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Abstract
The task of explanatory diagnosis conjectures ac-
tions to explain observations. This is a common
task in real life and an essential ability of intel-
ligent agents. It becomes more complicated in
multi-agent scenarios, since agents’ actions may be
partially observable to other agents, and observa-
tions might involve agents’ knowledge about the
world or other agents’ knowledge or even common
knowledge of a group of agents. For example, we
might want to explain the observation that p does
not hold, but Ann believes p, or the observation that
Ann, Bob, and Carl commonly believe p. In this pa-
per, we formalize the multi-agent explanatory diag-
nosis task in the framework of dynamic epistemic
logic, where Kripke models of actions are used to
represent agents’ partial observability of actions.
Since this task is undecidable in general, we iden-
tify important decidable fragments via techniques
of reducing the potentially infinite search spaces to
finite ones of epistemic states or action sequences.

1 Introduction
The task of explanatory diagnosis conjectures what actions
occurred to explain observations of dynamic systems. This
is a common task in real life and an essential ability of in-
telligent agents. For example, on a murder scene, a detective
speculates on what happened based on his observations of the
scene; in a factory, an engineer tries to determine the inter-
nal operation of a machine according to the external observa-
tions. Explanatory diagnosis becomes more complicated in
multi-agent scenarios, since agents’ actions may be partially
observable to other agents, and observations might involve
agents’ knowledge about the world or other agents’ knowl-
edge or even common knowledge of a group of agents. In
this paper, we use the words “knowledge” and “epistemic” in
the broad sense.

For example, consider a simple scenario involving three
persons Ann, Bob and Carl working in the same office. There
is a desk in the office and each person owns a drawer of the
desk. Ann has a valuable watch in her drawer, and the three
persons commonly know that. The door of the office can only
be opened by Ann, Bob and Carl. Ann left the office and

closed the door as usual. When she comes back, she finds
that, contrary to her belief, her watch is not in her drawer.
Now Ann wants to know what happened.

McIlrailth [1998] presented a formal characterization of
explanatory diagnosis in the language of the situation calcu-
lus, one of the most popular languages for reasoning about
actions. Sohrabi et al. [2010] established a formal corre-
spondence between explanatory diagnosis and planning, and
showed how modern planning techniques can be exploited
to generate explanatory diagnoses. Further, they [2011] ex-
plored generating preferred explanations via planning.

In the big picture, explanatory diagnosis is a generalization
of model-based diagnosis from static systems to dynamic sys-
tems. Reiter [1987] laid an elegant theoretical foundation for
model-based diagnosis, which is the task of locating faulty
components of a system based on a description of the correct
behavior of the system and an observation of its aberrant be-
havior. In control theory, a very influential work about model-
based diagnosis of dynamic systems is the one by Sympath et
al. [1995] where they modeled discrete event systems as finite
state automata and characterized diagnosis as a reachability
analysis problem. Pencolé and Cordier [2005] proposed a for-
mal framework for the decentralized diagnosis of large-scale
discrete event systems. In the past decade, Grastien, Rintanen
and colleagues [Rintanen and Grastien, 2007; Grastien et al.,
2007] showed how the diagnosing problems of discrete event
systems can be translated into the propositional satisfiability
problem and solved by modern SAT solvers.

The most influential logic framework for reasoning about
actions in the multi-agent case is dynamic epistemic logic
(DEL) [van Ditmarsch et al., 2007]. An important concept
in DEL is that of an event model, which is a Kripke model
of events, representing the agents’ uncertainty about the cur-
rent event. By the product update operation, an event model
may be used to update a Kripke model. Recently, Bolander
and Anderson [2011] explored multi-agent epistemic plan-
ning based on DEL. They showed that single-agent epistemic
planning is decidable, but multi-agent epistemic planning is
undecidable even without common knowledge. Meanwhile,
Löwe et al. [2011] showed that for a special type of event
models, multi-agent epistemic planning is decidable.

In this paper, we formalize the multi-agent epistemic ex-
planatory diagnosis task in DEL. Since this task is undecid-
able in general, we identify two important decidable frag-



ments of it by restricting our attention to propositional ac-
tions, i.e., actions whose preconditions do not involve knowl-
edge, or purely epistemic actions, i.e., actions which do not
effect world change. Our first result is that when observa-
tions do not involve common knowledge and all actions are
propositional, explanatory diagnosing is decidable. Secondly,
we identify a wide variety of special types of propositional
purely epistemic actions, and show that when all actions are
of these types, explanatory diagnosing is decidable. Our de-
cidability results are achieved via techniques of reducing the
potentially infinite search spaces to finite ones of epistemic
states or action sequences.

2 Preliminaries
In this section, we present the syntax and semantics of multi-
agent epistemic logic, and introduce the concepts of event
models and product update from dynamic epistemic logic.

2.1 Multi-agent epistemic logic
We fix a finite setA of agents and a finite set of atoms P . We
use |S| for the cardinality of a set S.

Definition 2.1. The language LKC of multi-agent epistemic
logic with common knowledge is generated by the BNF:

ϕ ::= p | ¬φ | (φ ∧ ψ) | Kaφ | CBφ,

where p ∈ P , a ∈ A, B ⊆ A, and φ, ψ ∈ LKC . We use LK

for the language without the CB operator.

Definition 2.2. A frame is a structure (W,R), where

• W is a finite non-empty set of possible worlds;

• For each agent a ∈ A, Ra is a binary relation on W ,
called the accessibility relation for a.

We sayRa is serial if for anyw ∈W , there isw′ ∈W such
that wRaw

′. We say Ra is Euclidean if whenever wRaw1

and wRaw2, we have w1Raw2. A frame whose accessibility
relations are equivalence relations is called an S5 frame, and
a frame whose accessibility relations are transitive and Eu-
clidean (resp. serial, transitive and Euclidean) is called a K45
(resp. KD45) frame.

Definition 2.3. A Kripke model is a triple M = (W,R, V ),
where (W,R) is a frame, and V is a valuation map, which
maps each w ∈W to a subset of P .

Definition 2.4. An epistemic state, or an e-state in short, is
a pair s = (M,w), where M is a Kripke model and w is a
world of M , called the actual world.

Definition 2.5. Let s = (M,w) be an epistemic state where
M = (W,R, V ). We interpret formulas in LKC by induction:

• M,w |= p iff p ∈ V (w);

• M,w |= ¬φ iff M,w 6|= φ;

• M,w |= φ ∧ ψ iff M,w |= φ and M,w |= ψ ;

• M,w |= Kaφ iff for all v s.t. wRav, M,v |= φ;

• M,w |= CBφ iff for all v s.t. wRBv, M, v |= φ, where
RB is the transitive closure of the union ofRa for a ∈ B.

Example 1. Consider the watch example. We use pa, pb
and pc to denote that the watch is in Ann’s, Bob’s and Carl’s
drawer, respectively, and pd to denote that the watch is on the
surface of the desk. Then the initial e-state is s0 where there
is only one world w0, V (w0) = {pa}, and all accessibility
relations are reflexive. Then we have s0 |= C{a,b,c}pa, i.e.,
all agents commonly know that the watch is in Ann’s drawer.

2.2 Event models and product update
Event models and product update are two important concepts
of dynamic epistemic logic. Intuitively, an event model is a
Kripke model of events, representing the agents’ uncertainty
about the current event.

Definition 2.6. An event model is a tuple
E = (E,→, pre, post), where

• (E,→) is a frame, and an e ∈ E is called an event;

• For each e ∈ E, pre(e) ∈ LKC is its precondition;

• For each e ∈ E, post(e) is its postcondition, and it is in
the form of a conjunction of atoms or their negations.

Suppose P = {p, q, r} and post(e) = p ∧ ¬q. It means that
the execution of e makes p true, q false, and r unchanged.

We let e> denote a special event such that pre(e>) =
post(e>) = true. Intuitively, e> means nothing happens.

Note that the above definition of post(e) follows that in
[Bolander and Andersen, 2011]. This form of postcondi-
tions is restrictive in that it can only represent context-free
actions. Usually, post(e) is defined as a mapping from P to
LKC , and this general form of postconditions can represent
context-dependent or context-sensitive actions such as flip-
ping a switch. As shown by Van Ditmarsch and Kooi [2008],
for any event model E with general postconditions, we can
construct an equivalent event model E ′ as defined in Defini-
tion 2.6. However, the number of events in E ′ is 2n times the
number of events in E , where n = |P|.
Definition 2.7. An action is a tuple α=(E , e, actr, cost), where

• E is an event model;

• e ∈ E is the actual event;

• For each e ∈ E, actr(e) ∈ A is the performer of e;

• For each e ∈ E, cost(e), a real number, is the cost of e.

We often omit the actr and cost parts of an action.

Example 2. Consider the watch example. To describe the
scenario that Bob moves the watch from Ann’s drawer to the
surface of the desk while Ann is away, we use action α1 =
(E1, e1, actr, cost) where E1 = (E,→, pre, post), and

• E = {e>, e1}, pre(e1) = pa, post(e1) = ¬pa ∧ pd,

• →a= {(e1, e>), (e>, e>)},→b and→c are identities,

• actr(e>)=actr(e1)=b, cost(e>)=0, cost(e1)=1.

Intuitively, e1 is the event of moving the watch and e1 is the
actual event, e1 is observable to Bob and Carl but not to Ann.
We illustrate E1 and α1 with Figure 1 where we use a solid
dot to represent the actual event.

Below we define the product update operation.



Figure 1: The event model and action model in Example 2

Definition 2.8. Given an epistemic state s = (M,w) and an
action α = (E , e), α is applicable in s if M,w |= pre(e).

Definition 2.9. Given an e-state s = (M,w) and an action α
= (E , e), where M=(W,R, V ) and E=(E,→, pre, post),
when α is applicable in s, the product of s and α, denoted by
s⊗α, is a new e-state s′ = (M ′, w′), where M ′ = M ⊗E =
(W ′, R′, V ′), w′ = (w, e), and

• W ′ = {(w, e) ∈W × E |M,w |= pre(e)};
• (w, e)R′a(w′, e′) iff wRaw

′ and e→a e
′;

• For each (w, e) ∈W ′, V ′((w, e)) = {p ∈ P |
p ∈ V (w) and post(e) 6|= ¬p, or post(e) |= p}.

Intuitively, (w, e) is the world resulting from doing e in w.

Example 3. Consider the e-state s0 from Example 1 and the
action α1 from Example 2. Since s0 |= pa, α1 is applicable in
s0. The update of s0 by α1, s0⊗α1, is a new e-state s1 where
there are two worlds: (w0, e>) and (w0, e1), V ((w0, e>)) =
{pa}, V ((w0, e1)) = {pd}, and the accessibility relations are
inherited from those of α1. This is illustrated with Figure 2.

Figure 2: The update of epistemic state in Example 3

Definition 2.10. Let s be an e-state, and σ = α1 . . . αn an
action sequence. We define si, i ≤ n as follows: s0 = s;
for i < n, if si is defined and αi+1 is applicable in si, then
si+1 = si ⊗ αi+1, otherwise si+1 is undefined. If sn is de-
fined, we say that σ is applicable in s and define s⊗ σ = sn.

Finally, we introduce different types of event models from
the DEL literature, and we say an action is of type X if its
event model is of type X.

Definition 2.11. An event model is public if it has a single
event and all accessibility relations are reflexive.

So there is a single event point, observable to all agents.

Definition 2.12. An event model is (purely) epistemic if all
postconditions are true. Hence we omit the post part.

So an epistemic event model doesn’t change the world.

Definition 2.13. An event model is propositional if all pre-
conditions are propositional formulas.

So all preconditions only depend on the world state.

Definition 2.14. An event model is globally deterministic if
all preconditions are pairwise inconsistent, i.e., whenever e
and e′ are different, pre(e) and pre(e′) are inconsistent.

Intuitively, in any world, at most one event can happen.

Definition 2.15. A sensing event model is a globally deter-
ministic epistemic event model where the preconditions are
collectively exhaustive, i.e., the disjunction of all precondi-
tions is a valid formula.

Definition 2.16. A secret communication event model is an
epistemic event model ({e, e>},→, pre), where there exists
a subset B of A such that for all a ∈ B, →a is identity, and
for all a 6∈ B,→a= {e, e>} × {e>}.
So agents in B are aware that φ = pre(e) is communicated,
but others think that nothing happens. This definition cor-
responds to the group update program UB?φ in Gerbrandy’s
PhD thesis [1999].

3 Multi-agent epistemic explanatory diagnosis
In this section, we present the formal definition of multi-agent
epistemic explanatory diagnosis, and propose several criteria
for preferred diagnoses.

Definition 3.1. A diagnosis problem is a tuple P =
(∆, s0, φo), where ∆ is a finite set of actions, s0 is the ini-
tial epistemic state, and φo ∈ LKC is the observation.

Definition 3.2. An explanatory diagnosis for a diagnosis
problem P = (∆, s0, φo) is a finite sequence σ of actions
from ∆ such that σ is applicable in s0, and s0 ⊗ σ |= φo.

Thus σ is an explanatory diagnosis if in s0, it is possible to
execute the actions in σ one by one, and in the resulting epis-
temic state, the observation holds.

Example 4. The diagnosis problem for the watch example
is P = (∆, s0, φo), where φo = ¬pa ∧ Kapa, s0 is from
Example 1, and we let ∆ be the set of the following actions:

• α1 (α2): Bob (Carl) moves the watch from Ann’s drawer
to the surface of the desk (while Ann is away);

• α3 (α4): Bob (Carl) moves the watch from the surface
of the desk to Ann’s drawer (while Ann is away);

• α5 (α6): Bob (Carl) moves the watch from the surface of
the desk to Bob’s (Carl’s) drawer (while Ann is away);

Then the following are some solutions for P :
σ1 = α1α5, σ2 = α1α3α1α5, σ3 = α1α3α2α6.

Figure 3 illustrates the evolution of e-states as the sequence
α1α5 is performed. Clearly, s2 |= ¬pa ∧Kapa.

As we can see from the above example, for a diagnosis
problem, there might very well be many explanatory diag-
noses, and there is a need to distinguish between diagnoses
of different quality. In all cases, we would prefer diagnoses
which avoid conjecturing actions which do not account for
the observation. In addition, there may be domain-specific
information which we would like to consider in determining
preferred diagnoses.

Definition 3.3. Let ≺ be a preference relation between diag-
noses. Given a diagnosis problem P , σ is a preferred diag-
nosis for P if σ is a diagnosis for P and there does not exist
another diagnosis σ′ for P such that σ′ ≺ σ.



Figure 3: The evolution of epistemic states in Example 4

Next, we propose three domain-independent preference
criteria for diagnoses. In many situations, the most impor-
tant criterion is the length of the diagnosis. There are two
other useful criteria: one prefers diagnoses involving fewer
agents, and the other prefers diagnoses of lower-cost.

To formalize these criteria, we introduce some notation.
Let σ be a finite sequence of actions α1 . . . αn, where αi =
(Ei, ei, actri, costi), i = 1, . . . , n. We use ‖σ‖ to denote
the length of the sequence σ. We define actrs(σ) as the set
{actri(ei) | i = 1, . . . , n}, and cost(σ) as Σn

i=1costi(ei).

Definition 3.4. Given a diagnosis problem P and two diag-
noses σ1 and σ2 for it,

1. σ1 is preferred to σ2 wrt length if ‖σ1‖ < ‖σ2‖;
2. σ1 is preferred to σ2 wrt simplicity if
|actrs(σ1)| < |actrs(σ2)|;

3. σ1 is preferred to σ2 wrt cost if cost(σ1) < cost(σ2).

Considering Example 4, we have: σ1 is preferred to σ2 and
σ3 wrt length; σ1 and σ2 are preferred to σ3 wrt simplicity.

From our definition, it is easy to see that computing an
explanatory diagnosis is analogous to generating a plan to
achieve a goal. However, there is a difference between ex-
planatory diagnosis and planning. In planning, a goal might
not be achievable. But in diagnosis, an observation is a prop-
erty of the current e-state, which results from the initial e-state
by the execution of a sequence of actions. So if a diagnosis
problem is correctly specified, a solution always exists. But a
diagnosis problem might be incorrectly specified and if so, a
solution may not exist. In this paper, we study the decidability
issue of the following problem:

Definition 3.5. The explanatory diagnosing problem is to de-
cide if a given diagnosis problem has a solution.

In fact, our definition of explanatory diagnoses is the same
as that of epistemic planning solutions by Bolander and An-
derson [2011] except that they use local epistemic states. A
local epistemic state for agent a is a pair (M,Wa), where
M = (W,R, V ) is a Kripke model, and Wa ⊆ W is closed
under Ra, i.e., if w ∈ Wa and wRaw

′, then w′ ∈ Wa. They
showed that multi-agent epistemic planning is undecidable
even without common knowledge. So in general, explana-
tory diagnosing is undecidable. In the next two sections, we
identify important decidable fragments of the problem.

4 A decidability result in the absence of
common knowledge

In this section, we present our result that in the absence of
common knowledge, when we only allow propositional ac-
tions, explanatory diagnosing is decidable. Our result is in-
spired by two decidability results from [Bolander and Ander-
sen, 2011] concerning multi-agent epistemic planning. So we
introduce their results first.

The basic idea of their results is this. Given a multi-agent
epistemic planning problem, we perform a search in the space
of e-states. In general, this is an infinite search space. Un-
der conditions ensuring that the number of non-isomorphic
e-states is finite, planning is decidable. Better yet, under
conditions guaranteeing that the number of non-equivalent e-
states is finite, planning is also decidable. In the following,
we rephrase their results in the context of explanatory diag-
nosis, and briefly present the proofs.
Proposition 4.1. Given a natural number n, the number of
non-isomorphic e-states with exactly n worlds is ≤ n · 2n2

.
Theorem 4.2. Explanatory diagnosing is decidable when
only globally deterministic actions are allowed.

Proof. Given such a diagnosis problem, we perform a search
in the space of e-states. For a globally deterministic event
model, in any world, at most one event can happen. Hence
when we update an e-state by an action, the number of worlds
won’t increase. Suppose that the initial e-state has n worlds.
Then any possible e-state has no more than n worlds. By
Proposition 4.1, the e-state space is finite.

Examples of globally deterministic actions are public actions
and sensing actions.

We now introduce the well-known concept of bisimulation,
which is needed in the rest of this paper. For a reference on
modal logic, see for example [Blackburn et al., 2002].
Definition 4.3. Let s = (M,w) and s′ = (M ′, w′) be two
e-states, where M = (W,R, V ) and M ′ = (W ′, R′, V ′). A
bisimulation between s and s′ is a relation ρ ⊆ W ×W ′ s.t.
wρw′, and whenever uρu′, V (u) = V ′(u′), and
• The forth condition: for all agents a ∈ A, if uRav, then

there is v′ (called the forth witness) s.t. u′R′av
′ and vρv′;

• The back condition: for all agents a∈A, if u′R′av
′, then

there is v (called the back witness) s.t. uRav and vρv′.
We say that s and s′ are bisimilar, written s↔s′, if there is a
bisimulation relation between s and s′.

A nice property of bisimilar epistemic states is that they
agree on all epistemic formulas:
Proposition 4.4. Let s and s′ be two epistemic states s.t.
s↔s′. Then for any φ ∈ LKC , s |= φ iff s′ |= φ.

Let M = (W,R, V ) be a Kripke model. We can define an
equivalence relation onW as follows: w↔v iffM,w↔M,v.
Then we can construct the quotient structure of M wrt ↔,
which turns out to be bisimilar to M .
Definition 4.5. Given a Kripke model M = (W,R, V ),
the bisimulation contraction of M is the quotient structure
M↔ = (W ′, R′, V ′), where



• W ′ = {[w]↔ | w ∈W}, here
[w]↔ = {v ∈W | (M,w)↔(M, v)};
• For all agents a ∈ A, [w]↔R

′
a[v]↔ iff there are w′ ∈

[w]↔ and v′ ∈ [v]↔ such that w′Rav
′;

• For all w ∈W , V ′([w]↔) = V (w).
Proposition 4.6. (M↔, [w]↔)↔(M,w).

We are now ready to present the second result.
Proposition 4.7. In the single-agent case, the number of non-
bisimilar S5, KD45 or K45 e-states is≤2n·22n , here n= |P|.

Proof. In the single-agent case, it is easy to show: (1) Each
S5 e-state is bisimilar to an e-state s = ((W,R, V ), w), where
R = W ×W , and V is an injection. (2) Each KD45 or K45
e-state is bisimilar to an e-state s = (({w} ∪W,R, V ), w),
where W 6= ∅ in the case of KD45, R = ({w} ∪W ) ×W ,
and the restriction of V to W is an injection.

Theorem 4.8. Single-agent explanatory diagnosing is decid-
able when the frames are all S5, all KD45, or all K45.

Proof. It is easy to show that bisimilarity of e-states is pre-
served under product update. So by Propositions 4.4 and 4.6,
when we perform search of the e-state space, we can replace
each e-state by its bisimulation contraction. By Proposition
4.7, we get a finite search space.

Now we proceed to present our result. Theorem 4.8 holds
because there are a finite number of non-bisimilar e-states,
which does not hold in the multi-agent case. However, if
the observations do not contain common knowledge, a weak
notion of bisimilarity would suffice. Below we present the
definition of k-bisimulation and the property that two k-
bisimilar e-states agree on all formulas of LK with modal
depth bounded by k from [Blackburn et al., 2002]. We will
show that the k-bisimulation contraction of a Kripke model
is k-bisimilar to itself, there are a finite number of non-k-
bisimilar e-states, and k-bisimilarity is preserved under up-
date by propositional actions. With these results, we can show
that explanatory diagnosing is decidable when observations
do not contain common knowledge and only propositional
actions are allowed.
Definition 4.9. Let s = (M,w) and s′ = (M ′, w′) be two
e-states, where M = (W,R, V ) and M ′ = (W ′, R′, V ′). We
say that s and s′ are k-bisimilar, written s↔ks

′, if V (w) =
V ′(w′), and either k = 0 or the following conditions hold:
• The forth condition: for all agents a ∈ A, if wRav, then

there is v′ s.t. w′R′av
′ and (M,v)↔k−1(M ′, v′);

• The back condition: for all agents a ∈ A, if w′R′av
′,

then there is v s.t. wRav and (M,v)↔k−1(M ′, v′).
Clearly, for any k ≥ 0, if s↔k+1s

′, then s↔ks
′.

The modal depth of a formula φ, denoted by md(φ), is the
depth of nesting of modal operators in φ.
Proposition 4.10. Let s and s′ be two e-states s.t. s↔ks

′.
Then for any φ ∈ LK s.t. md(φ) ≤ k, s |= φ iff s′ |= φ.

Following the idea of bisimulation contraction, we define:
Definition 4.11. The k-bisimulation contraction of a Kripke
model M is the quotient structure of M wrt the↔k relation.

The proposition below shows that the k-bisimulation con-
traction of a Kripke model M is k-bisimilar to M itself.

Proposition 4.12. Let (M,w) be an e-state. Then for any
j, k such that j ≥ k ≥ 0, (M↔j

, [w]↔j
)↔k(M,w).

Proof. Let M = (W,R, V ). To simplify the notation, we
denote M↔j

by Mj , and [w]↔j
by [w]j . We prove by

induction on k. The base case is obvious. Assume that
the statement holds for k. Then by transitivity of ↔k, we
have for any j1, j2 ≥ k, (Mj1 , [w]j1)↔k(Mj2 , [w]j2). We
prove that the statement holds for k + 1. Let j ≥ k + 1.
Let Mj = (W ′, R′, V ′). First, V ′([w]j) = V (w). (1)
Suppose wRav. Then [w]jR

′
a[v]j . By induction hypoth-

esis, (Mj , [v]j)↔k(M, v). (2) Suppose [w]jR
′
a[v]j . Then

there are w∗ ∈ [w]j and v∗ ∈ [v]j s.t. w∗Rav
∗. Since

(M,w)↔j(M,w∗), there is v′ s.t. wRav
′ and (M, v′)↔j−1

(M,v∗). Since (M,v)↔j(M, v∗), (M,v)↔j−1(M,v∗). So
(M,v)↔j−1(M, v′), hence [v]j−1 = [v′]j−1. By induction
hypothesis, (Mj−1, [v

′]j−1)↔k(M, v′), and (Mj , [v]j)↔k
(Mj−1, [v]j−1). Since [v]j−1 = [v′]j−1, we have
(Mj , [v]j)↔k(M, v′). Thus, (Mj , [w]j)↔k+1(M,w).

Visser [1996] showed that in the single-agent case, the
number of ↔k equivalence classes of any Kripke model is
bounded by a number which only depends on k. In the fol-
lowing, we extend his result to the multi-agent case:

Proposition 4.13. Let M be a Kripke model. We use Fk(M)
to denote the number of↔k equivalence classes of worlds of
M . Suppose |A| = m and |P| = n. Let f(0) = 2n, and
f(i+ 1) = 2mf(i)+n for i ≥ 0. Then Fk(M) ≤ f(k).

Proof. Let M = (W,R, V ). We prove by induction on k.
Base case: k = 0. For any w1, w2 ∈ W , if V (w1) = V (w2),
then M,w1↔0M,w2. There are at most 2n different possi-
bilities for V (w), w ∈ W . Thus F0(M) ≤ 2n = f(0). In-
ductive step: Assume that the statement holds for k. We prove
that it holds for k + 1. For any w ∈ W , a ∈ A, let Ra(w)
denote the set {[w′]↔k

| wRaw
′}. Then we have: for any

w1, w2 ∈ W , if V (w1) = V (w2) and Ra(w1) = Ra(w2)
for all a ∈ A, then (M,w1)↔k+1(M,w2). For each a ∈ A,
there are at most 2Fk(M) different possibilities forRa(w). So
Fk+1(M) ≤ 2n · (2Fk(M))m ≤ 2mf(k)+n = f(k + 1).

The next proposition states that k-bisimilarity between e-
states is preserved under update by propositional actions.

Proposition 4.14. Let s = (M,w) and s′ = (M ′, w′) be two
e-states such that s↔ks

′. Let α = (E , e) be a propositional
action. Then α is applicable in s iff α is applicable in s′; and
if α is applicable in s, then s⊗ α↔ks

′ ⊗ α.

Proof. Let M = (W,R, V ), M ′ = (W ′, R′, V ′), and
E = (E,→, pre, post). Since (M,w)↔k(M ′, w′), V (w) =
V ′(w′). Since pre(e) is propositional, M,w |= pre(e) iff
M ′, w′ |= pre(e). Hence α is applicable in s iff α is ap-
plicable in s′. Now suppose α is applicable in s. Let M ⊗
E =(W ∗, R∗, V ∗) and M ′⊗E = (W ′∗, R′∗, V ′∗). We prove
s⊗α↔ks

′⊗α by induction on k. Since (M,w)↔0(M ′, w′),
V (w) = V ′(w′). So V ∗((w, e)) = V ′∗((w′, e)). So we have



proved the base case: k = 0. Induction step: Assume that the
statement holds for k. We prove that it also holds for k + 1.
We first prove the forth condition. Suppose (w1, e1) ∈ W ∗
and (w, e)R∗a(w1, e1). Then M,w1 |= pre(e1), wRaw1

and e →a e1. Since (M,w)↔k+1(M ′, w′), there exists w′1
such that w′Raw

′
1 and (M,w1)↔k(M ′, w′1). By induction

hypothesis, M ⊗ E , (w1, e1)↔kM
′ ⊗ E , (w′1, e1). Mean-

while, (w′, e)R′∗a (w′1, e1). The back condition can be simi-
larly proved. Thus, M ⊗E , (w, e)↔k+1M

′⊗E , (w′, e).

It is important to note that without the restriction to propo-
sitional actions, Proposition 4.14 does not hold. We illustrate
this with the following example:

Example 5. Let A = {a} and P = {p}. Figure 4 illustrates
two e-states s1 and s2, action α, and the two e-states s1 ⊗ α
and s2 ⊗ α. Here α has a single event e with pre(e) = Kap.
s2⊗α has a single state (v, e), since e is not executable in v1
or v2. Clearly, s1↔1s2, but not s1 ⊗ α↔1s2 ⊗ α.

Figure 4: The update of epistemic states in Example 5

We are now ready to present the main result of this section:

Theorem 4.15. Explanatory diagnosing is decidable when
observations are in LK and all actions are propositional.

Proof. Let P = (∆, s0, φo) be such a diagnosis problem.
Let k = md(φo). By Propositions 4.10 and 4.12, any e-state
s and its k-bisimulation contraction are k-bisimilar and hence
agree on φo. By Proposition 4.14, k-bisimularity is preserved
under update by propositional actions. Thus, when we per-
form search of the e-state space, we can replace each e-sate by
its k-bisimulation contraction. By Propositions 4.13 and 4.1,
there are only finitely many non-isomorphic k-bisimulation
contractions. So we get a finite search space.

5 A decidability result in the presence of
common knowledge

In this section, we present a decidability result of the explana-
tory diagnosing problem in the presence of common knowl-
edge where we allow only propositional epistemic actions.
We will use PE to abbreviate for “propositional epistemic”.
Our result is inspired by the work of Löwe et al. [2011],
which we introduce first.

Löwe et al. identified two important properties of event
models, defined as follows:

Definition 5.1. Two actions α1 and α2 commute if for all
e-states s, we have (s⊗ α1)⊗ α2↔(s⊗ α2)⊗ α1.

Let α be an action, and n ≥ 1. We use αn to denote the
sequence consisting of exactly n α’s.
Definition 5.2. An action α is called self-absorbing if for all
e-states s, s⊗ α2↔s⊗ α.

If all actions are self-absorbing and commute, then multi-
agent epistemic planning is decidable, since we can reduce
the search space of action sequences to the finite space of ac-
tion sequences where each action appears at most once. They
showed that PE actions commute and identified a special type
of PE actions which are self-absorbing.
Proposition 5.3. Propositional epistemic actions commute.
Definition 5.4. An epistemic event model E = (E,→, pre)
is almost-mutex if e> ∈ E, e> →a e> for all a ∈ A, and the
formulas pre(e) with e 6= e> are pairwise inconsistent.
Definition 5.5. A propositional epistemic event model is
called almost-mutex transitive if it is almost-mutex and all
accessibility relations are transitive.
Proposition 5.6. Almost-mutex transitive propositional epis-
temic actions are self-absorbing.

In the following, we will identify a wide variety of special
types of PE actions, and show that any action α of these types
is self-absorbing in the general sense, i.e., there exists a num-
ber n which depends only on α, such that for any e-state s,
we have s⊗αn+1↔s⊗αn. Thus we will be able to show that
explanatory diagnosing is decidable when only these types of
PE actions are allowed.

We first state a simple property of PE actions:
Proposition 5.7. Let s = (M,w0) be an e-state where M =
(W,R, V ), and α = (E , e0) a propositional epistemic action
where E = (E,→, pre). Suppose that αn is applicable in s.
Then for any w ∈ W , any τ = (e1, . . . , en) ∈ En, (w, τ)
is a world of s ⊗ αn iff w |= pre(τ), where pre(τ) denotes
pre(e1) ∧ . . . ∧ pre(en).

It is easy to prove the following:
Proposition 5.8. Public propositional epistemic actions are
self-absorbing.
Definition 5.9. An epistemic event model E = (E,→, pre)
is possibly oblivious if e> ∈ E, and for all e ∈ E and all
a ∈ A, e→a e>.

Intuitively, a possibly oblivious event model is one where
when any event happens, any agent thinks it is possible that
nothing happens. It might be strange that the performer of the
event also thinks it is possible that nothing happens. But this
is the case for fallible events.
Proposition 5.10. Possibly oblivious propositional epistemic
actions are self-absorbing.

Proof. Let α = (E , e0) be a possibly oblivious PE action
where E = (E,→, pre). Let s = (M,w0) be an e-state
where M = (W,R, V ). We show that s ⊗ α2↔s ⊗ α. Let
M ⊗ E = M ′ = (W ′, R′, V ′) and M ′ ⊗ E = M ′′ =
(W ′′, R′′, V ′′). We define ρ ⊆ W ′′ × W ′ as follows:
ρ = {((w, e1, e2), (w, e)) | e = e1 or e = e2}. We show
that ρ is a bisimulation between s ⊗ α2 and s ⊗ α. First,
(w0, e0, e0)ρ(w0, e0). Now suppose ((w, e1, e2), (w, e)) ∈



ρ. Since E is epistemic, we have V ′((w, e)) = V (w) =
V ′′((w, e1, e2)). Suppose (w, e1, e2)R′′a(w′, e′1, e

′
2). Since

(w′, e′1, e
′
2) ∈ W ′′, we have w′ |= pre(e′1) ∧ pre(e′2). If

e = e1, let e′ = e′1, else let e′ = e′2. Then (w′, e′) is the
forth witness. Suppose (w, e)R′a(w′, e′). Since E is possibly
oblivious, e> ∈ E, and for all e ∈ E, e →a e>. If e = e1,
let e′1 = e′ and e′2 = e>, else let e′1 = e> and e′2 = e′. Then
(w′, e′1, e

′
2) is the back witness.

Definition 5.11. A binary relation R is functional dependent
if whenever xRy and xRz, we have y = z. An event model
is called functional dependent if all accessibility relations are.
Intuitively, a functional dependent event model is one where
when any event happens, any agent is certain but may be mis-
taken about the current event. An example of such event mod-
els is secret communication.
Definition 5.12. An event model is binary if it has exactly
two events.
An example of binary event models is binary sensing.
Definition 5.13. A binary relation R is divergent if every el-
ement is related to at least two distinct elements. An event
model is triple dichotomous if it has exactly three events and
every accessibility relation is either functional dependent or
divergent.
Intuitively, a triple dichotomous event model is one where
there are only two types of agents: the first is certain about
the current event when any event happens, and the second is
uncertain about the current event when any event happens.
Proposition 5.14. Let α = (E , e0) be a propositional epis-
temic action which is functional dependent, or binary, or
triple dichotomous. Let n be the number of events in E . Then
for all e-states s, s⊗ αn+1↔s⊗ αn.

Proof. Let E = (E,→, pre). Let s = (M,w0) be an e-state
where M = (W,R, V ). Let M ⊗ En = (W ′, R′, V ′) and
M ⊗ En+1 = (W ′′, R′′, V ′′). We define ρ ⊆ W ′′ × W ′

as follows: ρ = {((w, τ1), (w, τ2)) | set(τ1) = set(τ2)},
where set(τ) is the set of elements occurring in τ . We show
that ρ is a bisimulation between s⊗ αn+1 and s⊗ αn. First,
(w0, e

n+1
0 )ρ(w0, e

n
0 ). Now suppose ((w, τ1), (w, τ2)) ∈ ρ.

Since E is epistemic, V ′′((w, τ1)) = V (w) = V ′((w, τ2)).
Let τ1 = (e1, . . . , en, en+1). Since |E| = n and set(τ1) =
set(τ2), there exist i, j s.t. 1 ≤ i ≤ j ≤ n + 1, ei = ej ,
and τ2 is obtained from τ1 by removing ei and possibly per-
muting the other elements. Since E is propositional epis-
temic, the order of events does not matter. Without loss of
generality, assume that en = en+1 and τ2 = (e1, . . . , en).
Suppose (w, τ2)R′a(w′, τ ′2) where τ ′2 = (e′1, . . . , e

′
n). Let

τ ′1 = (e′1, . . . , e
′
n, e
′
n). Since (w′, τ ′2) ∈ W ′, w′ |= pre(τ ′2),

hence w′ |= pre(τ ′1), so (w′, τ ′1) ∈ W ′′. Then (w′, τ ′1) is the
back witness. Finally, suppose (w, τ1)R′′a(w′, τ ′1) where τ ′1 =
(e′1, . . . , e

′
n, e
′
n+1). We show there is τ ′2 so that (w′, τ ′2) is the

forth witness. We consider three cases: (1) E is functional de-
pendent. Since en = en+1, en →a e

′
n, and en+1 →a e

′
n+1,

we have e′n = e′n+1. We let τ ′2 = (e′1, . . . , e
′
n).

(2) E is binary. So n = 2. If e′2 = e′3, the proof is the same as
in (1). Otherwise, e′2 6= e′3. Since n = 2, e′1 = e′2 or e′1 = e′3.
If e′1 = e′2, let τ ′2 = (e′1, e

′
3), else let τ ′2 = (e′1, e

′
2).

(3) E is triple dichotomous, so n = 3. If e′3 = e′4, the proof is
the same as in (1). Otherwise, e′3 6= e′4, so→a is divergent.
Since n = 3, e2 →a e

′
3 or e2 →a e

′
4. If e2 →a e

′
3, we let

τ ′2 = (e′1, e
′
3, e
′
4), otherwise let τ ′2 = (e′1, e

′
4, e
′
3).

We now present the main result of this section.
Theorem 5.15. Explanatory diagnosing is decidable when
only the following types of propositional epistemic actions are
allowed: public, almost-mutex transitive, possibly oblivious,
functional dependent, binary, and triple dichotomous.

Proof. Give a diagnosis problem, we perform a search in
the space of action sequences. Note that bisimilar e-states
agree on all formulas of LKC . By Proposition 5.3, PE actions
commute. So we can restrict the search space to sequences
of powers of different actions, i.e., sequences of the form:
αk1
1 . . . αkn

n , where for any i 6= j, αi 6= αj . By Propositions
5.6, 5.8, 5.10, and 5.14, we can further restrict the search
space so that each power ki is bounded by 1 if the action αi is
almost-mutex transitive or possibly oblivious, or by n where
n is the number of events in the action. Since there are only
finitely many actions, we get a finite search space.

So we have shown that for a wide range of propositional
epistemic actions, explanatory diagnosing is decidable in the
presence of common knowledge.

6 Conclusions
Explanatory diagnosis is a common task in real life and an es-
sential ability of intelligent agents. In this paper, we have for-
mally defined multi-agent epistemic explanatory diagnosis in
the framework of dynamic epistemic logic. Since explanatory
diagnosing is undecidable in general, we identify important
decidable fragments of it. Our first result is that when obser-
vations do not contain common knowledge and all actions are
propositional, explanatory diagnosing is decidable. Our sec-
ond result is that in the presence of common knowledge, for
a wide range of propositional epistemic actions, explanatory
diagnosing is decidable. We would like to remark that these
results carry over to multi-agent epistemic planning. There
are also two results inherited from the literature: the first is
that explanatory diagnosing is decidable when all actions are
globally deterministic; the other is that single-agent explana-
tory diagnosing is decidable when the frames are all S5, all
KD45, or all K45. For the future, we would like to iden-
tify decidable fragments of explanatory diagnosing that go
beyond propositional actions, investigate the computational
complexity of explanatory diagnosing for the decidable frag-
ments we have identified, implement multi-agent explanatory
diagnosis solver, and apply it to multi-agent high-level pro-
gram execution.
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[Löwe et al., 2011] Benedikt Löwe, Eric Pacuit, and An-
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