
On the Progression of Knowledge in the Situation Calculus
Yongmei Liu

Dept. of Computer Science
Sun Yat-sen University

Guangzhou 510006, China
ymliu@mail.sysu.edu.cn

Ximing Wen1,2

1Dept. of Computer Science
Sun Yat-sen University

2Guangdong Institute of Public Administration
Guangzhou 510006, China

wenxim@student.sysu.edu.cn

Abstract
In a seminal paper, Lin and Reiter introduced the
notion of progression for basic action theories in
the situation calculus. Earlier works by Moore,
Scherl and Levesque extended the situation calcu-
lus to account for knowledge. In this paper, we
study progression of knowledge in the situation
calculus. We first adapt the concept of bisimula-
tion from modal logic and extend Lin and Reiter’s
notion of progression to accommodate knowledge.
We show that for physical actions, progression of
knowledge reduces to forgetting predicates in first-
order modal logic. We identify a class of first-order
modal formulas for which forgetting an atom is de-
finable in first-order modal logic. This class of for-
mulas goes beyond formulas without quantifying-
in. We also identify a simple case where forget-
ting a predicate reduces to forgetting a finite num-
ber of atoms. Thus we are able to show that for
local-effect physical actions, when the initial KB is
a formula in this class, progression of knowledge
is definable in first-order modal logic. Finally, we
extend our results to the multi-agent case.

1 Introduction
In a seminal paper, Lin and Reiter [1997] introduced the no-
tion of progression for basic action theories in the situation
calculus. Roughly, progression concerns updating the repre-
sentation of the current world state after an action is executed.
Lin and Reiter showed that progression is not first-order (FO)
definable in general, and identified two simple cases where
progression is first-order definable and computable. They
also conjectured that there is no alternative definition of pro-
gression that is always first-order definable. The conjecture
was resolved by Vassos and Levesque [2008].

However, knowledge was not taken into account in Lin
and Reiter’s study of progression. To motivate progression of
knowledge, consider the litmus testing example from [Moore,
1985]. Suppose there is an initial representation describ-
ing that the solution is acid and the agent knows the pa-
per is not red. After the agent performs a litmus test on
the solution, how should we update the representation to re-
flect the change to the world state and the agent’s knowledge

state? Intuitively, the new representation should entail that
the agent knows the solution is acid. Moore [1985] adapted
the possible-world model of knowledge to the situation cal-
culus by introducing a special fluent K(s′, s), meaning that
situation s′ is accessible from situation s. Later, Scherl and
Levesque [2003] proposed a solution to the frame problem
for knowledge-producing actions by giving a successor state
axiom for the K fluent.

Recently, Liu and Lakemeyer [2009] showed that for the
so-called local-effect actions, progression is always first-
order definable and computable. Their proof is a very simple
one by applying Lin and Reiter’s result that progression re-
duces to forgetting predicates in first-order logic. They iden-
tified a simple case where forgetting a predicate reduces to
forgetting a finite number of atoms, and used it in their proof.
Forgetting in first-order logic was studied by Lin and Reiter
[1994]. In the past decades, forgetting has found many appli-
cations in the area of knowledge representation and reason-
ing. Recently, Zhang and Zhou [2009] studied forgetting in
propositional S5 modal logic. They defined forgetting based
on the notion of bisimulation in modal logic, and their defi-
nition coincides with the semantic definition of formula ∃V φ
in [French, 2005] and the notion of uniform interpolation in
[Ghilardi et al., 2006]. A result of the latter paper illustrates
that propositional S5 logic is closed under forgetting.

In this paper, we study progression of knowledge in the sit-
uation calculus. We first adapt the concept of bisimulation
from modal logic and extend Lin and Reiter’s definition of
progression to accommodate knowledge. We show that for
physical actions, progression of knowledge reduces to for-
getting predicates in first-order modal logic. We study the
problem of forgetting an atom or a predicate in first-order
modal logic, and identify a class of first-order modal formulas
for which forgetting an atom is definable in first-order modal
logic, and forgetting a predicate is definable in second-order
modal logic. This class of formulas goes beyond formulas
without quantifying-in. We also identify a simple case where
forgetting a predicate reduces to forgetting a finite number of
atoms. Thus we are able to show that for local-effect physical
actions, when the initial KB is a formula in this class, progres-
sion of knowledge is definable in first-order modal logic. As
for sensing actions, we show how to do progression when the
initial representation does not contain negative knowledge.
Finally, we extend our results to the multi-agent case.

2 Preliminaries
2.1 First-order and second-order modal logic
The first-order modal language is obtained from the first-
order language by adding a syntactic rule: if φ is a formula,
then Kφ (read as “knowing φ”) is a formula, where K is a
modal operator. We call Kφ a knowledge atom.

There are variations in the definition of semantics for FO
modal logic. We take the constant domain variation in this
paper. A Kripke structure is a tupleW = (S,R,D, π), where
S is a set of states or possible worlds, R is a binary relation
on S, called the accessibility relation, and π associates with
each world s a first-order structure with D as the domain.

A variable assignment ν is a mapping from all variables
to D. We let ν(x/d) denote the assignment that is the same
as ν except that x is mapped to d. Given a Kripke structure
W , a state s in W , a variable assignment ν, and a formula φ,
W, s, ν |= φ (“W, s, ν satisfies φ”) is defined as follows:

1. W, s, ν |= P (~τ) iff π(s), ν |= P (~τ);
2. W, s, ν |= φ ∨ ψ iff W, s, ν |= φ or W, s, ν |= ψ;
3. W, s, ν |= ¬φ iff W, s, ν 6|= φ;
4. W, s, ν |= ∃xφ iff for some d ∈ D, W, s, ν(x/d) |= φ;
5. W, s, ν |= Kφ iff for all t such that sRt, W, t, ν |= φ.

A sentence φ is valid in W if W, s |= φ for all s ∈ S.
In modal logics, some commonly considered desired prop-

erties of knowledge are as follows:
A3 Kφ ⊃ φ, the knowledge axiom;
A4 Kφ ⊃ KKφ, the positive introspection axiom;
A5 ¬Kφ ⊃ K¬Kφ, the negative introspection axiom.
These properties can be achieved by imposing various con-
ditions on accessibility relations. For example, A3, A4, and
A5 are valid in Kripke structures whose accessibility relations
are reflexive, transitive, and Euclidean, respectively. A rela-
tion R is Euclidean if for any (x, y) ∈ R, (x, y′) ∈ R, we
must have (y, y′) ∈ R. It is easy to show that a relation is
an equivalence relation iff it is reflexive, transitive and Eu-
clidean. In this paper, we restrict our attention to structures
whose accessibility relations are equivalence relations. Such
structures are called S5 structures in the literature.

We now extend FO modal logic to the second-order (SO)
case. We add two syntactic rules, where P is a predicate vari-
able: P (~τ) is a formula; if φ is a formula, so is ∃Pφ. An
n-ary intension wrt a Kripke structure W = (S,R,D, π) is
a function f mapping each s ∈ S to an n-ary relation on D.
Now a variable assignment ν maps each predicate variable to
an intension, in addition to mapping each individual variable
to an element of D. We add the following semantic rules:

1. W, s, ν |= P (~τ) iff π(s), ν′ |= P (~τ), where ν′ is the
same as ν except that it maps each predicate variable Q
to ν(Q)(s);

2. W, s, ν |=∃Pφ iff for some intension I ,W, s, ν(P/I)|=φ.

2.2 Situation calculus with knowledge
The situation calculus [Reiter, 2001] is a many-sorted first-
order language suitable for describing dynamic worlds. There
are three disjoint sorts: action for actions, situation for sit-
uations, and object for everything else. A situation calculus

language Lsc has the following components: a constant S0

denoting the initial situation; a binary function do(a, s) de-
noting the successor situation to s resulting from performing
action a; a binary predicate Poss(a, s) meaning that action a
is possible in situation s; action functions, e.g., move(x, y);
a finite number of relational fluents, i.e., predicates taking a
situation term as their last argument, e.g., ontable(x, s); and
a finite number of situation-independent predicates and func-
tions. We ignore functional fluents in this paper.

The situation calculus has been extended to accommodate
sensing and knowledge. Assume that in addition to ordinary
actions that change the world, there are sensing actions of the
form senseψ(~x), which does not change the world but tells
the agent whether some condition ψ(~x) holds in the current
situation. Knowledge is modeled in the possible-world style
by introducing a special fluent K(s′, s), meaning that situ-
ation s′ is accessible from situation s. Then knowing φ at
situation s is represented as follows:

Knows(φ, s) def= ∀s′.K(s′, s) ⊃ φ[s′].

In the presence of sensing and knowledge, a domain of ap-
plication is specified by a basic action theory of the form:

D = Σ ∪ Dss ∪ Dap ∪ Duna ∪ DS0 ∪ KInit, where

1. Σ are the foundational axioms:
(a) do(a1, s1) = do(a2, s2) ⊃ a1 = a2 ∧ s1 = s2

(b) (¬s < S0) ∧ (s < do(a, s′) ≡ s v s′)
(c) ∀P.∀s[Init(s) ⊃ P (s)] ∧

∀a, s[P (s) ⊃ P (do(a, s))] ⊃ (∀s)P (s), where

Init(s)
def
= ¬(∃a, s′)s = do(a, s′)

(d) K(s, s′) ⊃ [Init(s) ≡ Init(s′)].
A model of these axioms consists of a forest of isomor-
phic trees rooted at the initial situations, which can be
K-related to only initial situations.

2. Dss is a set of successor state axioms (SSAs) for fluents.
The SSAs for ordinary fluents must satisfy the no-side-
effect conditions, i.e., they are not affected by sensing
actions. The SSA for K is as follows:
K(s′, do(a, s)) ≡ ∃s∗.s′ = do(a, s∗) ∧K(s∗, s)∧∧
i∀~xi[a = senseψi(~xi) ⊃ ψi(~xi, s∗) ≡ ψi(~xi, s)].

Intuitively, s′ is accessible after a is done in s iff it is the
result of doing a in some s∗ which is accessible from s
and which agrees with s on the formula being sensed.

3. Dap is a set of action precondition axioms.
4. Duna is the set of unique names axioms for actions.
5. KInit consists of axioms stating thatK has certain prop-

erties in all initial situations. Such a property P must
have the feature that, by virtue of the SSA for K, P
holds in all situations as long as P holds in all initial
situations. For example, the axiom for reflexivity is:
∀s.Init(s) ⊃ K(s, s). In this paper, we assume that
KInit consists of the axioms for the reflexive, transitive
and Euclidean properties.

6. DS0 , called the initial KB, is a set of first-order sentences
uniform in S0. We will make this more precise in Sec-
tion 2.3.

2.3 Terminology and notation
Let Lsc be a situation calculus language. We use L to denote
the situation-suppressed language of Lsc, i.e., the first-order
language obtained from Lsc by removing the sort situation
and the K fluent, and removing the situation argument from
every ordinary fluent. We use L′ to denote the primed version
of L, i.e., for each ordinary fluent F (~x, s), there is an F ′(~x)
predicate in L′. We let L∗ denote the union of L and L′.
Intuitively, we can use L to talk about a situation σ, and use
L′ to talk about a successor situation of σ. For a first-order
language L, say L, L′, or L∗, we use Lm to denote the first-
order modal language based on L. For a language L, say L
or Lm, we let L2 denote its second-order extension. By an
L-formula we mean a formula of a language L, and by an
L-structure we mean a structure of L.

Now let φ ∈ L2
m, and σ a situation term. We define an

L2
sc-formula φ[σ], which asserts that φ holds in σ.

Definition 2.1 φ[σ] is inductively defined as follows:

1. P (~τ)[σ] =

{
P (~τ , σ) if P is a fluent
P (~τ) otherwise

2. (¬φ)[σ] = ¬φ[σ], (φ ∨ ψ)[σ] = φ[σ] ∨ ψ[σ],
(∃xφ)[σ] = ∃xφ[σ], (∃Pφ)[σ] = ∃Pφ[σ];

3. (Kφ)[σ] = ∀s.K(s, σ) ⊃ φ[s].

For example, let φ be the modal formula KK∃xF (x). Then
φ[S0] is ∀s.K(s, S0) ⊃ [∀s′.K(s′, s) ⊃ ∃xF (x, s)].

Similarly, we can define φ[σ] for φ ∈ L′2m, which asserts
that the unprimed φ (the formula obtained from φ by replac-
ing each F ′ with F) holds in σ.

Definition 2.2 We useLσ (L2
σ resp.) to denote the set of φ[σ]

where φ ∈ Lm (L2
m resp.). A formula in Lσ or L2

σ is said to
be uniform in σ.

Let φ be a formula, µ and µ′ two expressions. We denote
by φ(µ/µ′) the result of replacing every occurrence of µ in φ
with µ′. For a structureM and a syntactic object o, we let oM
stand for the denotation of o inM . We use sitM to denote the
domain of an Lsc-structure M for sort situation. Let α be a
ground action. We denote by Sα the situation term do(α, S0).

We say that a formula in Lm is objective if it does not
contain any K operator. We introduce a notation Lφ (“φ is
possible”), which abbreviates for ¬K¬φ, and a notation Wφ
(“knowing whether φ”), which abbreviates for Kφ ∨ K¬φ.
We also use KWhether(φ, σ) to denote Wφ[σ].

3 Progression of knowledge
In this section, we extend Lin and Reiter’s definition of pro-
gression to accommodate knowledge.

LetD be a basic action theory. Intuitively, a progression of
DS0

wrt a ground action α should be a set of sentences DSα
with the following properties: First, just as DS0 is uniform
in S0, DSα should be uniform in Sα. Second, for all queries
about the possible future of Sα, the old theoryD is equivalent
to the new theory (D −DS0) ∪ DSα .

To define progression, we first adapt the concept of bisim-
ulation from modal logic and define a similarity relation be-
tween Lsc-structures. Roughly, a bisimulation is a relation

between situations of two Lsc-structures where related situa-
tions agree on all ordinary fluents and have matching acces-
sibility possibilities.

Definition 3.1 Let M and M ′ be Lsc-structures with the
same domains for sorts action and object. Let γ ∈ sitM and
γ′∈sitM ′

. We write M,γ∼M ′, γ′ if M and M ′ interpret all
situation-independent predicate and function symbols identi-
cally, and there is a bisimulation relation B ⊆ sitM × sitM ′

such that γBγ′, and whenever δBδ′, we have:
1. M, δ ≡ M ′, δ′, denoting that M, δ and M ′, δ′ agree on

all ordinary fluents, that is, for every ordinary fluent F ,
and every variable assignment ν, M,ν(s/δ) |= F (~x, s)
iff M ′, ν(s/δ′) |= F (~x, s).

2. For all ρ s.t. δKMρ, there is ρ′ s.t. δ′KM ′
ρ′ and ρBρ′

(the forth condition), here KM is the denotation of the
K fluent in M .

3. For all ρ′ s.t. δ′KM ′
ρ′, there is ρ s.t. δKMρ and ρBρ′

(the back condition).

We write M ∼Sα M ′ if M,SMα ∼ M ′, SM
′

α . Following the
definition of progression in [Reiter, 2001], we have:
Definition 3.2 A set of sentences DSα in L2

Sα
is a progres-

sion of DS0 wrt α if D |= DSα , and for every model M
of (D − DS0) ∪ DSα , there is a model M ′ of D such that
M ∼Sα M ′.

By induction on the formula, it is easy to prove:
Proposition 3.3 Let M,γ ∼ M ′, γ′ and φ ∈ L2

m. Then for
any ν, M,ν(s/γ) |= φ[s] iff M ′, ν(s/γ′) |= φ[s].

Then it is straightforward to prove:
Theorem 3.4 Let DSα be a progression of DS0

wrt α. Then
for every φ ∈ L2

Sα
, D |= φ iff (D −DS0

) ∪ DSα |= φ.

Thus for any query about Sα, the old theory D and the new
theory (D −DS0

) ∪ DSα are equivalent.

4 Forgetting in first-order modal logic
In this section, we define forgetting in first-order modal logic,
and analyze basic properties of forgetting. We identify a class
of first-order modal formulas for which forgetting an atom is
definable in first-order modal logic, and forgetting a predi-
cate is definable in second-order modal logic. This class of
formulas goes beyond formulas without quantifying-in.

We first review forgetting in first-order logic. We extend
the definition to formulas with free variables.

Definition 4.1 Let φ(~x) ∈ L, and let µ be a ground atom or
predicate. A formula ψ(~x) is a result of forgetting µ in φ(~x),
written forget(φ(~x), µ)⇔ ψ(~x), if for anyL-structureU , and
any variable assignment ν, U, ν |= ψ(~x) iff there exists an L-
structure U ′ such that U ′, ν |= φ(~x) and U ∼µ U ′, which
denotes that U and U ′ agree on everything except possibly
on the interpretation of µ.

A nice result about forgetting an atom in first-order logic is
that it is always definable in first-order logic. As to forgetting
a predicate, the result is definable in second-order logic. Let
φ be a formula, P (~τ) a ground atom, and v a truth value. We

denote by φvP (~τ) the result of replacing every occurrence of
the form P (~τ ′) in φ by ~τ = ~τ ′ ∧ v ∨ ~τ 6= ~τ ′ ∧ P (~τ ′).

Proposition 4.2

1. forget(φ, P (~τ))⇔ φtrueP (~τ) ∨ φ
false
P (~τ) ;

2. forget(φ, P)⇔ ∃R.φ(P/R), whereR is a second-order
predicate variable.

To define forgetting in first-order modal logic, we first de-
fine a similarity relation between pairs of the form (W, s)
where W is a Kripke structure and s a state in M .

Definition 4.3 Let µ be a ground atom or predicate. Let
W = (S,R,D, π) andW ′ = (S′, R′, D, π′) be Kripke struc-
tures with the same domain. Let s ∈ S and s′ ∈ S′. We
write W, s ∼µ W ′, s′ if there exists a bisimulation relation
B ⊆ S × S′ such that sBs′, and whenever tBt′, we have:

1. π(t) ∼µ π′(t′);

2. For all u s.t. tRu, there exists u′ s.t. t′R′u′ and uBu′;

3. For all u′ s.t. t′R′u′, there exists u s.t. tRu and uBu′.

We define forgetting as follows:

Definition 4.4 Let φ(~x) ∈ Lm, and let µ be a ground atom or
predicate. A formula ψ(~x) is a result of forgetting µ in φ(~x),
written kforget(φ(~x), µ) ⇔ ψ(~x), if for any S5 pair (W, s),
and any ν, W, s, ν |= ψ(~x) iff there exists an S5 pair (W ′, s′)
such that W ′, s′, ν |= φ(~x) and W, s ∼µ W ′, s′.

Next, we analyze basic properties of forgetting. We say
a formula φ irrelevant to a predicate P if φ is equivalent to
a formula which does not use P . We say φ irrelevant to a
ground atom P (~τ) if φ is equivalent to a formula ψ where any
appearance of P (~τ ′) must be in the form of P (~τ ′) ∧ ~τ ′ 6= ~τ .

Proposition 4.5 Let φ be a sentence and kforget(φ, µ)⇔ ψ.
Then φ |= ψ; and for any η irrelevant to µ, φ |= η iff ψ |= η.

Proposition 4.6 1. If φ is an objective formula, then
kforget(φ, µ)⇔ forget(φ, µ);

2. If kforget(φi, µ)⇔ ψi, i = 1, 2, then
kforget(φ1 ∨ φ2, µ)⇔ ψ1 ∨ ψ2;

3. If kforget(φ(~x, y), µ)⇔ ψ(~x, y), then
kforget(∃yφ(~x, y), µ)⇔ ∃yψ(~x, y).

In general, we do not have: kforget(φ1∧φ2, µ)⇔ ψ1∧ψ2,
where kforget(φi, µ) ⇔ ψi, i = 1, 2. But we can iden-
tify a form of conjunctive formulas for which forgetting re-
duces to forgetting for component formulas. Clearly, we
have Kφ1 ∧ Kφ2 ⇔ K(φ1 ∧ φ2), but not Lφ1 ∧ Lφ2 ⇔
L(φ1 ∧ φ2). An extended term is a formula of the form
φ ∧ Kψ ∧

∧
i ∀~xiLηi, where φ, ψ, and ηi’s are all objec-

tive. The following proposition shows that extended terms
are closed under forgetting.

Proposition 4.7 Let ξ be an extended term
φ ∧Kψ ∧

∧
i ∀~xiLηi. Let forget(φ ∧ ψ, µ)⇔ φ′,

forget(ψ, µ)⇔ ψ′, forget(ψ ∧ ηi, µ)⇔ η′i.
Then kforget(ξ, µ)⇔ φ′ ∧Kψ′ ∧

∧
i ∀~xiLη′i.

Proof sketch: Let ζ denote φ′ ∧ Kψ′ ∧
∧
i ∀~xiLη′i. We

show that for any S5 pair (W, s) and any ν, W, s, ν |= ζ
iff there is an S5 pair (W ′, s′) s.t. W ′, s′, ν |= ξ and
W, s ∼µ W ′, s′. We only show the only-if direction here.
So suppose W, s, ν |= ζ. Let W = (S,R,D, π). Then
π(s), ν |= φ′; for any t s.t. sRt, π(t), ν |= ψ′; and for
all i, for all ~ei ∈ D, there exists τ(~ei) s.t. sRτ(~ei) and
π(τ(~ei)), ν(~xi/~ei) |= η′i. We define W ′ = (S′, R′, D, π′)
and the bisimulation B as follows: there is a state s′ in S′,
sBs′, π(s) ∼µ π′(s′), and π′(s′), ν |= φ ∧ ψ; for any i
and any ~ei ∈ D, there is a state τ ′(~ei) in S′, τ(~ei)Bτ

′(~ei),
π(τ(~ei)) ∼µ π′(τ ′(~ei)), and π′(τ ′(~ei)), ν |= ψ ∧ ηi; for any
t s.t. sRt, if there has not been a state t′ in S′ s.t. tBt′, add a
state t′ in S′, let tBt′, π(t) ∼µ π′(t′), and π′(t′), ν |= ψ. Let
R′ = S′ × S′. Then W, s ∼µ W ′, s′ and W ′, s′, ν |= ξ.

We now define a normal form for Lm-formulas:

Definition 4.8 We say that an Lm-formula φ is in
∃-disjunctive normal form (∃-DNF) if it is of the form
∃~x(φ1 ∨ . . . ∨ φn), where each φi is an extended term.

By Propositions 4.2, 4.6, and 4.7, we have:

Theorem 4.9 Let φ be in ∃-DNF. Then the result of forgetting
an atom in φ is definable in first-order modal logic, and the
result of forgetting a predicate in φ is definable in second-
order modal logic without second-order quantifying-in.

By second-order quantifying-in, we mean occurrence of
SO quantifiers outside the K operators. To shed light on
the expressiveness of ∃-DNF, we note two results. First,
due to the constant domain semantics, we have ∀xKφ(x) ⇔
K∀xφ(x) and ∃xLφ(x)⇔ L∃xφ(x). Also, we have

Theorem 4.10 Let φ be a formula without quantifying-in,
i.e., no quantifiers occur outside the K operators. Then φ
can be transformed in S5 to an equivalent formula without
nesting of the K operators.

The proof is the same as that for propositional S5, which
can be found in, for example, [Hughes and Cresswell, 1996].
The resulting formula can be further transformed into a form
of DNF whose atoms are objective formulas and knowledge
atoms. Such DNF is a special case of ∃-DNF.

Thus the class of formulas, for which forgetting an atom
is definable in FO modal logic and forgetting a predicate is
definable in SO modal logic, includes the following, where φ
is objective: formulas without quantifying-in; ∀xKφ, ∃xKφ,
∀xLφ, ∃xLφ; and ∃x∀yLφ, ∀x∃yLφ, ∃x∀yKφ.

Example 4.1 Consider a simple blocks world. There are two
predicates: clear(x): block x has no blocks on top of it, and
on(x, y): block x is on block y. Let φ be the conjunction of
the following sentences:

1. φ1 : ∀x(x 6= A ∧ x 6= B ∧ x 6= C ⊃ ¬clear(x)),
2. Kφ2, where φ2 is ∀x∀y(on(x, y) ⊃ ¬clear(y)),
3. φ3 : ∀u∀vL on(u, v) ∧ ∀u∀vL¬on(u, v), stating that

the agent has no knowledge about the on predicate,
4. K¬clear(A) ∨K¬clear(B),
5. ∃z(z 6= A∧z 6= B∧K¬clear(z)), stating that the agent

knows that some block other than A and B is not clear.

We will compute kforget(φ, on) and kforget(φ, clear(C)).
To save space, in the sequel, we will use “c(x)” for
“clear(x)”.

We first convert φ into ∃-DNF ∃z(ψ1 ∨ ψ2), where ψ1 is
φ1 ∧ z 6= A∧ z 6= B ∧K(φ2 ∧¬c(z)∧¬c(A))∧φ3, and ψ2

is φ1 ∧ z 6= A ∧ z 6= B ∧K(φ2 ∧ ¬c(z) ∧ ¬c(B)) ∧ φ3.
Then kforget(φ, on) is ∃z(η1 ∨ η2), where η1 is

∃R[φ1 ∧ z 6= A ∧ z 6= B ∧ ∀x∀y(R(x, y) ⊃ ¬c(y)) ∧
¬c(z) ∧ ¬c(A)] ∧

K∃R[∀x∀y(R(x, y) ⊃ ¬c(y)) ∧ ¬c(z) ∧ ¬c(A)] ∧
∀u∀vL∃R[R(u, v) ∧ ∀x∀y(R(x, y) ⊃ ¬c(y)) ∧

¬c(z) ∧ ¬c(A)] ∧
∀u∀vL∃R[¬R(u, v) ∧ ∀x∀y(R(x, y) ⊃ ¬c(y)) ∧

¬c(z) ∧ ¬c(A)], and η2 is the same as η1

except that ¬c(A) is replaced with ¬c(B).
Finally, kforget(φ, clear(C)) is ∃z(ξ1 ∨ ξ2), where ξ1 is

{[φ1 ∧ z 6= A ∧ z 6= B ∧ φ2 ∧ ¬c(z) ∧ ¬c(A)]truec(C) ∨
[φ1 ∧ z 6= A ∧ z 6= B ∧ φ2 ∧ ¬c(z) ∧ ¬c(A)]falsec(C) } ∧
K{[φ2∧¬c(z)∧¬c(A)]truec(C)∨ [φ2∧¬c(z)∧¬c(A)]falsec(C) }∧
∀u∀vL{[on(u, v) ∧ φ2 ∧ ¬c(z) ∧ ¬c(A)]truec(C)∨

[on(u, v) ∧ φ2 ∧ ¬c(z) ∧ ¬c(A)]falsec(C) }
∀u∀vL{[¬on(u, v) ∧ φ2 ∧ ¬c(z) ∧ ¬c(A)]truec(C)∨

[¬on(u, v) ∧ φ2 ∧ ¬c(z) ∧ ¬c(A)]falsec(C) }, and ξ2 is
the same as ξ1 except that ¬c(A) is replaced with ¬c(B).

For example, [φ2 ∧ ¬c(z) ∧ ¬c(A)]falsec(C) is
∀x∀y(on(x, y) ⊃ y = C ∨ ¬clear(y)) ∧
(z = C ∨ ¬c(z)) ∧ (A = C ∨ ¬c(A)).

5 Representing progression of knowledge
In this section, we prove that for physical actions, progression
of knowledge reduces to forgetting predicates in first-order
modal logic. Further, we show that for local-effect physi-
cal actions, when the initial KB is in ∃-DNF, progression of
knowledge is definable in first-order modal logic. As for sens-
ing actions, we show how to do progression when the initial
KB does not contain negative knowledge.

5.1 Progression wrt physical actions
The SSA for any ordinary fluent F is in the form of
F (~x, do(a, s)) ≡ ΦF (~x, a)[s], where ΦF (~x, a) ∈ L. Let
α be a physical action. We let Dss[α, S0] denote the in-
stantiation of Dss wrt α and S0, i.e., the set of sentences
F (~x, Sα) ≡ ΦF (~x, α)[S0]. We use D∗ss[α, S0] to denote the
set of sentences F ′(~x) ≡ ΦF (~x, α).

The following theorem shows that for physical actions,
progression of knowledge reduces to forgetting all the F
predicates in an L∗m-formula.

Theorem 5.1 Let DS0
be φ[S0] where φ ∈ Lm, and α a

physical action. Let kforget(φ∧KD∗ss[α, S0], ~F)⇔ ψ, where
ψ ∈ L′2m. Then ψ[Sα] is a progression of DS0

wrt α.

Note about the K operator in front of D∗ss[α, S0] in the theo-
rem. As pointed out in [Reiter, 2001], a consequence of the
way knowledge is modeled in the situation calculus is that an
agent knows the successor state axioms of her actions.

To prove the theorem, we now introduce a method to in-
duce a Kripke structure from a model of D −DS0

. Note that
the instantiation of the SSA for K wrt a physical action α is:

K(s′, do(α, s)) ≡ ∃s∗.s′ = do(α, s∗) ∧K(s∗, s).

So the K relation on situations resulting from doing α in ini-
tial situations is a copy of the K relation on initial situations.
Definition 5.2 LetM |= D−DS0

. We define a Kripke struc-
ture Wα = (S,R,D, π) as follows. S is the set of initial
situations of M . R is the restriction of KM to S. D is the
union of M ’s domains for sorts action and object. Let ε ∈ S.
π(ε) interprets any situation-independent predicate and func-
tion symbol as M does. For each ordinary fluent F (~x, s),
π(ε) interprets F (~x) as M interprets F (~x, s) at ε, and inter-
prets F ′(~x) as M interprets F (~x, s) at doM (αM , ε).
Proposition 5.3 Let M |= D −DS0

. Then
1. Wα, S

M
0 |= KD∗ss[α, S0];

2. for any φ ∈ L2
m, M |= φ[S0] iff Wα, S

M
0 |= φ;

3. for any φ ∈ L′2m, M |= φ[Sα] iff Wα, S
M
0 |= φ.

We now prove the theorem:
Proof sketch: We first prove D |= ψ[Sα]. So let M |= D.
By Proposition 5.3, Wα, S

M
0 |= φ ∧ KD∗ss[α, S0], which,

by Proposition 4.5, implies ψ. Thus Wα, S
M
0 |= ψ. So

M |= ψ[Sα]. Now we prove for anyM , ifM |= (D−DS0
)∪

{ψ[Sα]}, then there exists M ′ |= D s.t. M ∼Sα M ′. So let
M |= (D−DS0

)∪{ψ[Sα]}. ThenWα, S
M
0 |= ψ. Thus there

exists an S5 pair (W ∗, s∗) s.t. W ∗, s∗ |= φ ∧ KD∗ss[α, S0]
and Wα, S

M
0 ∼~F W ∗, s∗. We construct M ′ as follows: M

and M ′ have the same domains for sorts action and object,
and interpret any situation-independent predicate and func-
tion identically. The initial situations of M ′ are the states of
M∗ accessible from s∗, M ′ interprets S0 as s∗, and the situ-
ations of M ′ form a forest rooted at the initial situations. All
the initial situations of M ′ are K-related, and for each initial
situation ε of M ′, M ′ interprets any ordinary fluent F at ε as
M∗ does at ε. Finally, M ′ |= Dss ∪ Dap.

By Theorems 4.9 and 5.1, we have:
Corollary 5.4 LetDS0 be in ∃-DNF, and α a physical action.
Then progression of DS0 wrt α is definable in second-order
modal logic without second-order quantifying-in.

5.2 Progression wrt local-effect physical actions
We first present an intuitive result concerning forgetting a
predicate in first-order modal logic: if a sentence φ entails
knowing that the truth values of two predicates P and Q are
different at only a finite number of certain instances, then for-
gettingQ in φ can be obtained from forgetting theQ atoms of
these instances in φ and then replacing Q by P in the result.

Let ~x be a vector of variables, and let ∆ = {~τ1, . . . , ~τm}
be a set of vectors of ground terms, where all the vectors have
the same length. We use ~x ∈ ∆ to represent the formula
~x = ~τ1 ∨ . . . ∨ ~x = ~τm. Let P and Q be two predicates. We
letQ(∆) denote the set {Q(~τ) | ~τ ∈ ∆}, and we let P ≈∆ Q
represent the sentence ∀~x.~x 6∈ ∆ ⊃ P (~x) ≡ Q(~x).
Proposition 5.5 Let kforget(φ,Q(∆)) ⇔ ψ, and M, s |=
K(P ≈∆Q). Then M, s |= ψ iff M, s |= ψ(Q/P).

Theorem 5.6 Let P and Q be two predicates, and ∆ a finite
set of vectors of ground terms. If kforget(φ,Q(∆))⇔ ψ, then
kforget(φ ∧K(P ≈∆ Q), Q)⇔ ψ(Q/P).

Actions in many dynamic domains have only local effects
in the sense that if an action A(~c) changes the truth value
of an atom F (~a, s), then ~a is contained in ~c . This contrasts
with actions having non-local effects such as moving a brief-
case, which will also move all the objects inside the briefcase
without having mentioned them. For a formal definition of
local-effect action theory, see [Liu and Lakemeyer, 2009].

Now let D be a local-effect action theory. Let α = A(~c)
be a physical action. We use Ω to denote the set of F (~a)
where F is an ordinary fluent, and ~a is contained in ~c. Then
α only changes the truth values of atoms from Ω. Recall that
D∗ss[α, S0] denotes the set of sentences F ′(~x) ≡ ΦF (~x, α).
We letD∗ss[Ω] denote the set of sentences F ′(~a) ≡ ΦF (~a, α),
where F (~a) ∈ Ω. Then D∗ss[α, S0] is logically equivalent to
D∗ss[Ω] together with the set of sentences F ′ ≈∆ F , where
∆ = {~a | ~a is contained in ~c}.

By Theorems 4.9, 5.1, and 5.6, we get:

Theorem 5.7 Let D be local-effect, and α a physical action.
LetDS0 be φ[S0] where φ is in ∃-DNF. Then there is ψ ∈ L∗m
such that kforget(φ ∧KD∗ss[Ω],Ω) ⇔ ψ, and ψ(~F/~F ′)[Sα]
is a progression of DS0 wrt α.

So for local-effect actions, when DS0
is in ∃-DNF, progres-

sion of knowledge is definable in first-order modal logic, and
can be computed by forgetting in φ∧KD∗ss[Ω] atoms from Ω
and then replacing each F by F ′ in the result.

Example 5.1 Consider the litmus testing example. There
are two actions: test, insert litmus paper into solution, and
sensered, sense whether the paper turns red.
DS0 = {acid(S0),Knows(¬red, S0)}. Dss includes:
red(do(a, s)) ≡ a = test ∧ acid(s) ∨ red(s),
acid(do(a, s)) ≡ acid(s) ∧ a 6= dilute.

Here test is a local-effect action: it only changes the truth
value of red. Let S1 = do(test, S0). Dss[red] is red(S1) ≡
acid(S0) ∨ red(S0). By Theorem 5.7, to compute DS1

, the
progression of DS0

wrt test, we compute kforget(φ, red),
where φ = acid∧K¬red∧K(red′ ≡ acid∨ red), which is
equivalent to acid ∧K(¬red ∧ (red′ ≡ acid)). Since
forget(acid∧¬red∧(red′ ≡ acid), red)⇔ acid∧red′, and
forget(¬red ∧ (red′ ≡ acid), red)⇔ (red′ ≡ acid),
by Proposition 4.7, we have
kforget(φ, red)⇔ acid ∧ red′ ∧K(red′ ≡ acid). Thus
DS1 = {acid(S1), red(S1),Knows(red ≡ acid, S1)}.

5.3 Progression wrt sensing actions
We say that a formula does not contain negative knowledge
if no knowledge atom appears within the scope of an odd
number of negation operators. The following theorem shows
when the initial KB does not contain negative knowledge,
progression wrt sensing actions can be achieved by simply
adding knowing whether the sensed formula holds.
Theorem 5.8 Assume that DS0

does not contain negative
knowledge. Let ψ(~x) be an objective formula. Let α be the
sensing action senseψ(~c). Then the following is a progres-
sion of DS0

wrt α: DS0
(S0/Sα) ∪ {Wψ(~c)[Sα]}.

Proof sketch: We first prove D |= DS0(S0/Sα) ∪
{Wψ(~c)[Sα]}. So let M |= D. Since DS0 does not con-
tain negative knowledge and M |= DS0 , we get M |=
DS0

(S0/Sα). We can prove that ifM |= ψ(~c, S0), thenM |=
Knows(ψ(~c), Sα), otherwise M |= Knows(¬ψ(~c), Sα).
Now let M |= (D − DS0

) ∪ DS0
(S0/Sα) ∪ {Wψ(~c)[Sα]}.

We prove that there existsM ′ |= D s.t. M ∼Sα M ′. We con-
struct M ′ as follows: The initial situations of M ′ is the set
of situations K-related to SMα , and M ′ interprets S0 as SMα .
For each initial situation ε of M ′, M ′ interprets any ordinary
fluent F at ε as M does at ε. The rest of the construction is
the same as that in the proof of Theorem 5.1. Note that we
need M |= Wψ(~c)[Sα] to prove M ∼Sα M ′.
Example 5.1 continued. Let S2 = do(sensered, S1).
Since DS1 does not contain negative knowledge,
by Theorem 5.8, the progression of DS1

wrt sensered is
{acid(S2), red(S2),Knows(red ≡ acid, S2),
KWhether(red, S2)}, which is equivalent to
{Knows(red, S2),Knows(acid, S2)}.

6 Extension to the multi-agent case
In this section, we extend our results on forgetting and pro-
gression to the multi-agent case.

The multi-agent first-order modal language is the same as
the single-agent one except that there is a modal operator Ki

for each agent i, and there is an extra modal operator C. If φ
is a formula, so are Kiφ (“agent i knows φ”) and Cφ (“φ is
common knowledge”). A Kripke structure for n agents is the
same as before except that there is an accessibility relationRi
for each agent i. The semantics is defined as follows:

1. M, s, ν |= Kiφ iff for all t such that sRit, M, t, ν |= φ;
2. M, s, ν |= Cφ iffM, t, ν |= φ for all t that are reachable

from s by the the relation R, the union of all Ri’s.
The definition of forgetting is the same as before except:

when defining the similarity relation between Kripke struc-
tures, we require the forth and back conditions hold for each
agent i; and when defining forgetting, we consider S5 struc-
tures, i.e., structures where eachRi is an equivalence relation.

Clearly, we have Cφ1 ∧ Cφ2 ⇔ C(φ1 ∧ φ2). We now
define ∃-DNF in the multi-agent case. We say that a formula
φ is purely objective if it does not contain any modal operator.
We say that φ is objective wrt agent i if it does not use anyKi

operator. We inductively define extended terms as follows:
1. A purely objective formula is an extended term;
2. A formula of form φ∧Cϕ∧

∧
i(Kiψi∧

∧
j ∀~xijLiηij) is

an extended term if φ, ϕ and all ψi’s are purely objective,
and all ηij’s are extended terms objective wrt agent i.

The following proposition shows that extended terms are
closed under forgetting.

Proposition 6.1
Let ξ be an extended term φ∧Cϕ∧

∧
i(Kiψi∧

∧
j ∀~xijLiηij).

Let forget(φ ∧ ϕ ∧
∧
i ψi, µ) ⇔ φ′, forget(ϕ, µ) ⇔ ϕ′,

forget(ϕ ∧ ψi, µ) ⇔ ψ′i, kforget(ψi ∧ Cϕ ∧ ηij , µ) ⇔ η′ij .
Let ζ be φ′ ∧ Cϕ′ ∧

∧
i(Kiψ

′
i ∧

∧
j ∀~xijLiη′ij). Then

kforget(ξ, µ)⇔ ζ.

Proof sketch: The proof is similar to that of Proposition 4.7.
Let W, s, ν |= ζ. Then for all i and j, for all ~eij ∈ D, there
is τ(~eij) s.t. sRiτ(~eij) and W, τ(~eij), ν(~xij/~eij) |= η′ij .
Thus there exists W (~eij), τ

′(~eij) ∼µ W, τ(~eij) such that
W (~eij), τ

′(~eij), ν(~xij/~eij) |= ψi ∧ Cϕ ∧ ηij . When con-
structing W ′, we include W (~eij) and add Ki edges between
τ ′(~eij) and other states ofW ′. Since ηij is objective wrt agent
i, we get W ′, τ ′(~eij), ν(~xij/~eij) |= ηij .

The definition of ∃-DNF is as before, and Theorem 4.9 also
holds in the multi-agent case, i.e., for an ∃-DNF formula, for-
getting an atom is definable in FO modal logic, and forget-
ting a predicate is definable in SO modal logic without SO
quantifying-in.

We now consider progression in the multi-agent case.
Each agent i can perform a number of sensing actions:
sensei,ψij (~xij), j = 1, . . . ,m. For each agent i, there is a
special fluent Ki(s

′, s). The SSA for Ki is as follows:

Ki(s
′, do(a, s)) ≡ ∃s∗.s′ = do(a, s∗) ∧Ki(s

∗, s)∧∧
j∀~xij [a = sensei,ψij (~xij) ⊃ ψij(~xij , s∗) ≡ ψij(~xij , s).]

We assume that all agents can perform the same kinds of
actions. Under this assumption, a consequence of the way
knowledge is modeled in the situation calculus is that the
agents commonly knows the successor state axioms of phys-
ical actions. We consider the case of public actions whose
occurrence is common knowledge. For example, when two
agents cooperate in the blocks world, the physical actions are
public. When two agents play a card game, a public sensing
action of an agent is the action of picking up and reading a
card dealt to her. We have the following results on progres-
sion, which are the same as in the single-agent case except
that the K operator is replaced with the C operator. The first
result shows that after an agent publicly performs a physical
action, its effect becomes common knowledge. The second
result shows that after agent i publicly senses a formula ψ, it
becomes common knowledge that agent i knows if ψ holds.

Theorem 6.2 LetDS0 be φ[S0] where φ ∈ Lm, and α a pub-
lic physical action. Let kforget(φ ∧ CD∗ss[α, S0], ~F) ⇔ ψ,
where ψ ∈ L′2m. Then ψ[Sα] is a progression of DS0 wrt α.

Theorem 6.3 Assume that DS0
does not contain negative

knowledge. Let ψ(~x) be an objective formula, and α a public
sensing action sensei,ψ(~c). Then the following is a progres-
sion of DS0 wrt α: DS0(S0/Sα) ∪ {CWiψ(~c)[Sα]}, where
Wiψ abbreviates for Kiψ ∨Ki¬ψ.

Example 6.1 There is a red card and a green card. A dealer
gives a card each to Ann and Bob. We use a fluent red(i, s),
meaning that agent i has the red card in situation s. We use
a sensing action sensei,red(x), meaning that agent i picks up
and reads his/her card. Suppose that the dealer has dealt the
red card to Ann, and green card to Bob. Then
DS0 = {red(a, S0),¬red(b, S0), C(red(a) ∧ ¬red(b) ∨
¬red(a) ∧ red(b))[S0]}. Let S1 = do(sensea,red(a), S0).
Then DS1

= DS0
(S0/S1) ∪ {CWared(a)[S1]},

which entails Kared(a)[S1], KbWared(a)[S1], and
KbWared(b)[S1], but does not entail Kbred(a)[S1].
Let S2 = do(senseb,red(b), S1). Then

DS2 = DS1(S1/S2) ∪ {CWbred(b)[S2]}, which is
logically equivalent to {Cred(a)[S2], C¬red(b)[S2]}.

7 Conclusions
In this paper, we studied progression of knowledge in the sit-
uation calculus. We showed that for physical actions, this re-
duces to forgetting predicates in first-order modal logic. We
studied forgetting in first-order modal logic, and identified a
class of first-order modal formulas for which forgetting an
atom is definable in first-order modal logic, and forgetting
a predicate is definable in second-order modal logic. This
class of formulas goes beyond formulas without quantifying-
in. We showed that for local-effect physical actions, when the
initial KB is a formula in this class, progression of knowledge
is definable in first-order modal logic. As for sensing actions,
we showed that when the initial KB does not contain negative
knowledge, progression can be achieved by simply adding
knowing whether the sensed formula holds. Finally, we ex-
tended our results to the multi-agent case. For the future, we
would like to do an in-depth study of forgetting in first-order
modal logic. We would also like to investigate how to do pro-
gression wrt sensing actions in the general case. It would also
be interesting to explore progression for only-knowing.

Acknowledgments
We thank the anonymous reviewers for helpful comments.
This work was supported in part by the Natural Science Foun-
dation of China under Grant No. 61073053.

References
[French, 2005] T. French. Bisimulation quantified logics: Unde-

cidability. In Proc. of Foundations of Software Technology and
Theoretical Computer Science, 2005.

[Ghilardi et al., 2006] S. Ghilardi, C. Lutz, F. Wolter, and M. Za-
kharyaschev. Conservative extensions in modal logic. In Proc.
Advances in Modal Logic, 2006.

[Hughes and Cresswell, 1996] G. E. Hughes and M. J. Cresswell. A
New Introduction to Modal Logic. Routledge, 1996.

[Lin and Reiter, 1994] F. Lin and R. Reiter. Forget it! In Working
Notes of AAAI Fall Symposium on Relevance, 1994.

[Lin and Reiter, 1997] F. Lin and R. Reiter. How to progress a
database. Artificial Intelligence, 92(1–2):131–167, 1997.

[Liu and Lakemeyer, 2009] Y. Liu and G. Lakemeyer. On first-
order definability and computability of progression for local-
effect actions and beyond. In Proc. IJCAI-09, 2009.

[Moore, 1985] R. C. Moore. A formal theory of knowledge and
action. In Formal Theories of the Commonsense World. 1985.

[Reiter, 2001] R. Reiter. Knowledge in Action: Logical Founda-
tions for Specifying and Implementing Dynamical Systems. 2001.

[Scherl and Levesque, 2003] R. B. Scherl and H. J. Levesque.
Knowledge, action, and the frame problem. Artificial Intelli-
gence, 144(1–2):1–39, 2003.

[Vassos and Levesque, 2008] S. Vassos and H. J. Levesque. On the
progression of situation calculus basic action theories: Resolving
a 10-year-old conjecture. In Proc. AAAI-08, 2008.

[Zhang and Zhou, 2009] Y. Zhang and Y. Zhou. Knowledge forget-
ting: Properties and applications. Artificial Intelligence, 173(16–
17):1525–1537, 2009.

