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Abstract
In a seminal paper, Lin and Reiter introduced the
notion of progression for basic action theories in
the situation calculus. Unfortunately, progression is
not first-order definable in general. Recently, Vas-
sos, Lakemeyer, and Levesque showed that in case
actions have only local effects, progression is first-
order representable. However, they could show
computability of the first-order representation only
for a restricted class. Also, their proofs were quite
involved. In this paper, we present a result stronger
than theirs that for local-effect actions, progression
is always first-order definable and computable. We
give a very simple proof for this via the concept
of forgetting. We also show first-order definability
and computability results for a class of knowledge
bases and actions with non-local effects. More-
over, for a certain class of local-effect actions and
knowledge bases for representing disjunctive infor-
mation, we show that progression is not only first-
order definable but also efficiently computable.

1 Introduction
A fundamental problem in reasoning about action is projec-
tion, which is concerned with determining whether or not a
formula holds after a number of actions have occurred, given
a description of the preconditions and effects of the actions
and what the world is like initially. Projection plays an impor-
tant role in planning and in action languages such as Golog
[Levesque et al., 1997] or A [Gelfond and Lifschitz, 1993].

Two powerful methods to solve the projection problem are
regression and progression. Roughly, regression reduces a
query about the future to a query about the initial knowledge
base (KB). Progression, on the other hand, changes the initial
KB according to the effects of each action and then checks
whether the formula holds in the resulting KB. One advantage
of progression compared to regression is that after a KB has
been progressed, many queries about the resulting state can
be processed without any extra overhead. Moreover, when the
action sequence becomes very long, as in the case of a robot
operating for an extended period of time, regression simply
becomes unmanageable. However, projection via progres-
sion has three main computational requirements which are

not easy to satisfy: the new KB must be efficiently computed,
its size should be at most linear in the size of the initial KB
(to allow for iterated progression), and it must be possible to
answer the query efficiently from the new KB.

As Lin and Reiter [1997] showed in the framework of Re-
iter’s version of the situation calculus [Reiter, 2001], pro-
gression is second order in general. And even if it is first-
order (FO) definable, the size of the progressed KB may
be unmanageable and even infinite. Recently, Vassos and
Levesque [2008] also showed that the second-order nature of
progression is in general inescapable, as a restriction to FO
theories (even infinite ones) is strictly weaker in the sense
that inferences about the future may be lost compared to the
second-order version.

Nevertheless, for restricted action theories, progression can
be FO definable and very effective. The classical example is
STRIPS, where the initial KB is a set of literals and progres-
sion can be described via the usual add and delete lists. Since
STRIPS is quite limited in expressiveness, it seems worth-
while to investigate more powerful action descriptions which
still lend themselves to FO definable progression. Lin and
Reiter [1997] already identified two such cases, and recently
Vassos et al. [2008] were able to show that for so-called
local-effect actions, which only change the truth values of flu-
ent atoms with arguments mentioned by the actions, progres-
sion is always FO definable. However, they showed the com-
putability of the FO representation only for a special case.

In this paper, we substantially improve and extend the re-
sults of Vassos et al.. By appealing to the notion of forget-
ting [Lin and Reiter, 1994], we show that progression for ar-
bitrary local-effect actions is always FO definable and com-
putable. We extend this result to certain actions with non-
local effects like the briefcase domain, where moving a brief-
case implicitly moves all the objects contained in it. For
the special case of so-called proper+ KBs [Lakemeyer and
Levesque, 2002] and a restricted class of local-effect actions
we show that progression is not only first-order definable but
also efficiently computable.

The rest of the paper is organized as follows. In the next
section we introduce background material, including the no-
tion of forgetting, Reiter’s basic action theories, and progres-
sion. In Section 3 we present our result concerning local-
effect actions. Section 4 deals with non-local effects and Sec-
tion 5 with proper+ KBs. Then we conclude.



2 Preliminaries
We start with a first-order language L with equality. The set
of formulas ofL is the least set which contains the atomic for-
mulas, and if φ and ψ are in the set and x is a variable, then
¬φ, (φ∧ψ) and ∀xφ are in the set. The connectives ∨, ⊃, ≡,
and ∃ are understood as the usual abbreviations. To improve
readability, sometimes we put parentheses around quantifiers.
We use the “dot” notation to indicate that the quantifier pre-
ceding the dot has maximum scope, e.g., ∀x.P (x) ⊃ Q(x)
stands for ∀x[P (x) ⊃ Q(x)]. We often omit leading univer-
sal quantifiers in writing sentences. We use φ ⇔ ψ to mean
that φ and ψ are logically equivalent. Let φ be a formula, and
let µ and µ′ be two expressions. We denote by φ(µ/µ′) the
result of replacing every occurrence of µ in φ with µ′.

2.1 Forgetting
Lin and Reiter [1994] defined the concept of forgetting a
ground atom or predicate in a theory. Intuitively, the resulting
theory should be weaker than the original one, but entail the
same set of sentences that are “irrelevant” to the ground atom
or predicate.

Definition 2.1 Let µ be either a ground atom P (~t) or a pred-
icate symbol P . Let M1 and M2 be two structures. We write
M1 ∼µ M2 if M1 and M2 agree on everything except possi-
bly on the interpretation of µ.

Definition 2.2 Let T be a theory, and µ a ground atom or
predicate. A theory T ′ is a result of forgetting µ in T , denoted
by forget(T, µ) ⇔ T ′, if for any structure M , M |= T ′ iff
there is a model M ′ of T such that M ∼µ M

′.

Clearly, if both T ′ and T ′′ are results of forgetting µ in T ,
then they are logically equivalent. Similarly, we can define
the concept of forgetting a set of atoms or predicates. In this
paper, we are only concerned with finite theories. So hence-
forth we only deal with forgetting for sentences.

Lin and Reiter [1994] showed that for any sentence φ and
atom p, forgetting p in φ is FO definable and can be obtained
from φ and p by simple syntactic manipulations. Here we
reformulate their result in the context of forgetting a finite
number of atoms. We first introduce some notation.

Let Γ be a finite set of ground atoms. We call a truth as-
signment θ of atoms from Γ a Γ-model. Clearly, a Γ-model θ
can be represented by a conjunction of literals. We useM(Γ)
to denote the set of all Γ-models. Let φ be a formula, and θ a
Γ-model. We use φ[θ] to denote the result of replacing every
occurrence of P (~t) in φ by the following formula:

m∨
j=1

(~t = ~tj ∧ vj) ∨ (
m∧

j=1

~t 6= ~tj) ∧ P (~t),

where for j = 1, . . . ,m, the truth value of P (~tj) is specified
by θ, and vj is the truth value.

Proposition 2.3 Let φ be a formula, M ∼Γ M
′, θ ∈ M(Γ),

and M |= θ. Then for any variable assignment σ, M,σ |= φ
iff M ′, σ |= φ[θ].

Theorem 2.4 forget(φ,Γ)⇔
∨

θ∈M(Γ) φ[θ].

Proof: Let M be a structure. We show that M |=∨
θ∈M(Γ) φ[θ] iff there is a model M ′ of φ s.t. M ∼Γ M ′.

Suppose the latter. Let θ ∈ M(Γ) s.t. M ′ |= θ. By Propo-
sition 2.3, M |= φ[θ]. Now suppose M |= φ[θ], where
θ ∈ M(Γ). Let M ′ be the structure s.t. M ∼Γ M ′ and
M ′ |= θ. By Proposition 2.3, M ′ |= φ.

Corollary 2.5
forget(φ,Γ)⇔

∨
θ∈M(Γ) and φ ∧ θ is consistent φ[θ].

Proof: By Proposition 2.3, φ ∧ θ entails φ[θ].
Thus if φ ∧ θ is inconsistent, so is φ[θ].

Example 2.1 Let φ = ∀x.clear(x),
and Γ = {clear(A), clear(B)}. Then
φ[clear(A) ∧ clear(B)]=∀x.x=A ∧ true∨x=B ∧ true

∨ x 6= A ∧ x 6= B ∧ clear(x), which is equivalent to
∀x.x = A∨ x = B ∨ x 6= A∧ x 6= B ∧ clear(x). Similarly,
φ[clear(A) ∧ ¬clear(B)]⇔

∀x.x = A ∨ x 6= A ∧ x 6= B ∧ clear(x),
φ[¬clear(A) ∧ clear(B)]⇔

∀x.x = B ∨ x 6= A ∧ x 6= B ∧ clear(x), and
φ[¬clear(A) ∧ ¬clear(B)]⇔

∀x.x 6= A ∧ x 6= B ∧ clear(x).
Thus forget(φ,Γ)⇔
∀x.x = A ∨ x = B ∨ x 6= A ∧ x 6= B ∧ clear(x),

which is equivalent to ∀x.x 6= A ∧ x 6= B ⊃ clear(x).

We now assume L2, the second-order extension of L.

Theorem 2.6 forget(φ, P ) ⇔ ∃R.φ(P/R), where R is a
second-order predicate variable.

Example 2.2 Let φ1 = ∀x.clear(x) ∨ ∃y.on(y, x). Then
forget(φ1, clear) ⇔ ∃R∀x.R(x) ∨ ∃y.on(y, x), which is
equivalent to true. Let φ2 = ∃x.clear(x) ∧ ∃y.on(x, y).
Then forget(φ2, clear)⇔ ∃R∃x.R(x) ∧ ∃y.on(x, y), which
is equivalent to ∃x∃y.on(x, y).

In general, forgetting a predicate is not FO definable. Nat-
urally, by Theorem 2.6, second-order quantifier elimination
techniques can be used for obtaining FO definability results
for forgetting a predicate. In fact, Doherty et al. [2001] used
such techniques for computing strongest necessary and weak-
est sufficient conditions of FO formulas, which are concepts
closely related to forgetting. As surveyed in [Nonnengart et
al., 1999], the following is a classical result on second-order
quantifier elimination due to Ackermann (1935). A formula
φ is positive (resp. negative) wrt a predicate P if ¬P (resp.
P ) does not occur in the negation normal form of φ.

Theorem 2.7 Let P be a predicate variable, and let φ and
ψ(P ) be FO formulas such that ψ(P ) is positive wrt P and
φ contains no occurrence of P at all. Then

∃P.∀~x(¬P (~x) ∨ φ(~x)) ∧ ψ(P )

is logically equivalent to ψ(P (~x) ← φ(~x)), denoting the re-
sult of replacing each occurrence of P (~t) in ψ with φ(~t), and
similarly if the sign of P is switched and ψ is negative wrt P .



2.2 Basic action theories
The language Lsc of the situation calculus [Reiter, 2001] is
a many-sorted first-order language suitable for describing dy-
namic worlds. There are three disjoint sorts: action for ac-
tions, situation for situations, and object for everything else.
Lsc has the following components: a constant S0 denoting the
initial situation; a binary function do(a, s) denoting the suc-
cessor situation to s resulting from performing action a; a bi-
nary predicate Poss(a, s) meaning that action a is possible in
situation s; action functions, e.g.,move(x, y); a finite number
of relational fluents, i.e., predicates taking a situation term as
their last argument, e.g., ontable(x, s); and a finite number
of situation-independent predicates and functions. For sim-
plicity of presentation, we do not consider functional fluents
in this paper.

Often, we need to restrict our attention to formulas that
refer to a particular situation. For this purpose, we say that
a formula φ is uniform in a situation term τ , if φ does not
mention any other situation terms except τ , does not quantify
over situation variables, and does not mention Poss.

A particular domain of application will be specified by a
basic action theory of the following form:

D = Σ ∪ Dap ∪ Dss ∪ Duna ∪ DS0 , where

1. Σ is the set of the foundational axioms for situations.

2. Dap is a set of action precondition axioms.

3. Dss is a set of successor state axioms (SSAs), one for
each fluent, of the form

F (~x, do(a, s)) ≡ γ+
F (~x, a, s)∨(F (~x, s)∧¬γ−F (~x, a, s)),

where γ+
F (~x, a, s) and γ−F (~x, a, s) are uniform in s.

4. Duna is the set of unique names axioms for actions:
A(~x) 6= A′(~y), and A(~x) = A(~y) ⊃ ~x = ~y, where A
and A′ are distinct action functions.

5. DS0 , usually called the initial database, is a finite set of
sentences uniform in S0. We call DS0 the initial KB.

2.3 Progression
Lin and Reiter [1997] formalized the notion of progression.
Let D be a basic action theory, and α a ground action. We
denote by Sα the situation term do(α, S0).

Definition 2.8 Let M and M ′ be structures with the same
domains for sorts action and object. We write M ∼Sα M ′

if the following two conditions hold: (1) M and M ′ inter-
pret all situation-independent predicate and function symbols
identically. (2) M and M ′ agree on all fluents at Sα: For
every relational fluent F , and every variable assignment σ,
M,σ |= F (~x, Sα) iff M ′, σ |= F (~x, Sα).

We denote by L2
sc the second-order extension of Lsc. The

notion of uniform formulas carries over to L2
sc.

Definition 2.9 Let DSα
be a set of sentences in L2

sc uniform
in Sα. DSα

is a progression of the initial KB DS0 wrt α if for
any structure M , M is a model of DSα

iff there is a model
M ′ of D such that M ∼Sα

M ′.

Lin and Reiter [1997] proved that progression is always
second-order definable. They used an old version of SSAs
in their formulation of the result; here we reformulate their
result using the current form of SSAs.

We letDss[α, S0] denote the instantiation ofDss wrt α and
S0, i.e., the set of sentences F (~x, do(α, S0)) ≡ ΦF (~x, α, S0).
Let F1, . . . , Fn be all the fluents. We introduce n new predi-
cate symbols P1, . . . , Pn. We use φ ↑S0 to denote the result
of replacing every occurrence of Fi(~t, S0) in φ by Pi(~t). We
call Pi the lifting predicate for Fi. When Σ is a finite set of
formulas, we denote by ∧Σ the conjunction of its elements.

Theorem 2.10 The following is a progression of DS0 wrt α:

∃~R.{
∧

(Duna ∪ DS0 ∪ Dss[α, S0])↑S0}(~P/~R),

where R1, . . ., Rn are second-order predicate variables.

Therefore, by Theorem 2.6, if φ is uniform in Sα and φ
is a result of forgetting the lifting predicates ~P in

∧
(Duna ∪

DS0 ∪Dss[α, S0])↑S0, then it is a progression of DS0 wrt α.

3 Progression for local-effect actions
In this section, we show that for local-effect actions, progres-
sion is always FO-definable and computable.

We first show an intuitive result concerning forgetting a
predicate: if a sentence φ entails that the truth values of two
predicates P and Q are different at only a finite number of
certain instances, then forgetting the predicate Q in φ can be
obtained from forgetting the Q atoms of these instances in φ
and then replacing Q by P in the result.

Let ~x be a variable vector, and let ∆ = {~t1, . . . ,~tm} be
a set of vectors of ground terms, where all the vectors have
the same length. We use ~x ∈ ∆ to denote the formula ~x =
~t1 ∨ . . . ∨ ~x = ~tm. Let P and Q be two predicates. We let
Q(∆) denote the set {Q(~t) | ~t ∈ ∆}, and we let P ≈∆ Q
denote the sentence ∀~x.~x 6∈ ∆ ⊃ P (~x) ≡ Q(~x).

Proposition 3.1 Let φ be a formula, M |= P ≈∆ Q, and
θ ∈M(Q(∆)). Then for any variable assignment σ,M,σ |=
φ[θ](Q/P ) iff M,σ |= φ[θ].

Theorem 3.2 Let P and Q be two predicates, and ∆ a finite
set of vectors of ground terms. If forget(φ,Q(∆))⇔ ψ, then
forget(φ ∧ (P ≈∆ Q), Q)⇔ ψ(Q/P ).

Proof: Let Γ = Q(∆). By Theorem 2.4, forget(φ,Γ) ⇔∨
θ∈M(Γ) φ[θ]. Let M be a structure. We show that M |=∨
θ∈M(Γ) φ[θ](Q/P ) iff there is a modelM ′ of φ∧(P ≈∆Q)

s.t. M ∼Q M ′. Suppose the latter. Let θ ∈ M(Γ) s.t.
M ′ |= θ. Since M ′ |= θ and M ′ |= φ, by Proposition 2.3,
M ′ |= φ[θ]. Since M ′ |= P ≈∆ Q, by Proposition 3.1,
M ′ |= φ[θ](Q/P ). Since M ∼Q M ′, M |= φ[θ](Q/P ).

Now suppose M |= φ[θ](Q/P ), where θ ∈ M(Γ). Let
M ′ be the structure s.t. M ∼Q M ′, M ′ |= P ≈∆ Q,
and M ′ |= θ. Since M ∼Q M ′ and M |= φ[θ](Q/P ),
M ′ |=φ[θ](Q/P ). SinceM ′ |= P ≈∆ Q, by Proposition 3.1,
M ′ |= φ[θ]. Since M ′ |= θ, by Proposition 2.3, M ′ |= φ.

Actions in many dynamic domains have only local effects
in the sense that if an action A(~c ) changes the truth value



of an atom F (~d, s), then ~d is contained in ~c . This contrasts
with actions having non-local effects such as moving a brief-
case, which will also move all the objects inside the briefcase
without having mentioned them.

Definition 3.3 An SSA is local-effect if both γ+
F (~x, a, s) and

γ−F (~x, a, s) are disjunctions of formulas of the form ∃~z [a =
A(~u) ∧ φ(~u, s)], where A is an action function, ~u contains ~x,
~z is the remaining variables of ~u, and φ is called a context
formula. An action theory is local-effect if each SSA is local-
effect.

Example 3.1 Consider a simple blocks world. We use a sin-
gle action, move(x, y, z), moving a block x from block y
to block z. We use two fluents: clear(x, s), block x has
no blocks on top of it; on(x, y, s), block x is on block y;
eh(x, s), the height of block x is even. Clearly, the following
SSAs are local-effect:
clear(x, do(a, s)) ≡ (∃y, z)a = move(y, x, z) ∨

clear(x, s) ∧ ¬(∃y, z)a = move(y, z, x),
on(x, y, do(a, s)) ≡ (∃z)a = move(x, z, y) ∨

on(x, y, s) ∧ ¬(∃z)a = move(x, y, z),
eh(x, do(a, s)) ≡ (∃y, z)[a = move(x, y, z) ∧ ¬eh(z, s)] ∨

eh(x, s) ∧ ¬(∃y, z)[a = move(x, y, z) ∧ eh(z, s)].
By using the unique names axioms, the instantiation of a

local-effect SSA on a ground action can be simplified. Sup-
pose the SSA for F is local-effect. Let α = A(~t) be a ground
action. Then each of γ+

F (~x, α, s) and γ−F (~x, α, s) is equiva-
lent to a formula of the following form:

~x = ~t1 ∧ ψ1(s) ∨ . . . ∨ ~x = ~tn ∧ ψn(s),

where ~ti is a vector of ground terms contained in ~t, and ψi(s)
is a formula whose only free variable is s. Without loss of
generality, we assume that for a local-effect SSA, γ+

F (~x, α, s)
and γ−F (~x, α, s) have the above simplified form. In the case
of our blocks world, we have:

clear(x, do(move(c1, c2, c3), s)) ≡ x = c2 ∨
clear(x, s) ∧ ¬(x = c3),

on(x, y, do(move(c1, c2, c3), s)) ≡ x = c1 ∧ y = c3 ∨
on(x, y, s) ∧ ¬(x = c1 ∧ y = c2),

eh(x, do(move(c1, c2, c3), s)) ≡ x = c1 ∧ ¬eh(c3, s) ∨
eh(x, s) ∧ ¬(x = c1 ∧ eh(c3, s)).

Following Vassos et al. [2008], we define the concepts of
argument set and characteristic set:

Definition 3.4 Let D be local-effect, and α a ground action.
The argument set of fluent F wrt α is the following set:

∆F = {~t | ~x = ~t appears in γ+
F (~x, α, s) or γ−F (~x, α, s)}.

The characteristic set of α is the following set of atoms:

Ω(s) = {F (~t, s) | F is a fluent and ~t ∈ ∆F }.
We let Dss[Ω] denote the instantiation of Dss wrt Ω,

i.e., the set of sentences F (~t, Sα) ≡ ΦF (~t, α, S0), where
F (~t, s) ∈ Ω. We let Dss[Ω] denote the set of sentences
~x 6∈ ∆F ⊃ F (~x, Sα) ≡ F (~x, S0). Then we have

Proposition 3.5 Let D be local-effect, and α a ground ac-
tion. Then Duna |= Dss[α, S0] ≡ Dss[Ω] ∪ Dss[Ω].

Theorem 3.6 Let D be local-effect, and α a ground action.
Let Ω(s) be the characteristic set of α. Then the following is
a progression of DS0 wrt α:∧

Duna ∧
∨

θ∈M(Ω(S0))
(DS0 ∪ Dss[Ω])[θ](S0/Sα).

Proof: By Proposition 3.5, Theorems 2.4, 2.10 and 3.2.
The size of the progression isO(2mn), wherem is the size

of the characteristic set, and n is the size of the action theory.
When we do iterative progression wrt a sequence δ of actions,
the size of the resulting KB is O(2lmn), where l is the length
of δ, and m is the maximum size of the characteristic sets.

Corollary 3.7 Progression for local-effect actions is always
FO definable and computable.

We remark that this result is strictly more general than the
one obtained by Vassos et al. [2008], who only showed that
progression for local-effect actions is FO definable in a non-
constructive way, i.e., they left open the question whether the
FO representation is computable or even finite. Moreover,
while their proof is quite involved, having to appeal to Com-
pactness of FO logic, ours is actually fairly simple.

Example 3.1 continued. Let α = move(A,B,C). Then
Ω = {clear(B, s), clear(C, s), on(A,B, s), on(A,C, s),
eh(A, s)}.Dss[Ω] is simplified to {clear(B,Sα),¬clear(C,
Sα),¬on(A,B,Sα), on(A,C,Sα), eh(A,Sα)≡¬eh(C,S0)}.

Let DS0 be the following set of sentences:
A 6= B,A 6= C,B 6= C, clear(A,S0),
on(A,B, S0), clear(C,S0), clear(x, S0) ⊃ eh(x, S0),
on(x, y, S0) ⊃ ¬clear(y, S0).
ThenDS0 entails ϑ, denoting ¬clear(B,S0)∧clear(C,S0)∧
on(A,B, S0) ∧ ¬on(A,C, S0). Thus there are only two θ ∈
M(Ω(S0)) which are consistent with DS0 :
θ1 = ϑ ∧ eh(A,S0) and θ2 = ϑ ∧ ¬eh(A,S0).

For example, let φ = clear(x, S0) ⊃ eh(x, S0).
Then φ[θ1]⇔ clear(x, S0)[ϑ] ⊃ x = A∨x 6= A∧eh(x, S0),
and φ[θ2]⇔ clear(x, S0)[ϑ] ⊃ x 6= A ∧ eh(x, S0).
Thus φ[θ1] ∨ φ[θ2] is equivalent to
x = C ∨ x 6= B ∧ x 6= C ∧ clear(x, S0)

⊃ x = A ∨ x 6= A ∧ eh(x, S0).
By Theorem 3.6 and Corollary 2.5, the following is a pro-

gression of DS0 wrt α:
move(x1, y1, z1) = move(x2, y2, z2)

⊃ x1 = x2 ∧ y1 = y2 ∧ z1 = z2,
A 6= B,A 6= C,B 6= C, clear(A,Sα),
x = C ∨ x 6= B ∧ x 6= C ∧ clear(x, Sα) ⊃

x = A ∨ x 6= A ∧ eh(x, Sα),
x = A ∧ y = B ∨

(x 6= A ∨ y 6= B) ∧ (x 6= A ∨ y 6= C) ∧ on(x, y, Sα) ⊃
¬(y = C ∨ y 6= B ∧ y 6= C ∧ clear(y, Sα)),

clear(B,Sα),¬clear(C,Sα),¬on(A,B, Sα),
on(A,C, Sα), eh(A,Sα) ≡ ¬eh(C,Sα).

4 Progression for normal actions
In the last section, we showed that for local-effect actions,
progression is FO definable and computable. An interesting
observation about non-local-effect actions is that their effects
often do not depend on the fluents on which they have non-
local effects, that is, they normally have local effects on the



fluents that appear in every γ+
F and γ−F . For example, mov-

ing a briefcase will move all the objects in it as well without
affecting the fluent in. We will call such an action a normal
action. In this section, we show that for a normal action α,
if the initial KB has the property that for each fluent F on
which α has non-local effects, the only appearance of F is
in the form of φ(~x) ⊃ F (~x, S0) or φ(~x) ⊃ ¬F (~x, S0), then
progression is FO definable and computable.

Our result is inspired by a result by Lin and Reiter [1997]
that for context-free action theories, that is, action theo-
ries where every predicate appearing in every γ+

F and γ−F is
situation-independent, if the initial KB has the property that
for each fluent F , the only appearance of F is in the form of
φ(~x) ⊃ F (~x, S0) or φ(~x) ⊃ ¬F (~x, S0), then progression is
FO definable and computable. Incidentally, their result can be
considered as an application of a simple case of the classical
result by Ackermann (see Theorem 2.7). To prove our result,
we combine the application of this simple case and the proof
idea behind our result for local-effect actions.

We first present this simple case of Ackermann’s result:

Definition 4.1 We say that a finite theory T is semi-
definitional wrt a predicate P if the only appearance of P in
T is in the form of P (~x) ⊃ φ(~x), where we call φ(~x) a nec-
essary condition of P , or φ(~x) ⊃ P (~x), where we call φ(~x)
a sufficient condition of P . We use WSCP (meaning weakest
sufficient condition) to denote the disjunction of φ(~x) such
that φ(~x) ⊃ P (~x) is in T , and we use SNCP (meaning
strongest necessary condition) to denote the conjunction of
φ(~x) such that P (~x) ⊃ φ(~x) is in T .

Theorem 4.2 Let T be finite and semi-definitional wrt P . Let
T ′ be the set of sentences in T that contains no occurrence of
P . Then forget(T, P )⇔ T ′ ∧ ∀~x.WSCP (~x) ⊃ SNCP (~x).

Proof: Clearly, ∃R.T (P/R) |= T ′ ∧ ∀~x.WSCP (~x) ⊃
SNCP (~x). To prove the opposite entailment, simply use the
definition ∀~x.P (~x) ≡WSCP (~x).

The following proposition shows that the SSA for a fluent
F is semi-definitional wrt the predicate F (~x, S0) provided
that F does not appear in γ+

F or γ−F .

Proposition 4.3 The sentence F (~x, Sα) ≡ γ+
F (~x, α, S0) ∨

F (~x, S0) ∧ ¬γ−F (~x, α, S0) is equivalent to the following sen-
tences: ¬γ+

F ∧ F (~x, Sα) ⊃ F (~x, S0), F (~x, S0) ⊃ γ−F ∨
F (~x, Sα), γ+

F ⊃ F (~x, Sα), and ¬γ+
F ∧ γ

−
F ⊃ ¬F (~x, Sα).

We now formalize our constraints on the actions and the
initial KBs.

Definition 4.4 We say that a ground action α has local ef-
fects on a fluent F , if by using Duna, each of γ+

F (~x, α, s) and
γ−F (~x, α, s) can be simplified to a disjunction of formulas of
the form ~x = ~t∧ψ(s), where~t is a vector of ground terms, and
ψ(s) is a formula whose only free variable is s. We denote by
LE(α) the set of all fluents on which α has local effects.

Definition 4.5 We say that α is normal if for each fluent F ,
all the fluents that appear in γ+

F and γ−F are in LE(α).

Clearly, both context-free and local-effect actions are nor-
mal actions.

Definition 4.6 We say that DS0 is normal wrt α if for each
fluent F 6∈ LE(α), DS0 is semi-definitional wrt F .

Thus any fluent F ∈ LE(α) can appear in DS0 in an arbi-
trary way. We now have the main result of this section:

Theorem 4.7 Let DS0 be normal wrt a normal action α.
Then progression of DS0 wrt α is FO definable and com-
putable.

Proof: By Theorem 2.10, we need to forget the lifting pred-
icates in

∧
(Duna ∪ DS0 ∪ Dss[α, S0]) ↑S0. Since α is nor-

mal, for each fluent F , all the fluents that appear in γ+
F and

γ−F are in LE(α). By Proposition 4.3, for each F 6∈ LE(α),
Dss[α, S0] is semi-definitional wrt F (~x, S0). Since DS0 is
normal wrt α, for each fluent F 6∈ LE(α), DS0 is semi-
definitional wrt F . By applying Theorem 4.2, we forget the
lifting predicate for F 6∈ LE(α). Now by applying Theorem
3.6, we forget the lifting predicate for F ∈ LE(α).

Example 4.1 The following is Dss for the briefcase domain:
at(x, l, do(a, s)) ≡ (∃b)[a = move(b, l)∧ (x = b∨ in(x, b, s))]∨
at(x, l, s) ∧ ¬(∃b, m)[a = move(b, m) ∧ (x = b ∨ in(x, b, s))],
in(x, b, do(a, s)) ≡ a = putin(x, b) ∨

in(x, b, s) ∧ ¬a = getout(x, b).
For a ground action α = move(c1, c2), by using Duna,

Dss[α, S0] can be simplified as follows:
at(x, l, do(α, S0)) ≡ l = c2 ∧ (x = c1 ∨ in(x, c1, S0)) ∨

at(x, l, S0) ∧ ¬(x = c1 ∨ in(x, c1, S0)),
in(x, b, do(α, S0)) ≡ in(x, b, S0).
Clearly, α has local effects on in, and it is a normal action.

Now let DS0 be as follows:
∃x∀y¬in(x, y, S0), ¬in(A1, B1, S0),
in(A2, B2, S0) ∨ in(A2, B3, S0),
at(b, l, S0) ∧ in(x, b, S0) ⊃ at(x, l, S0),
at(x, l′, S0) ∧ l 6= l′ ⊃ ¬at(x, l, S0),
b = B1 ∧ l = L1 ∨ b = B2 ∧ l = L2 ⊃ at(x, l, S0),
b = B3 ∧ (l = L1 ∨ l = L2) ⊃ ¬at(x, l, S0).
Then DS0 is normal wrt α = move(B1, L2). To progress it
wrt α, we first apply Theorem 4.2 to forget the lifting predi-
cate for at(x, l, s), and obtain a set Σ of sentences as follows:

1. If φ ∈ DS0 does not mention fluent at, then φ ∈ Σ.

2. Add to Σ the following sentences:
l = L2 ∧ (x = B1 ∨ in(x,B1, S0)) ⊃ at(x, l, Sα),
l 6= L2 ∧ (x = B1 ∨ in(x,B1, S0)) ⊃ ¬at(x, l, Sα).

3. If φ ⊃ at(x, l, S0) is in DS0 , then add to Σ the sentence
φ ∧ ¬(x = B1 ∨ in(x,B1, S0)) ⊃ at(x, l, Sα).

4. If φ ⊃ ¬at(x, l, S0) is in DS0 , add to Σ the sentence
φ∧(l 6= L2∨x 6= B1∧¬in(x,B1, S0)) ⊃ ¬at(x, l, Sα).

Now since we have in(x, b, Sα) ≡ in(x, b, S0), we simply
replace each occurrence of S0 in Σ with Sα; the result to-
gether with Duna is a progression of DS0 wrt α.

5 Progression of proper+ KBs
In Sections 3 and 4, we showed that for local-effect and nor-
mal actions, progression is FO definable and computable.
However, the progression may not be efficiently computable.



In this section, we show that for local-effect and normal ac-
tions, progression is not only FO definable but also efficiently
computable under the two constraints that the initial KB is in
the form of the so-called proper+ KBs, which represent first-
order disjunctive information, and the successor state axioms
are essentially quantifier-free.

Proper+ KBs were proposed by Lakemeyer and Levesque
[2002] as a generalization of proper KBs, which were pro-
posed by Levesque [1998] as an extension of databases. In-
tuitively, a proper+ KB is equivalent to a (possibly infinite)
set of ground clauses. A tractable limited reasoning ser-
vice has been developed for proper+ KBs [Liu et al., 2004;
Liu and Levesque, 2005]. What is particularly interesting
about our results here is that progression of proper+ KBs is
definable as proper+ KBs, so that we can make use of the
available tractable reasoning service.

To formally define proper+ KBs, we use a FO language
Lc with equality, a countably infinite set of constants, which
are intended to be unique names, and no other function sym-
bols. We let e range over ewffs, i.e., quantifier-free formulas
whose only predicate is equality. We denote by E the axioms
of equality and the set of formulas {(c 6= c′) | c and c′ are dis-
tinct constants}. We let ∀φ denote the universal closure of φ.

Definition 5.1 Let e be an ewff and d a clause. Then a for-
mula of the form ∀(e ⊃ d) is called a ∀-clause. A KB is
called proper+ if it is a finite non-empty set of ∀-clauses.

Example 5.1 Consider our blocks world. The following is a
initial KB DS0 which is proper+:
on(x, y, S0) ⊃ ¬clear(y, S0),
on(x, y, S0) ∧ eh(y, S0) ⊃ ¬eh(x, S0),
x = A ∨ x = C ⊃ clear(x, S0),
x = D ∨ x = E ∨ x = F ⊃ ¬eh(x, S0),
x = A ∧ y = B ∨ x = B ∧ y = F ⊃ on(x, y, S0),
on(C,D, S0) ∨ on(C,E, S0).

We begin with forgetting in proper+ KBs. We first intro-
duce some definitions and propositions.

Definition 5.2 Let φ be a sentence, and p a ground atom. We
say that p is irrelevant to φ if forget(φ, p)⇔ φ.

Proposition 5.3 Let p be a ground atom. Let φ1, φ2, φ3

be sentences such that p is irrelevant to them. Then
forget((φ1 ⊃ p) ∧ (p ⊃ φ2) ∧ φ3, p)⇔ (φ1 ⊃ φ2) ∧ φ3.

Proposition 5.4 Let φ = ∀(e ⊃ d) be a ∀-clause, and P (~c)
a ground atom. Suppose that for any P (~t) appearing in d,
e ∧ ~t = ~c is unsatisfiable. Then P (~c) is irrelevant to φ.

Definition 5.5 Let Σ be a proper+ KB, and P (~c) a ground
atom. We say that Σ is in normal form wrt P (~c), if for any
∀(e ⊃ d) ∈ Σ, and for any P (~t) appearing in d, either ~t is ~c
or e ∧ ~t = ~c is unsatisfiable.

Proposition 5.6 Let P (~c) be a ground atom. Then every
proper+ KB can be converted into an equivalent one which
is in normal form wrt P (~c). This can be done inO(n+2wm)
time, where n is the size of Σ, m is the size of sentences in Σ
where P appears, and w is the maximum number of appear-
ances of P in a sentence of Σ.

Proof: Let φ = ∀(e ⊃ d) be a ∀-clause. Let P (~t1), . . ., P (~tk)
be all the appearances of P in φ, and let Θ={

∧k
i=1

~ti ◦i ~c |
◦i ∈ {=, 6=}}. Let θ ∈ Θ. We let d[θ] denote d with each
P (~ti), 1 ≤ i ≤ k, replaced by P (~c) if θ contains ~ti = ~c.
We use φ[θ] to denote ∀(e ∧ θ ⊃ d[θ]). Obviously, φ is
equivalent to the theory {φ[θ] | θ ∈ Θ}, which we denote
by NF(φ, P (~c)). For a proper+ KB Σ, we convert it into the
union of NF(φ, P (~c)) where φ ∈ Σ.

In the above proof, we can remove those generated ∀-
clauses ∀(e ⊃ d) where d contains complemental literals
or e is unsatisfiable wrt E . For example, the ewff x =
y ∧ x = A ∧ y = B is unsatisfiable wrt E . Also, a ∀-clause
∀(e∧ t = c ⊃ d) can be simplified to ∀(e ⊃ d)(t/c). Finally,
an ewff can be simplified by use of E .

Definition 5.7 Let φ1 = ∀(e1 ⊃ d1∨P (~t)) and φ2 = ∀(e2 ⊃
d2∨¬P (~t)) be two ∀-clauses, where ~t is a vector of constants
or a vector of distinct variables. Without loss of generality, we
assume that φ1 and φ2 do not share variables other than those
contained in ~t. We call the ∀-clause ∀(e1 ∧ e2 ⊃ d1 ∨ d2) the
∀-resolvent of the two input clauses wrt P (~t).

Theorem 5.8 Let Σ be a proper+ KB, and P (~c) a ground
atom. Then the result of forgetting P (~c) in Σ is definable as
a proper+ KB and can be computed in O(n + 4wm2) time,
where n, w, and m are as above.

Proof: We first convert Σ into normal form wrt P (~c). Then
we compute all ∀-resolvents wrt P (~c) and remove all clauses
with P (~c). This results in a proper+ KB, which, by Proposi-
tions 5.3 and 5.4, is a result of forgetting P (~c) in Σ.

Theorem 5.9 Let Σ be a proper+ KB which is semi-
definitional wrt predicate P . Then the result of forgetting P
in Σ is definable as a proper+ KB and can be computed in
O(n + m2) time, where n is the size of Σ, and m is the size
of sentences in Σ where P appears.

Proof: We compute all ∀-resolvents wrt P (~x) and remove
all clauses containing P (~x). This results in a proper+ KB,
which, by Theorem 4.2, is a result of forgetting P in Σ.

In the above theorems (Theorems 5.8 and 5.9), it is reason-
able to assume that w = O(1) and m2 = O(n). Under this
assumption, both forgetting can be computed in O(n) time.

Based on the above theorems, we have the following results
concerning progression of proper+ KBs. We first introduce a
constraint on successor state axioms.

Definition 5.10 An SSA is essentially quantifier-free if for
each ground action α, by usingDuna, each of γ+

F (~x, α, s) and
γ−F (~x, α, s) can be simplified to a quantifier-free formula.

For example, the SSAs for our blocks world and briefcase
examples are essentially quantifier-free. For a local-effect
SSA, if each context-formula is quantifier-free, then it is es-
sentially quantifier-free. In general, if both γ+

F (~x, a, s) and
γ−F (~x, a, s) are disjunctions of formulas of the form ∃~z [a =
A(~u) ∧ φ(~x, ~z, s)], where ~u contains ~z, and φ is quantifier-
free, then the SSA is essentially quantifier-free.

Proposition 5.11 Suppose Dss is essentially quantifier-free.
Then Dss[α, S0] is definable as a proper+ KB.



Theorem 5.12 Suppose that D is local-effect, Dss is essen-
tially quantifier-free, and DS0 is proper+. Then progression
of DS0 wrt any ground action α is definable as a proper+ KB
and can be efficiently computed.

Theorem 5.13 Suppose that Dss is essentially quantifier-
free, α is a normal action, and DS0 is a proper+ KB which is
normal wrt α. Then progression of DS0 wrt α is definable as
a proper+ KB and can be efficiently computed.

Example 5.1 continued. We now progress DS0 wrt
α = move(A,B,C). For simplicity, we remove the
second sentence from DS0 . The characteristic set of α is
Ω = {clear(B, s), clear(C, s), on(A,B, s), on(A,C, s),
eh(A, s)}.Dss[Ω] is simplified to the following proper+ KB:
{clear(B,Sα),¬clear(C,Sα),¬on(A,B, Sα), on(A,C, Sα),
eh(A,Sα) ∨ eh(C,S0),¬eh(A,Sα) ∨ ¬eh(C,S0)}.

We convert DS0 into normal form wrt Ω(S0), and obtain
after simplification:
y 6= B ∧ y 6= C ∧ (x 6= A ∨ y 6= B ∧ y 6= C) ⊃

(on(x, y, S0) ⊃ ¬clear(y, S0)),
x 6= A ⊃ (on(x,B, S0) ⊃ ¬clear(B,S0)),
x 6= A ⊃ (on(x,C, S0) ⊃ ¬clear(C,S0)),
on(A,B, S0) ⊃ ¬clear(B,S0),
on(A,C, S0) ⊃ ¬clear(C,S0),
x = D ∨ x = E ∨ x = F ⊃ ¬eh(x, S0),
clear(A,S0), clear(C,S0), on(A,B, S0), on(B,F, S0),
on(C,D, S0) ∨ on(C,E, S0).

We now do resolution onDS0∪Dss[Ω] wrt atoms in Ω(S0),
delete all clauses with some atom from Ω(S0), and obtain the
following set Σ:
clear(B,Sα),¬clear(C,Sα),¬on(A,B, Sα), on(A,C, Sα),
eh(A,Sα) ∨ eh(C,S0),¬eh(A,Sα) ∨ ¬eh(C,S0),
y 6= B ∧ y 6= C ∧ (x 6= A ∨ y 6= B ∧ y 6= C) ⊃

(on(x, y, S0) ⊃ ¬clear(y, S0)),
x 6= A ⊃ ¬on(x,C, S0),
x = D ∨ x = E ∨ x = F ⊃ ¬eh(x, S0),
clear(A,S0), on(B,F, S0), on(C,D, S0) ∨ on(C,E, S0).

We replace every occurrence of S0 in Σ with Sα; the result
together with Duna is a progression of DS0 wrt α.

6 Conclusions
In this paper, we have presented the following results. First,
we showed that for local-effect actions, progression is FO de-
finable and computable. This result is stronger than the one
obtained by Vassos et al. [2008], and our proof is a very sim-
ple one via the concept of forgetting. Next, we went beyond
local-effect actions, and showed that for normal actions, i.e.,
actions whose effects do not depend on the fluents on which
the actions have non-local effects, if the initial KB is semi-
definitional wrt these fluents, progression is FO definable and
computable. Third, we showed that for local-effect actions
whose successor state axioms are essentially quantifier-free,
progression of proper+ KBs is definable as proper+ KBs and
can be efficiently computed. Thus we can utilize the avail-
able tractable limited reasoning service for proper+ KBs. As
an extension of our first result, we have shown that for finite-
effect actions, which change the truth values of fluents at only
a finite number of instances, progression is FO definable. We
have also shown that in the presence of functional fluents, our

first and second results still hold. For lack of space, these re-
sults will be presented in a longer version of the paper. For the
future, we would like to implement a Golog interpreter based
on progression of proper+ KBs, which we expect will lead
to a more efficient version of Golog compared to the current
implementation based on regression.
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