
Reasoning about State Constraints in the Situation Calculus
Naiqi Li1 Yi Fan1,2 Yongmei Liu1

1Department of Computer Science,
Sun Yat-sen University, Guangzhou 510006, China
2Institute for Integrated and Intelligent Systems,

Griffith University, Brisbane, Australia
ymliu@mail.sysu.edu.cn

Abstract

In dynamic systems, state constraints are formulas
that hold in every reachable state. It has been shown
that state constraints can be used to greatly reduce
the planning search space. They are also useful in
program verification. In this paper, we propose a
sound but incomplete method for automatic verifi-
cation and discovery of ∀∗∃∗ state constraints for a
class of action theories that include many planning
benchmarks. Our method is formulated in the sit-
uation calculus, theoretically based on Skolemiza-
tion and Herbrand Theorem, and implemented with
SAT solvers. Basically, we verify a state constraint
by strengthening it in a novel and smart way so that
it becomes a state invariant. We experimented with
the blocks world, logistics and satellite domains,
and the results showed that, almost all known state
constraints can be verified in a reasonable amount
of time, and meanwhile succinct and intuitive re-
lated state constraints are discovered.

1 Introduction
When an agent is working in a dynamic world, she needs to
recognize and verify some laws of the world. Two kinds of
laws widely investigated are state invariants and state con-
straints [Lin, 2004]. Roughly, state invariants are formulas
that if true in a state, will be true in all successor states, while
state constraints are formulas that hold in any reachable state.
The key difference between them is that the first is a first-
order property while the second is a second-order property.

In planning, state constraints act as domain specific knowl-
edge which reduces the search space greatly [Gerevini and
Schubert, 1998]. Experiments show that they speed up plan-
ning drastically in some cases [Kautz and Selman, 1992;
Gerevini and Schubert, 1998; Refanidis and Vlahavas, 2000].
State constraints can also be used to debug domain axioma-
tization. In C programs, we sometimes need to ensure that a
pointer never moves out of an area, or a stack is never over-
flowed, so we are to verify whether they are state constraints.

The problems of discovering state constraints and invari-
ants have been investigated in both the planning and reason-
ing about actions communities. The works from the planning

community are more empirical. In the reasoning about ac-
tion community, Lin [2004] developed a method for discov-
ering state invariants in domains of unbounded size through
exhaustive search in selected small domains. He did experi-
ments in blocks world and logistics domains, and discovered
a complete set of constraints in the second, that is, any ille-
gal state must violate at least one of them. However, there is
no soundness guarantee when his method is applied to non-
∀∗-formulas. Kelly and Pearce [2010] proposed a method for
computing whether a formula φ holds in all successor states
of a given state, but the procedure does not necessarily halt
since it is based on first-order entailment and fixpoint compu-
tation, and no implementation was reported.

In this paper, we propose a sound but incomplete method
for automatic verification and discovery of ∀∗∃∗ state con-
straints for a class of action theories that include many plan-
ning benchmarks. Our method is formulated in the situation
calculus, theoretically based on Skolemization and Herbrand
Theorem, and implemented with SAT solvers.

Basically, we verify a state constraint by strengthening it
with a sequence of formulas so that it becomes an invariant
constraint, and the formulas used to strengthen it are called its
joint constraints. So the problem becomes how to systemati-
cally obtain such joint constraints. We have developed a novel
way to do so. Given a ∀∗ formula φ, assuming it holds in the
initial state, we test if φ is a state invariant, using those pre-
viously verified constraints as the background information. If
so we confirm that φ is a state constraint. Otherwise, we pick
up a successor state s′ of state s such that φ(s) ⊃ φ(s′) is not
entailed by the existing set of state constraints. We regress
φ(s′) to get an equivalent formula ψ(s). For the class of ac-
tion theories we consider, ψ(s) is also a ∀∗ formula. We con-
vert ψ(s) into CNF, and we call each conjunct of it a derivant
of φ. The derivants of φ not logically implied by φ have the
nice property that if φ can be strengthened to become an in-
variant constraint, then they are joint constraints of φ. Next
we obtain a derivant C not implied by φ, use it to strengthen
φ, and continue this procedure with φ ∧ C. Besides, we also
check if φ can be strengthened by some subset of C in order
to obtain more intuitive and succinct joint constraints.

We did experiments in the blocks world, logistics and satel-
lite domains, and the results showed that, almost all known
constraints are verified in a reasonable time period, and mean-
while succinct and intuitive joint constraints are discovered.

2 Preliminaries
In this section, we introduce the background work of our pa-
per, i.e., Herbrand Theorem and Skolemization, the situation
calculus, state constraints and state invariants.

2.1 Herbrand Theorem
Herbrand Theorem reduces the satisfiability of a set of ∀∗
first-order sentences to that of a possibly infinite set of propo-
sitional formulas.
Theorem 2.1. Let L be a first-order language with at least
one constant, and let Φ be a set of ∀∗ L-sentences including
the equality axioms for L. Then Φ is unsatisfiable iff some fi-
nite set Φ0 of L-ground instances of sentences in Φ is propo-
sitionally unsatisfiable.

Herbrand Theorem only applies to determining the satisfia-
bility of ∀∗ sentences. In other cases, we need Skolemization.
Definition 2.2. Let φ be a first-order sentence in prenex nor-
mal form. We construct the functional form of φ by removing
each existential quantifier ∃y in the prenex and replacing y
in the formula by f(x1, . . . , xn), where f is a new function
symbol, and x1, . . . , xn are the universally quantified vari-
ables that precede ∃y in the prefix. To form the functional
forms of a set of sentences, it is necessary to make every
Skolem function symbol introduced distinct from all Skolem
function symbols in all other formulas.
Theorem 2.3. A set Φ of sentences is satisfiable iff the set of
functional forms of sentences in Φ is satisfiable.

2.2 The Situation Calculus
We will not go over the language of the situation calculus
here except to note the following components: a constant S0

denoting the initial situation; a binary function do(a, s) de-
noting the successor situation to s resulting from performing
action a; a binary predicate s @ s′ meaning that situation
s is a proper subhistory of s′; a binary predicate Poss(a, s)
meaning that action a is possible in situation s; a finite num-
ber of action functions; a finite number of relational and func-
tional fluents, i.e., predicates and functions taking a situation
term as their last argument.

Often, we need to restrict our attention to formulas that do
not refer to any situations other than a particular one τ , and
we call such formulas uniform in τ . We use φ(τ) to denote
that φ is uniform in τ . A situation s is executable if it is
possible to perform the actions in s one by one:

Exec(s)
def
= ∀a, s′.do(a, s′) v s ⊃ Poss(a, s′).

In the situation calculus, a particular domain of application
is specified by a basic action theory (BAT) of the form:

D = Σ ∪ Dap ∪ Dss ∪ Duna ∪ DS0
, where

1. Σ is the set of the foundational axioms for situations,
including a second-order induction axiom for situations:

(∀P).P (S0)∧(∀a, s)[P (s) ⊃ P (do(a, s))] ⊃ (∀s)P (s).

2. Dap contains a single precondition axiom of the form
Poss(a, s) ≡ Π(a, s), where Π(a, s) is uniform in s.

3. Dss is a set of successor state axioms (SSAs), one for
each fluent F , of the form F (~x, do(a, s)) ≡ ΦF (~x, a, s),
where ΦF (~x, a, s) is uniform in s.

4. Duna is the set of unique names axioms for actions.
5. DS0 , the initial KB, is a set of sentences uniform in S0.

Actions in many domains have only local effects in the
sense that if an actionA(~c) changes the truth value of an atom
F (~e, s), then ~e is contained in ~c. This contrasts actions that
have non-local effects such as moving a briefcase, which will
also move all the objects inside the briefcase without having
mentioned them. We skip the the formal definition here.

We say that Dap and Dss are essentially quantifier-free if
for each action function A(~y) and each fluent F , by using
Duna, both Π(A(~y), s) and ΦF (~x,A(~y), s) can be simplified
to quantifier-free formulas.
Definition 2.4. A basic action theory is simple if every ac-
tion is local-effect, Dap and Dss are essentially quantifier-
free, and DS0 is a consistent set of ∀∗ formulas.
Example 2.5. Below are parts of a simple BAT:
Poss(stack(x, y), s) ≡ holding(x, s)∧ clear(y, s)∧x 6= y
on(x, y, do(a, s)) ≡ a = stack(x, y)∨
on(x, y, s) ∧ a 6= unstack(x, y)

holding(x, do(a, s)) ≡
(∃y)a = unstack(x, y) ∨ a = pickup(x)∨
holding(x, s)∧ (¬∃y)a = stack(x, y)∧a 6= putdown(x)

We assume that D is simple throughout this paper.
An important computational mechanism for reasoning

about actions is regression. Here we define a one-step regres-
sion operator for simple action theories, and state a simple
form of the regression theorem [Reiter, 2001].

Definition 2.6. We use R̂D[φ] to denote the formula obtained
from φ by replacing each fluent atom F (~t, do(α, σ)) with
ΦF (~t, α, σ) and each precondition atom Poss(α, σ) with
Π(α, σ), and further simplifying the result by using Duna.

Theorem 2.7. D |= φ ≡ R̂D[φ].

2.3 State Constraints and State Invariants
We now formally define state constraints and state invariants.
We use |= to denote entailment in the situation calculus, and
use |=FOL to denote classic first-order entailment. We follow
the definition of state constraints in [Reiter, 2001]:
Definition 2.8. Given D and a formula φ(s), φ(s) is a state
constraint for D if D |= ∀s.Exec(s) ⊃ φ(s).

So state constraints are formulas which hold in all exe-
cutable situations. SinceD includes a second-order induction
axiom for situations, verifying state constraints is a second-
order reasoning task. We make

DSC = {ϕ(s) | ϕ(s) is a verified constraint}

an extra component ofD. We also abuseDSC as the conjunc-
tion of the elements in DSC .

Our approach exploits verified state constraints to verify
other constraints, so we have a slightly different definition of
state invariants below:

Definition 2.9. Let Dvc be a set of formulas uniform in s,
called the background information. A formula φ(s) is a state
invariant for D wrt Dvc if
Dap ∪ Dss ∪ Duna |=FOL

∀a, s.Dvc ∧ φ(s) ∧ Poss(a, s) ⊃ φ(do(a, s)).

Given the background informationDvc, state invariants are
those that if true in a situation, will be true in all successor
situations. Clearly, verifying state invariants is a first-order
reasoning task. We will useDSC to collect those verified con-
straints, and use it as the background information. Obviously,
if φ(s) is a state invariant wrt some subset of DSC , then φ(s)
is a state invariant wrt DSC .
Definition 2.10. We say φ(s) is a state invariant for D, if
φ(s) is a state invariant wrt a set of state constraints for D.

The following shows closure properties of constraints.
Proposition 2.11. 1. φ(s) ∧ ψ(s) is a constraint iff

both φ(s) and ψ(s) are constraints.
2. If φ(s) is a constraint, then so is φ(s) ∨ ψ(s).
The following result shows that we can verify a constraint

by proving that it is an invariant.
Proposition 2.12. If every element of DSC is an invariant,
DS0

|=FOL ϕ(S0), and ϕ(s) is an invariant, then ϕ(s) is a
constraint.

Our approach verifies a constraint by strengthening it to be
an invariant, which is put intoDSC , so it can ensure that every
element of DSC is an invariant.

3 Theoretical Foundations
In this section, we introduce the theoretical foundations of
our work, i.e., the concepts of joint constraints and derivants,
and incomplete reasoning based on Hebrand Theorem.

3.1 Joint Constraints and Derivants
We now introduce the most important concepts of this paper.
Definition 3.1. An invariant constraint is a constraint which
is also an invariant. If ϕ(s) ∧ η(s) is an invariant constraint,
we call ϕ(s) a partial invariant constraint. If ϕ(s) ∧ η(s) is
a partial invariant constraint and η(s) is not logically implied
by ϕ(s), we call η(s) a joint constraint for ϕ(s).

We collects a set of invariant constraints in DSC . Given
a ∀∗ partial invariant constraint, we will strengthen it with
a sequence of joint constraints to approach an invariant con-
straint. Below we show how to obtain such joint constraints.
Theorem 3.2. ϕ(s) is a constraint forD iffDS0

|=FOL ϕ(S0)

and ∀a.R̂D[Poss(a, s) ⊃ ϕ(do(a, s))] is a constraint.
By Proposition 2.11 and Theorem 3.2, we have

Proposition 3.3. If ϕ(s) is a constraint for D, then for any
action function A(~x), the following is also a constraint:

∀~x.R̂D[Poss(A(~x), s) ⊃ ϕ(do(A(~x), s)].

Let ϕ(s) be a formula ∀~yφ(s), where φ(s) is quantifier-
free. As D is simple, R̂D[Poss(A(~x), s) ⊃ ϕ(do(A(~x), s))]
can be put into a formula ∀~yψ(s), where ψ(s) is quantifer-
free and can be put into CNF. So we have the definition below:

Definition 3.4. Let ϕ(s) be a ∀∗ formula. We transform
R̂D[Poss(A(~x), s) ⊃ ϕ(do(A(~x), s))] into a prenex CNF
formula. We call each conjunct a derivant of ϕ(s).

By Proposition 2.11, we have the following proposition
which shows that the derivants of constraints are constraints.

Proposition 3.5. Let ϕ(s) be a constraint, and C(s) a
derivant of ϕ(s). Then C(s) is a constraint.

Below we show that the derivants of a partial invariant con-
straint ϕ that are not implied by ϕ are its joint constraints.

Theorem 3.6 (Main Theorem). If ϕ(s)∧ η(s) is an invariant
constraint, and C(s) is a derivant of ϕ(s), then

1. |=FOL ∀s.DSC ∧ ϕ(s) ∧ η(s) ⊃ C(s).

2. ϕ(s) ∧ C(s) is a partial invariant constraint.

Suppose that ϕ(s) is a partial invariant constraint but not
an invariant. Our approach will choose a derivant C(s) of
ϕ(s) such that 6|=FOL ∀s.DSC ∧ϕ(s) ⊃ C(s), so ϕ(s)∧C(s)
is strictly stronger than ϕ(s). Thus our approach will strictly
strengthen ϕ(s) towards an invariant constraint.

The notion below is used to describe our algorithms.

Definition 3.7. The length of a CNF formula F , written |F |,
is defined to be the sum of the length of the clauses.

3.2 Incomplete Reasoning via Herbrand Theorem
In verifying state constraints, we need to check first-order en-
tailment of ∀∗∃∗ sentences, which can be reduced to checking
the satisfiability of a set of sentences. By Skolemization, this
can be reduced to checking the satisfiability of the functional
forms of the sentences, which is a set of ∀∗ sentences.

We use an incomplete algorithm to check the satisfiabil-
ity of a set of ∀∗ L-sentences. We first test the satisfiabil-
ity of a subset of L-ground instances using some finite set
H0 of terms in L. If it is satisfiable, we test the satisfiabil-
ity of a larger subset of L-ground instances, using a finite
set H1 of terms such that H0 ⊂ H1. We repeatedly do so
with larger subset of terms until unsatisfiability is confirmed
or some bound is reached. We now formalize the above idea.

Definition 3.8. Let L be a first-order language with at least
one constant symbol. We define partial Herbarnd universe
for L as follows: HL0 is the set of constants of L. For n ≥ 0,
HLn+1 is the union of HLn and the set of terms f(~t) such that
f is a function of L, and each ti belongs toHLn .

Let Φ be a set of ∀∗ L-sentences, and H a set of ground
terms of L. We use gnd(Φ)|H to denote the set of L-ground
instances of sentences in Φ using ground terms from H .

By Theorem 2.1 and Theorem 2.3, we obtain a theorem to
establish entailment of ∀∗∃∗ sentences as follows.

Theorem 3.9. Let Ψ be a set of ∀∗∃∗ sentences, and ψ a
∀∗∃∗ sentence. Let Φ be the set of Skolem functional forms of
Ψ∪{¬ψ}, and L the language of Φ. Then Ψ |=FOL ψ iff there
exists some n such that gnd(Φ)|HLn is unsatisfiable.

We use Ψ |=n
FOL ψ to denote that gnd(Φ)|HLn is unsatisfiable.

We remark that all ∀∗∃∗ constraints in this paper are veri-
fied by gnd(Φ)|HL1 , so this method is empirically effective.

4 Algorithms
Below, we use ψ = φ(s) ↑ s to mean that ψ is the formula
obtained from φ(s) by replacing each fluent atom F (~t, s) by
F (~t), and we say ψ is situation-suppressed. We use ψ[s] to
denote the formula obtained from ψ by restoring the situation
argument s to all predicates in ψ. Note that all input and
output formulas of our algorithms are situation-suppressed.

4.1 Verifying State Constraints
Algo. 1 verifies if the input ∀∗ formula φ is a state constraint
for the input BAT D. If φ is verified to be a state constraint,
the algorithm outputs an invariant constraint subsuming φ.

Algorithm 1: veri SC(φ,D,M, β)

input : A ∀∗ formula φ, a BAT D, a setM of small
initial models, a bound β

output: an invariant constraint subsuming φ,
or False, or Non-deter

1 ∆← {φ[s]}
2 while True do
3 remove a shortest formula ϕ(s) from ∆
4 if |ϕ(s)| ≥ β then return Non-deter
5 if ∃M ∈M.M 6|= ϕ(S0) or DS0

6|=FOL ϕ(S0) then
6 if ϕ(s) is integral then return False
7 else continue
8 IS SI← True
9 foreach action function A(~x) do

10 re← R̂D[Poss(A(~x), s) ⊃ ϕ(do(A(~x), s))]
11 C1(s) ∧ . . . ∧ Cn(s)← cnf(re)
12 if ∃Ci(s). 6|=FOL ∀~x, s.ϕ(s) ∧ DSC ⊃ Ci(s) then
13 IS SI← False
14 foreach η(s) ⊆ Ci(s) do
15 ∆← ∆ ∪ {∀~x, s.ϕ(s) ∧ η(s)}
16 break

17 if IS SI = True then return ϕ(s) ↑ s

Now we illustrate the two other inputs of the algorithm: a
setM of small initial models and a bound β. Given ϕ(s), in
verifying whether ϕ(s) is a constraint, we might strengthen
it, so we will have to verify longer and longer formulas. We
believe that most meaningful constraints can be proved after
being strengthened a few times, so we use β to bound |ϕ(s)|
in Line 4. To speed up the evaluation ofDS0

|=FOL ϕ(S0), we
use a small setM of small models ofDS0

in Line 5. If ϕ(S0)
is falsified by a model, it cannot be entailed, and this improves
efficiency greatly. We say a member of ∆ is integral if it is the
input formula or it is obtained in Line 15 with η(s) = Ci(s).

Here’s the work flow. In Line 3 the shortest formula is
selected. In Line 11, the formula re is transformed into
CNF, C1(s) ∧ . . . ∧ Cn(s). Line 12 successfully proves that
|=FOL ∀~x, s.DSC∧ϕ(s)∧Poss(A(~x), s) ⊃ ϕ(do(A(~x), s), or
it picks up a clause Ci(s) not entailed by DSC ∧ϕ(s) and use
it to strengthen ϕ(s). Line 14 considers all subsets of Ci(s),
and this is not very much a problem to efficiency, since in
practice, |Ci(s)| is relatively small. The motivation is that

it is likely that both Ci(s) and a subset η(s) of it are joint
constraints of ϕ(s), and we prefer η(s) to Ci(s) for both un-
derstandability and efficiency reasons.

The following theorem shows that Algorithm 1 is sound.
Theorem 4.1. Given an input φ, if Algorithm 1 returns ϕ,
then ϕ[s] is an invariant constraint subsuming φ[s]; if it re-
turns False, then φ[s] is not a constraint.

Algo. 2 verifies if an input ∀∗∃∗ formula is a constraint by
checking if itself is an invariant. In the algorithm, we apply
the |=n

FOL entailment relation as defined after Theorem 3.9,
which we implement with a SAT solver. Below is the sound-
ness theorem for Algo. 2.
Theorem 4.2. Given an input φ, if Algorithm 2 returns True,
φ[s] is a constraint; if it returns False, φ[s] is not.

Algorithm 2: ex query(φ,D,M)

input : A ∀∗∃∗ formula φ, D,M as before
output: True, False, or Non-deter

1 if ∃M ∈M.M 6|= φ[S0] or DS0
|=n

FOL ¬φ[S0] then
2 return False
3 if DS0

6|=n
FOL φ[S0] then return Non-deter

4 foreach action function A(~x) do
5 ξ(s)← R̂D[Poss(A(~x), s) ⊃ ϕ(do(A(~x), s))]
6 if 6|=n

FOL ∀~x, s.DSC ∧ ϕ(s) ⊃ ξ(s) then
7 return Non-deter

8 return True

4.2 Enumerating State Constraints
Algo. 3 enumerates all ∀∗ formulas containing one or two lit-
erals, and collects those which are verified to be constraints,
together with their joint constraints. Here the input Γ is the
set of candidate formulas, and all other inputs have the same
meanings as before. In Line 2, formulas in Γ falsified by a
model of M or not entailed by DS0

are eliminated. From
Line 5 to Line 10 we traverse Γ and move those verified con-
straints to both Θ and DSC . If a new constraint is found, then
MORE SC will be assigned True in Line 8, and we repeatedly
traverse Γ until no more constraints are found.
Theorem 4.3. Algorithm 3 returns a set of state constraints.

5 Experimental Results
We implemented the procedures outlined above in gcc (Ver-
sion 4.7.2) and SWI-Prolog (Version 5.10.4). All experiments
were run on a machine with Intel(R) Core(TM)2 Duo with
2.10 GHz CPU and 2.00GB RAM under Linux. Note that
our experiments were not designed for comparison with other
approaches, but to show that our approach indeed produces
effective results in a reasonable amount of time.

We tested our method with the blocks world, logistics and
satellite domains. In all our experiments, we assume thatDS0

is represented by a finite set of finite initial models, so we re-
duceDS0

|=FOLϕ(S0) to model checking. Below are the mod-
els used in blocks world (each model has exactly 3 blocks):

Algorithm 3: enum SC(Γ,D,M, β)

input : A set Γ of ∀∗ formulas, and D,M, β as before
output: A set Θ of state constraints

1 Θ← ∅
2 remove from Γ γ such that
∃M ∈M.M 6|= γ[S0] or DS0 6|=FOL γ[S0]

3 repeat
4 MORE SC← False
5 foreach γ ∈ Γ do
6 sc← veri SC(γ,D,M, β)
7 if sc 6= False and sc 6= Non-deter then
8 MORE SC← True
9 add sc into both Θ and DSC

10 remove γ from Γ

11 until not MORE SC;
12 return Θ

1. {clear(b1), clear(b2), clear(b3),
ontable(b1), ontable(b2), ontable(b3), handempty};

2. {clear(b1), on(b1, b2), clear(b3),
ontable(b2), ontable(b3), handempty};

3. {clear(b1), holding(b1), clear(b2),
ontable(b2), clear(b3), ontable(b3)}.

For each domain, we first use Algo. 3 to enumerate con-
straints, and then with these constraints as the background in-
formation, we use Algo. 1 and Algo. 2 to process ∀∗ and ∀∗∃∗
formulas, respectively. Experiments show that all invariants
discovered by Lin [2004] can be verified by our method.

5.1 ∀∗ State Constraints
Blocks World
We used Algo. 3 and found the following constraints:
{¬clear(x) ∨ ¬on(y, x),¬holding(x) ∨ ¬on(y, x),
¬holding(x) ∨ ¬on(x, y),¬on(x, y) ∨ ¬on(y, x),
¬on(x, y) ∨ ¬ontable(x),¬holding(x) ∨ ¬handempty,
¬holding(x) ∨ ¬ontable(x),¬holding(x) ∨ clear(x)}.
Some longer constraints are discovered during the process:
{on(x, z) ∧ on(y, z) ⊃ x = y, on(x, y) ∧ on(x, z) ⊃ y = z,
holding(x) ∧ holding(y) ⊃ x = y}.

We also found some other constraints not discovered by Lin:
{¬on(x, x),¬on(x, y) ∨ ¬on(y, x)}.
Logistics Domain
Lin regarded type information as domain specific knowledge,
but we also found them. Some examples are:
¬city(x) ∨ ¬location(x),¬airplane(x) ∨ ¬truck(x).
Besides type information, we also found the constraints:
{¬in(x, y) ∨ ¬city(x),¬in(x, y) ∨ ¬truck(x),
¬at(x, y) ∨ ¬airplane(x),¬at(x, y) ∨ ¬at(y, x)}.
One constraint containing 3 literals is discovered:
at(x, y) ∧ at(x, z) ⊃ y = z.

Satellite Domain
This was first introduced by AIPS’00. It involves planning
and scheduling of observation tasks performed by instru-
ments on some satellites. Any satellite can carry a few instru-

ments, denoted by the predicate on board. If any instrument
is turned on (power on), it will make its satellite’s power no
longer available (power avail) for other use. Different in-
struments support (supports) different modes. Before an in-
strument performs its observation task (take image), it must
be able to calibrate on some object (calibration target),
causing the state of ready (calibrated).

Below the first two constraints were discovered while the
third one was verified. They states that (1) if an instrument on
a satellite is powered on, then the electricity of that satellite
will not be available for other use; (2) one instrument can be
located on only one satellite; and (3) at most one instrument
on a satellite can be powered on.
{on board(x1, x2) ∧ power on(x1) ⊃ ¬power avail(x2),
on board(x1, x2) ∧ on board(x1, x3) ⊃ x2 = x3,
on board(x1, x3) ∧ power on(x1)

∧ on board(x2, x3)∧ power on(x2) ⊃ x1 = x2}.

5.2 Discovering Joint Constraints
Algo. 1 iteratively strengthens the input formula φ, and when
it verifies φ to be a constraint, it also discovers φ’s joint con-
straints. In contrast Lin enumerates candidate formulas of the
given syntactic forms and check if they are indeed invariants.

Example 5.1. 1. We were to test whether
φ1 = holding(x) ⊃ ¬ontable(x) is a state constraint.

2. φ1 is not proved to be a state invariant, so the system
strengthened it with φ2 = ¬on(x1, x2)∨¬ontable(x1).

3. Again, φ1 ∧ φ2 is not a state invariant so the system
strengthened it with φ3 = ¬on(x1, x2)∨¬holding(x1).

4. After getting φ4 =¬on(x1, x2)∨¬on(x1, x3)∨x2 = x3,
φ1 ∧ . . . ∧ φ4 was proved to be a state invariant, and
thus, φ1, . . . , φ4 were all proved to be state constraints.

You see, all discovered constraints are succinct and intuitive.

5.3 ∀∗∃∗ State Constraints
Lin [2004] discovered the following constraints in the blocks
world and logistics domains:
{holding(x) ∨ clear(x) ∨ (∃y)on(y, x),
ontable(x) ∨ holding(x) ∨ (∃y)on(x, y),
handempty ∨ (∃x)holding(x), } and
{∀(x, package).∃(y, vehicle)in(x, y)∨ ∃(y, place)at(x, y),
∀(x, palce).∃(y, city)inCity(x, y),
∀(x, vehicle).∃(y, place)at(x, y)}.
Using |=1

FOL, our approach verified them and the following:
{∀x∃y.on board(x, y),∀x∃y.supports(x, y),
∀x∃y.calibrated(x) ⊃ calibration target(x, y),
∀x∃y.power avail(x) ∨ on board(y, x) ∧ power on(y)}.

5.4 Performance
Table 1 shows the time costs in verifying constraints in the
three domains (B.W. abbreviates blocks world). The column
Enum Binary shows the time of enumerating all unary and
binary constraints using Algo. 3, in terms of minutes. The
columns ∀∗ formulas and ∀∗∃∗ formulas both contain two
sub-columns: Min and Max, where Min is the minimal time
cost of verifying a constraint among those we experimented

with, and Max shows the maximal. When enumerating con-
straints, the values of β are as shown in Table 2. However,
when verifying a single constraint, we use a sufficiently large
bound. In both Table 1 and Table 2, when we verify a ∀∗ for-
mula, we let DSC = ∅, i.e., we do not consider background
information. When we verify a ∀∗∃∗-formula, we let DSC be
the set of constraints returned by Algo. 3, i.e., we verify them
after enumerating constraints using Algo. 3.

Domain Enum ∀∗ Formulas ∀∗∃∗ Formulas
Binary Min Max Min Max

B.W. 15min 1.8s 1402.8s 0.5s 0.5s
Logistics 17min 19.2s 68.8s 6.3s 7.0s
Satellite 10min 2.5s 14.8s 5.7s 7.8s

Table 1. Time Costs in Verifying State Constraints

Table 1 shows, that the difference between Max and Min
for verifying a ∀∗ constraint using Algo. 1, is much greater
than that for verifying a ∀∗∃∗ constraint using Algo. 2. This
is because Algo. 1 iteratively strengthens a formula φ(s) until
an invariant is obtained, while Algo. 2 returns Non-deter once
φ(s) is not proved to be an invariant. In verifying ∀∗ con-
straints, B.W. has the maximal time difference while satellite
domain has the minimal, because B.W. is the most structured
domain, and some constraints entangle dramatically. One
would notice that the maximal time cost of verifying one con-
straint in B.W. even surpasses the total time of enumerateing
constraints. That is because Algo. 3 exploits previously ver-
ified constraints to speed up further verifications, so it can
avoid many costly operations of discovering joint constraints.

Table 2 shows how much time Algo. 1 has spent before re-
turning False or Non-deter. Here Min and Max have the same
meanings as above. In logistics and satellite domains, no for-
mulas are non-determined, that is, all formulas are verified or
rejected, so we fill ‘-’ in the respective grids. This shows that
Algo. 1 happens to be complete in these domains.

Domain β |M| False Non-deter
Min Max Min Max

B.W. 9 3 0.5s 1.8s 6s 123s
Logistics 5 4 0.1s 0.9s - -
Satellite 4 3 0.1s 1.0s - -

Table 2. Time Costs in Failed Verifications

In B.W., it takes Algo. 1 quite long (≥6s) before Non-deter
is returned, and the worst case needs 123s. When Algo. 1
returns False, it takes very short time in all three domains, be-
cause most rejected formulas are falsified by one of the initial
models and are rejected immediately.

Below we list some non-determined formulas in blocks
world when we use Algo. 3 to enumerate constraints:
{clear(x) ∨ ontable(x), clear(x) ∨ handempty,
clear(x) ∨ ¬on(x, y), clear(x) ∨ ¬holding(x),
ontable(x) ∨ ¬on(y, x),¬on(x, y) ∨ ¬holding(y),
handempty ∨ ¬on(x, y),¬on(x, y) ∨ ¬on(y, x)}.
In fact, none of them is a constraint except the last one. We
then ran Algo. 1 on¬on(x, y)∨¬on(y, x) with β = 14, and it
was verified to be a constraint. In fact it costs us the most time
– 1402.8s as Table 1 shows. This indicates that its verification
depends on the discovery of quite a few joint constraints.

6 Related Work
Various other communities, e.g., model-checking, program
verification and planning communities, are also interested in
state constraints. We discuss two typical works below.

Bradley and Manna [2007; 2011] from the model-checking
community developed a sound and complete algorithm to
check safety properties (state constraints) on large circuits,
i.e., either the specification formula is proved, or a counterex-
ample trace is returned. In contrast, we are verifying con-
straints on a first-order dynamic system. Generally this is a
second-order reasoning problem where no sound and com-
plete algorithms exist, so our strategy is to develop an incom-
plete method which reduces this problem to a series of first-
order reasoning problems and solves them with a SAT solver.
In addition, it is trivial to reduce our framework, methods and
notions to theirs, when we restrict our domains to be finite.

Conincidently both their and our works strengthen a state
constraint to be an invariant constraint (inductive invariant).
They use the negation of one of the states that lead to viola-
tion of the specification formula, while we use an unentailed
derivant of the regressed formula. Both works exclude some
unreachable predecessor states so that successor states do not
violate the specification. Both works prefer shorter clauses.
While we use small models to help eliminate useless clauses,
they use a more sophisticated technique based on lattice fix-
point theory to compute the minimal useful clause.

Rintanen [2000] from the planning community applied a
procedure to a set Σi of candidate formulas to generate a re-
fined set Σi+1 of formulas iteratively, until Σi = Σi+1, so
as to obtain a set of invariants (invariant constraints). His
method is very efficient when every candidate formula is a
unit or binary clause, and it is guaranteed that his algorithm
terminates in polynomial time.

Both he and Lin realized that many constraints fail to be in-
variants, so they both attempted to combine formulas of cer-
tain predefined syntactic forms, and verified whether the con-
junctions as a whole are invariants. In contrast, our approach
takes a single formula as the input, and smartly strengthen it
with unentailed derivants towards an invariant if possible.

7 Conclusions
In this paper, we have developed a sound but incomplete
method for automatic verification and discovery of ∀∗∃∗ state
constraints. Our method is to prove a state constraint by
strengthening it to be an invariant with joint constraints. We
experimented with the blocks world, logistics and satellite do-
mains, and the results showed that, our method is efficient and
able to verify all constraints earlier discovered in [Lin, 2004].

Now we summarize our contributions. Firstly we have de-
veloped a practically effective method with solid theoretical
foundations for verifying if a given ∀∗∃∗ formula is a state
constraint. Secondly, if a state constraint is not proved to be
a state invariant, our method will systematically strengthen it
with derivants and hence discover joint constraints. Thirdly,
so far as we know, we are the first to propose a method with
soundness guarantee for verifying ∀∗∃∗ constraints. Lastly,
experiments show that practically meaningful and useful con-
straints can be efficiently verified with our approach, and suc-

cinct and intuitive joint constraints can be discovered. Here,
the second and the third points distinguish our work from
[Lin, 2004]. Another difference is: our method is based on
Herbrand Theorem and Skolemization and implemented with
a SAT solver, while Lin’s work is based on exhaustive search
in selected small domains.

However, our work has two limitations. Firstly our method
can only verify partial invariant constraints. Secondly when
verifying ∀∗∃∗ constraints, our method is of poor scalability.

There are at least two topics for future research. Firstly,
our current approach to strengthening formulas can only be
applied to ∀∗ constraints, so we will extend our method to
handle ∀∗∃∗ constraints. Secondly, we would like to know
under what conditions, a state constraint can be strengthened
to be a state invariant, so we know the conditions under which
our algorithms are complete.

Acknowledgments
We thank the anonymous reviewers for helpful comments.
This work was supported by the Natural Science Foundation
of China under Grant No. 61073053.

References
[Bradley and Manna, 2007] A. R. Bradley and Z. Manna.

Checking safety by inductive generalization of counterex-
amples to induction. In FMCAD, pages 173–180, 2007.

[Bradley, 2011] A. R. Bradley. Sat-based model checking
without unrolling. In VMCAI, pages 70–87, 2011.

[Gerevini and Schubert, 1998] A. Gerevini and L. K. Schu-
bert. Inferring state constraints for domain-independent
planning. In AAAI/IAAI, pages 905–912, 1998.

[Kautz and Selman, 1992] H. A. Kautz and B. Selman. Plan-
ning as satisfiability. In ECAI, pages 359–363, 1992.

[Kelly and Pearce, 2010] R. F. Kelly and A. R. Pearce. Prop-
erty persistence in the situation calculus. Artif. Intell.,
174(12-13):865–888, 2010.

[Lin, 2004] F. Lin. Discovering state invariants. In KR, pages
536–544, 2004.

[Refanidis and Vlahavas, 2000] I. Refanidis and I. P. Vla-
havas. Exploiting state constraints in heuristic state-space
planning. In AIPS, pages 363–370, 2000.

[Reiter, 2001] R. Reiter. Knowledge in Action: Logical
Foundations for Specifying and Implementing Dynamical
Systems. MIT Press, 2001.

[Rintanen, 2000] J. Rintanen. An iterative algorithm for syn-
thesizing invariants. In AAAI/IAAI, pages 806–811, 2000.

