the latter swaps the two candidates. By com-
paring the cross-entropy values of the two texts,
an NLM determines whether the knowledge sen-
tence is correct. Compared to the baseline used
for WinoWhy, this method doesn’t need to find a
threshold of probabilities and thus is unsupervised.



Model Variable-True Variable-False

Baseline1 52.24% (0.0240) 50.74% (0.0102)
Baseline2 72.31% (0.1122) 28.63% (0.1079)
Baseline3 15.50% (0.1784) 85.87% (0.1508)

Model Grounded-True Grounded-False

Baseline1 56.22% (0.0321) 51.73% (0.0219)
Baseline2 85.37% (0.0994) 15.77% (0.0859)
Naseline3 28.51% (0.2621) 73.31% (0.2724)

Model Natural-True Natural-False

Baseline1 52.58% (0.0287) 50.96% (0.0162)
Baseline2 67.42% (0.1993) 32.70% (0.1820)
Baseline3 35.42% (0.3544) 66.10% (0.3300)

Table 4: Average accuracies of NLMs in each baseline
methods on True and False WINOLOGIC examples

5.3 Baseline 2: Using Auxiliary Classifier

To investigate whether the reasons in WinoWhy
could potentially help NLMs to capture knowledge
needed in WINOLOGIC, we retain the baseline
method used for WinoWhy. Given a WINOLOGIC

problem, the NLM outputs a sequence of hidden
states where the linear classifier learns to deter-
mine if the sentence is true or false. We take the
2865 WinoWhy examples to fine-tune the compos-
ite model.

5.4 Baseline 3: Using Sequence Classification

As shown in Wang et al. (2018), NLMs have im-
pressive performances on NLI tasks, which inspire
us to cast WINOLOGIC problems as NLI problems.
Specifically, we utilize the sequence classification
heads of BERT and RoBERTa to decide whether
the knowledge sentence could entail the WSC sen-
tence with the unknown pronoun replaced by the
correct answer. We evaluate the models fine-tuned
on either QNLI or MNLI.

5.5 Result Analysis

We observe from Table 2 and Table 3 that NLMs are
struggling on WINOLOGIC, as none have accura-
cies above 58% on all three variants, while the best
performance is achieved by the larger RoBERTa
model fine-tuned on WinoGrande. Comparing the
performances between the three baselines, the first
one outperforms the other two. This implies the
justifications in WinoWhy are not useful for the
NLMs. On the other hand, fine-tuning NLMs on
larger WSC-like datasets does have a positive re-
sult, especially for the larger models. We also ob-

verse that the performances on the three variants
of WINOLOGIC are rather similar, suggesting that
although they use different mentioning schemes
(variables, grounded, and ordinal mentions), the
difficulty doesn’t come from the use of the more
abstract variables.

From Table 4, we take a closer look at how
NLMs handle the true and false subsets of WINO-
LOGIC (249 and 269 problems respectively). While
the first baseline has similar accuracies on the two
subsets, the other two have clear tendencies. NLMs
in the second baseline are fine-tuned on WinoWhy,
and they favor classifying WINOLOGIC problems
as positive. One of the possible explanations could
be that WINOLOGIC examples, no matter true or
false, resemble those positive ones in WinoWhy.
On the other hand, the methods in baseline 3 are
clearly rejecting WINOLOGIC examples. The stark
difference in task setting may contribute to this
phenomenon.

In Table 5, we present the average performances
of NLMs in each baseline on the different types of
false WINOLOGIC-Variable. Accuracies between
different types of false knowledge sentences are
similar.

6 Discussion

Although crowd-sourcing is a valuable tool to put
collective intelligence to work, it may not be an
ideal method to produce reliable explanations for
WSC. Firstly, generating explanatory text for even
simple problems is already immensely more dif-
ficult than classifying its correctness. People of-
ten apply common sense subconsciously, and thus
could potentially trivialize its significance. For ex-
ample, we often take the closed-world assumption
for granted. Secondly, it requires a deep reason-
ing process for solving many WSC problems. In
this case, precision and unambiguity would be vi-
tal, which is not exactly the strong suit of crowd-
sourcing. Last but not least, from our prior expe-
rience in collecting expert-provided justifications
similar to those in WinoWhy, we notice the same
issues (e.g., circularity and incoherence) in the col-
lection, even though these NLP-experts were asked
to meticulously explain the reason for WSC prob-
lems. In this paper, we leverage the unambiguity
of FOL which enables us to precisely represent the
commonsense knowledge, while theorem provers
are used to verify its validity, addressing the major
issues in crowd-sourcing explanations.



Model Negation (40) Swapped (72) Replaced (117) Changed (20) Other (20) False (269)

Baseline1 53.75% (0.043) 51.59% (0.031) 49.33% (0.0293) 48.93% (0.0849) 51.79% (0.0586) 50.74% (0.0102)
Baseline2 30.57% (0.1068) 24.54% (0.1123) 28.38% (0.1115) 38.36% (0.1446) 31.21% (0.0848) 28.63% (0.1079)
Baseline3 87.5% (0.1245) 86.39% (0.1304) 84.79% (0.1758) 90% (0.1095) 83% (0.2015) 85.87% (0.1508)
Human 97.92% 96.06% 97.72% 97.5% 93.33% 96.96%

Table 5: Average accuracies of 3 baseline methods on False examples in WINOLOGIC-Variable

Although expert-sourcing formal knowledge is
expensive, quality is of utmost importance, espe-
cially in a zero-shot evaluation setting. WINO-
LOGIC identifies the essential commonsense
knowledge in WSC273, and thus serves as a better
diagnostic dataset for testing current NLMs. The
zero-shot evaluation setting challenges systems to
perform commonsense reasoning without resort-
ing to fine-tuning, towards reaching human-level
capabilities.

Moreover, it is feasible to extend our approach
to other reasoning tasks. Similar to real-life tests
where teachers only design a small number of high-
quality problems, it is not necessary for a diagnos-
tic dataset to contain tens of thousands of problem
instances. After identifying the core of the task and
choosing a proper representation, the cost of expert-
sourcing is manageable by limiting the number of
instances to be within an acceptable range. As long
as typical examples are included and the core to
the reasoning tasks is targeted, a diagnostic dataset
suffices without large-scale problem instances.

While NLMs benefit from large-scale pre-
training and fine-tuning, their performances on
WINOLOGIC fall short of expectations. The “com-
mon sense” they capture is not yet robust enough
for them to understand the knowledge behind WSC.
The contrasting disparity of performances further
confirms the possibility of “overestimating the true
capabilities of machine intelligence on common
sense reasoning” (Sakaguchi et al., 2020), as sys-
tems should not overlook the subtle difference be-
tween a pair of true and false knowledge sentences.
In Example 4, human annotators have no trou-
ble differentiating between “not strong enough”
and “way too strong”, while NLMs are confused.
It is therefore vital for WSC solvers to adopt
knowledge-aware mechanisms that are capable of
integrating common sense beyond shallow infer-
ence.

7 Conclusion

We show a knowledge-based perspective for eval-
uating recent improvements on the Winograd

Schema Challenge. Instead of crowd-sourcing jus-
tifications, we take a more reliable logic-based
route. By formalizing the WSC problems and
the needed commonsense knowledge into FOL
formulas, we verify the capability of using such
knowledge for solving the problems. To test re-
cent neural language models, we translate the com-
monsense knowledge into natural language sen-
tences. Simple transformations create negative
versions of these sentences. We propose WINO-
LOGIC, a novel evaluation dataset of 562 WSC-
related knowledge classification problems that are
also human-validated. This new task requires sys-
tems to determine whether a knowledge sentence
could be used to solve the corresponding WSC
problem. The experiments show that recent lan-
guage models do not have a correct understanding
of the required knowledge, even though they are
already fine-tuned on the similar WinoWhy dataset.
Our exploration suggests that the challenge of com-
monsense reasoning in WSC is still bottlenecked
by the lack of machine common sense.
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Appendix

Computing Infrastructure

We use a workstation with

• Intel i9-10980XE (16 cores) CPU;

• 64GB of RAM;

• 2 GPUs (RTX 3090).

Hyper-parameters

For the second baseline method, we manually set
the hyper-parameters shown in Table 6.

Model

Learning Rate Seed
42 1718 3149 8747 9334

BERT(base) 1e-2 1e-2 5e-3 1e-2 1e-2
BERT(large) 1e-4 1e-4 1e-4 1e-4 1e-4
RoBERTa(base) 2e-2 3e-2 2e-2 1e-2 2e-2
RoBERTa(large) 2e-5 2e-5 1e-5 2e-5 2e-5
GPT-2(base) 5e-4 5e-4 5e-4 2e-4 5e-4
GPT-2(large) 1e-4 1e-4 1e-4 1e-4 1e-4
BERT(base)+WSCR 1e-2 1e-2 1e-2 1e-2 1e-2
BERT(large)+WSCR 1e-4 5e-5 1e-4 1e-4 1e-4
BERT(base)+WinoGrande 1e-2 1e-2 1e-2 1e-2 5e-3
BERT(large)+WinoGrande 5e-5 1e-4 1e-4 5e-5 1e-4
RoBERTa(base)+WSCR 1e-2 2e-2 1e-2 5e-3 2e-2
RoBERTa(large)+WSCR 2e-5 2e-5 2e-5 2e-5 2e-5
RoBERTa(base)+WinoGrande 2e-2 1e-2 5e-3 1e-2 1e-2
RoBERTa(large)+WinoGrande 2e-5 1e-5 2e-5 2e-5 1e-5

Table 6: Hyper-parameters for Experiment “Using Aux-
iliary Linear Classifier”. We randomly select five seeds:
42, 1718, 3149, 8747, and 9334. Learning rates corre-
sponded to each seed for each model are shown in the
table. The number of epochs for all models is set to 30.
Batch size for base models except GPT-2(base) is 32,
while the batch size for large models and GPT-2(base)
is 1.

Figure 2: Annotation Interface: An annotator decides
whether a WINOLOGIC problem is correct or not.

Figure 3: Annotation Instruction

Annotations
Human annotations are done using an online ques-
tionnaire system where each WINOLOGIC prob-
lem is presented as a binary classification problem.
Figure 2 shows the screenshot of the annotation
interface. Before the annotations, the annotators re-
ceived instructions in a PDF file with a screenshot
shown in Figure 3.

Annotator Details Each annotator was recruited
with their consent to assist research. They receive
fair compensation of 500 Chinese Yuan per annota-
tor. The annotation was not mandatory coursework.
None of the annotators received course credit for
it. From the submitted data, they worked for an
average of 8.7 hours. Note that we didn’t pose
restrictions on how long they should spend on an-
notating.


