
Automatic Verification of Partial Correctness of Golog Programs

Naiqi Li Yongmei Liu
Department of Computer Science,

Sun Yat-sen University, Guangzhou 510006, China
linaiqi@mail2.sysu.edu.cn, ymliu@mail.sysu.edu.cn

Abstract
When Golog programs are used to control agents’
behaviour in a high-level manner, their partial cor-
rectness naturally becomes an important concern.
In this paper we propose a sound but incomplete
method for automatic verification of partial correct-
ness of Golog programs. We introduce the notion
of extended regression, which reduces partial
correctness of Golog programs to first-order entail-
ment problems. During the process loop invariants
are automatically discovered by heuristic methods.
We propose progression of small models wrt Golog
programs, which are used to filter out too strong
heuristic candidates. In this way we combine the
methods of static and dynamic analysis from the
software engineering community. Furthermore,
our method can also be adapted to verify state
constraints. Experiments show that our method
can not only handle sequential and nested loops
uniformly in a reasonable among of time, but also
be used to discover succinct and comprehensible
loop invariants and state constraints.

1 Introduction
Building autonomous agents that follow human’s high-level
guiding instructions, and accordingly figure out a concrete
plan to carry out, is always a challenge of artificial intelli-
gence. One possible solution to achieve this goal is to use
high-level programming language, such as Golog [Levesque
et al., 1997], which is a logic programming language based
on the situation calculus [Reiter, 2001]. Provided with do-
main descriptions and possibly nondeterministic instructions,
a Golog interpreter is able to generate a sequence of concrete
actions, so programmers are released from the burden of
specifying every single detail.

When Golog programs are used to control agents’ be-
haviour in a high-level manner, their partial correctness
naturally becomes an important concern. Roughly speaking,
partial correctness states that if some properties hold at the
beginning, then some other properties must hold after the
program is executed. Liu [2002] proposed a Hoare-style
proof system for partial correctness of Golog programs.
However, she didn’t address the automatic verification issue.

Partial correctness is also a central topic in the software
engineering community. There have been two important
approaches for verification: static analysis and dynamic
analysis. Static analysis tries to verify programs by analyzing
the source code without actually executing them. Usually
verification by static analysis is guaranteed to be sound,
but at the cost of inefficiency [Flanagan and Qadeer, 2002;
Pasareanu and Visser, 2004]. On the contrary, dynamic
analysis tries to discover faults by running the program with
adequate test cases. Generally this approach leads to faster
algorithms and implementations, but there is no guarantee
that the program is correct even if all test cases behave as
expected [Nguyen et al., 2012].

When we human try to prove or disprove a mathematical
assertion, we are using the static and dynamic analysis un-
consciously, and integrate them in a sophistical way. We first
attempt to prove it by following some routines and heuristics
that were learned before; if a proof is not found, we may
look for some examples to illustrate which step during the
attempted proof goes wrong, and then fix it and continue the
proof. If lucky we may also find a counterexample and thus
disprove the assertion. One may go back and forth between
reasoning and testing, until a proof or a disproof is achieved.
Based on this observation, in this paper we propose a method
that combines the static and dynamic analysis, which tries to
imitate the reasoning process of human.

We introduce the notion of extended regression, which be-
longs to the static analysis paradigm. By extended regression
one can regress a formula wrt a Golog program. It has a sim-
ilar property as regression in the situation calculus: a formula
holds after executing a program, if it’s extended regression
holds before the execution. Thus we reduce partial correct-
ness of Golog programs to first-order entailment problems.

When extended regression is applied to a loop statement,
we need to discover an appropriate loop invariant. Recently,
we proposed a sound but incomplete method for automatic
verification and discovery of state constraints in the situation
calculus [Li et al., 2013]. The basic idea presented in this
paper is similar to the previous work: we start with a simple
formula, and then strengthen it iteratively until it becomes
a loop invariant. During this process, formulas used for
strengthening are generated by heuristic methods. It turns
out that the method for inferring loop invariants can also be
adapted to verify state constraints.

The heuristic functions generate a set of heuristic can-
didates. When deciding which of the candidates should be
selected for strengthening, we use small models to filter out
the too strong ones, which is the dynamic analysis component
in our method. Specifically, a set of initial small models are
provided by the user, which can be viewed as several test in-
puts. We progress these initial small models wrt the program,
associating each loop with a set of small models. These
associated small models can be regarded as a set of possible
program states. Later when heuristic functions generate a set
of heuristic candidates, we select the one as strong as possible
provided it is satisfied by the associated small models.

2 Preliminaries
2.1 The Situation Calculus and Golog
The situation calculus [Reiter, 2001] is a many-sorted
first-order language for representing dynamic worlds. There
are three disjoint sorts: action for actions, situation for
situations, and object for everything else. A situation
calculus language has the following components: a constant
S0 denoting the initial situation; a binary function do(a, s)
denoting the successor situation to s resulting from perform-
ing action a; a binary predicate s v s′ meaning that situation
s is a subhistory of situation s′; a binary predicate Poss(a, s)
meaning that action a is possible in situation s; a countable
set of action functions, e.g., move(x, y); and a countable set
of relational fluents, i.e., predicates taking a situation term as
their last argument, e.g., ontable(x, s).

Often, we need to restrict our attention to formulas that do
not refer to any situations other than a particular one τ , and
we call such formulas uniform in τ . We use φ(τ) to denote
that φ is uniform in τ . We call a uniform formula φ with
all situation arguments eliminated a situation-suppressed
formula, and use φ[s] to denote the uniform formula with
all situation arguments restored with term s. A situation s is
executable if it is possible to perform the actions in s one by
one: Exec(s) .

= ∀a, s′.do(a, s′) v s ⊃ Poss(a, s′).
In the situation calculus, a particular domain of application

is specified by a basic action theory (BAT) of the form:
D = Σ ∪ Dap ∪ Dss ∪ Duna ∪ DS0 ,where

1. Σ is the set of the foundational axioms for situations.

2. Dap contains a single precondition axiom of the form
Poss(a, s) ≡ Π(a, s), where Π(a, s) is uniform in s.

3. Dss is a set of successor state axioms (SSAs), one for
each fluent F , of the form F (~x, do(a, s)) ≡ ΦF (~x, a, s),
where ΦF (~x, a, s) is uniform in s.

4. Duna is the set of unique names axioms for actions.

5. DS0 , the initial KB, is a set of sentences uniform in S0.

The formal semantics of Golog is specified by an abbrevi-
ation Do(δ, s, s′), which is inductively defined as follows:

1. Primitive actions: For any action term α,
Do(α, s, s′)

.
= Poss(α, s) ∧ s′ = do(α, s).

2. Test actions: For any situation-suppressed formula φ,
Do(φ?, s, s′)

.
= φ[s] ∧ s = s′.

3. Sequence:
Do(δ1; δ2, s, s

′)
.
= ∃s′′.Do(δ1, s, s′′) ∧Do(δ2, s′′, s′).

4. Nondeterministic choice of two actions:
Do(δ1|δ2, s, s′)

.
= Do(δ1, s, s

′) ∨Do(δ2, s, s′).
5. Nondeterministic choice of action arguments:
Do((πx)δ(x), s, s′)

.
= (∃x)Do(δ(x), s, s′).

6. Nondeterministic iteration:
Do(δ∗, s, s′)

.
= (∀P).{(∀s1)P (s1, s1)∧

(∀s1, s2, s3)[P (s1, s2) ∧Do(δ, s2, s3) ⊃ P (s1, s3)]}
⊃ P (s, s′).

Conditionals and loops are defined as abbreviations:

if φ then δ1 else δ2 fi def
= [φ?; δ1]|[¬φ?; δ2],

while φ do δ od def
= [φ?; δ]∗;¬φ?.

In this paper we consider programs with while statements,
but without nondeterministic iterations appearing alone.

2.2 State Invariants and State Constraints
We now formally define state constraints and state invariants.
We use |= to denote entailment in the situation calculus, and
use |=FOL to denote classic first-order entailment. We follow
the definition of state constraints in [Reiter, 2001]:

Definition 1. Given a BAT D and a formula φ(s), φ(s) is a
state constraint for D if D |= ∀s.Exec(s) ⊃ φ(s).

State constraints are formulas which hold in all executable
situations. We use DSC to denote a set of verified state con-
straints, and abuse DSC as the conjunction of its elements.

State invariants are formulas that if true in a situation, will
be true in all successor situations. Verifying state invariants
is a first-order reasoning task.

Definition 2. LetDSC be a set of verified state constraints. A
formula φ(s) is a state invariant for D wrt DSC if
Dap ∪ Dss ∪ Duna |=FOL

∀a, s.DSC ∧ φ(s) ∧ Poss(a, s) ⊃ φ(do(a, s)).

The following result shows that we can verify a constraint
by proving that it is an invariant.

Proposition 1. If DS0
|=FOL ϕ(S0), and ϕ(s) is an invariant

wrt DSC , then ϕ(s) is a constraint.

2.3 Regression and Model Progression
There are two important computational mechanisms for
reasoning about actions and their effects in the situation
calculus, namely regression and progression.

Here we define a one-step regression operator and state a
simple form of the regression theorem [Reiter, 2001].

Definition 3. We use RD[φ] to denote the formula obtained
from φ by replacing each fluent atom F (~t, do(α, σ)) with
ΦF (~t, α, σ) and each precondition atom Poss(α, σ) with
Π(α, σ), and further simplifying the result by using Duna.

Theorem 1. D |= φ ≡ RD[φ].

Intuitively, the notion of progression is used to update the
current world state after an action is executed. The progres-
sion of a theory is generally not first-order definable [Lin and

Reiter, 1997]. In this paper, progression refers to the pro-
gression of models. We use progS [M,α] to denote the new
model generated by updating modelM according to action α.

Under the close world assumption, a model can be repre-
sented by a set of ground atoms, which we call a small model.

3 Theoretical Foundations
3.1 Partial Correctness and Extended Regression
We begin with a formal definition of Hoare triple and partial
correctness in the context of Golog programs.
Definition 4. A Hoare triple is of the form {P}δ{Q}, where
P and Q are situation-suppressed formulas, and δ is a Golog
program. A Hoare triple {P}δ{Q} is said to be partially cor-
rect wrt D if D |= ∀s, s′.P [s] ∧Do(δ, s, s′) ⊃ Q[s′].

Next we present the notion of extended regression, which
plays a significant role throughout this paper.
Definition 5. Given D and DSC , the extended regression of
formula φ(s) wrt program δ, denoted as R̂D[φ(s), δ], is de-
fined as follows:
• R̂D[φ(s), α] = RD(Poss(α, s) ⊃ φ(do(α, s))).

• R̂D[φ(s), ψ?] = ψ[s] ⊃ φ(s).

• R̂D[φ(s), δ1; δ2] = R̂D[R̂D[φ(s), δ2], δ1].

• R̂D[φ(s), δ1|δ2] = R̂D[φ(s), δ1] ∧ R̂D[φ(s), δ2].

• R̂D[φ(s), (πx)δ(x)] = (∀x)R̂D[φ(s), δ(x)].

• R̂D[φ(s),while ϕ do δ od] is a formula (denoted as
η(s)) satisfying the following two conditions:

1. |=FOL ∀s.η(s) ∧ ϕ[s] ∧ DSC ⊃ R̂D[η(s), δ].
2. |=FOL ∀s.η(s) ∧ DSC ⊃ φ(s) ∨ ϕ[s].

Intuitively, in the definition of loop statement the first
condition ensures the regression is a loop invariant, and the
second condition guarantees this invariant is strong enough
to entail the formula being regressed when the loop ends.

In the situation calculus, a formula holds after a sequence
of actions are performed if and only if its regression can be
entailed by the initial knowledge base. By structural induc-
tion we obtain a similar property for the extended regression
operator, that is, a formula holds after the program is execut-
ed, if its extended regression holds before the execution.
Theorem 2. Let φ(s) be a formula, δ be a Golog program
and D as before, we have
D |= ∀s.R̂D[φ(s), δ] ⊃ ∀s′.[Do(δ, s, s′) ⊃ φ(s′)].

This furnishes us with a method for proving partial
correctness by extended regression:
Corollary 1. A Hoare triple {P}δ{Q} is partially correct wrt
D and DSC , if |=FOL ∀s.P [s] ∧ DSC ⊃ R̂D[Q[s], δ].

3.2 Heuristics for Finding Loop Invariants
The definition of extended regression is not specific about
how to obtain a proper formula satisfying the two conditions
of a loop statement. For the purpose of a concrete algorithm,
we next discuss the weakest extended regression and how it
inspires us in the heuristic approach.

Definition 6. The weakest extended regression of formula
φ(s) wrt program δ, denoted as ŴD[φ(s), δ], is the same as
extended regression except for the case of loop statement.

• F (s)0 = φ(s)∨ϕ[s], F (s)i+1 = ¬ϕ[s]∨ŴD[F (s)i, δ].

ŴD[φ(s),while ϕ do δ od] =
∧N

i=0 F (s)i, where N is
a natural number s.t. F (s)N is equivalent to F (s)N+1.

As the next proposition shows, ŴD[φ(s), δ] is sufficient
and necessary for φ(s) to be true after the execution of δ. The
proof is another application of structural induction on δ.
Proposition 2. Let φ(s) be a formula, δ be a Golog program
and D as before, we have
D |= ∀s.ŴD[φ(s), δ] ≡ ∀s′.[Do(δ, s, s′) ⊃ φ(s′)].

Weakest extended regression can be viewed as a process of
strengthening. The process starts with φ(s)∨ϕ[s], and in the
i-th step we strengthen it with F (s)i. If the process reaches
a fixpoint, we obtain the weakest loop invariant. However,
the fixpoint does not always exist, and even if it exists the
strengthening process may be too slow to be practical. We
are inspired to use a stronger formula to strengthen during
each step, by which the convergence to fixpoint could be
accelerated.

In what follows we identify three kinds of simple but useful
heuristics. Each heuristics generates a set of heuristic candi-
dates ∆, and the corresponding heuristic function returns one
of them. It is guaranteed that every heuristic candidate in ∆
is stronger than or equivalent to its original formula. Every
formula can be written in the form of ∃∗ξ0(s) ∨ ∀∗ξ1(s),
where ξ0(s) and ξ1(s) may have other quantifiers.

Sub-Disjunction Heuristics
For formula ∃∗ξ0(s)∨ ∀∗ξ1(s), the heuristic candidate set is:

∆SD(∃∗ξ0(s) ∨ ∀∗ξ1(s)) = {∃∗ξ′0(s) ∨ ∀∗ξ′1(s)|
ξ′i(s) is a sub-disjunction of ξi(s), i ∈ {0, 1}}.

Unification Heuristics
Every formula in ∆Uni((∃~x)ξ0(~x, s) ∨ (∀~y)ξ1(~y, s)) is ob-
tained by the following steps:

1. Rename ~x, ~y to ~u,~v such that ~u and ~v share no variables.
2. Choose n distinct variables ~c ∈ ~u, and n (unnecessarily

distinct) variables ~d ∈ ~v, let ~u′ = ~u\~c.

3. Obtain ξ′0(~u′, ~d, s) by replacing ~c with ~d in ξ0(~u, s).

4. Let ∀~v∃~u′.ξ′0(~u′, ~d, s) ∨ ξ1(~v, s) be a formula in ∆Uni.

Constant Heuristics
Let C be the set of all constants used in the Hoare triple.
∆Con((∃~x)ξ0(~x, s)∨ ∀∗ξ1(s)) is a set of formulas generated
by replacing some variables in ~x with ~c ∈ C, or by changing
some constants in ξ1(s) to universally quantified variables.

There is a dilemma when deciding which formula should
our heuristic function return from the candidate set ∆. If the
formula used for strengthening is too strong, we may end up
with a too strong loop invariant. On the other hand, if the
formula is too weak, the strengthening process may be too
slow, just as the weakest extended regression. We solve this
dilemma by using small models to filter out the too strong
candidates. Among all the heuristic candidates we select the

one as strong as possible provided it is satisfied by the asso-
ciated small models. This is the topic of the next subsection.

3.3 Progression of Small Models
We begin with a definition of the progression operator.

Recall that a small model M is represented by a set of
ground atoms. Given a finite constant set D, we use M [s]
to denote the unique model such that only those atoms in M
(with situation s restored) are satisfied.

Definition 7. We assume the ground terms are all constants
from a finite set D. Given a small model M and a program δ,
the progression of M wrt δ, denoted as prog[M, δ], results in
a set of small models:

• prog[M,α] = 1. ∅ if M [s] 6|= Poss(α, s).
2. {progS [M,α]} if M [s] |= Poss(α, s).

• prog[M,ψ?] = 1. ∅ if M [s] 6|= ψ[s].
2. {M} if M [s] |= ψ[s].

• prog[M, δ1; δ2] = prog[prog[M, δ1], δ2].

• prog[M, δ1|δ2] = prog[M, δ1] ∪ prog[M, δ2].

• prog[M, (πx)δ(x)] =
⋃
{prog[M, δ(c)]|c ∈ D}.

• prog[M, δ∗] =
⋃

n≥0 prog[M, δn], where δn is an ab-
breviation of jointing n copies of δ sequentially.

WhenM is a set of small models, we define
prog[M, δ] =

⋃
{M′|M ∈M, prog[M, δ] =M′}.

When progressing wrt a loop the computation may
never stop. In practice we preset a constant K, and let
prog[M, δ∗] =

⋃K
n=0 prog[M, δn].

The first usage of the small models is to prove a Hoare
triple is not partially correct, while the extended regression
can only be used to prove the positive result.

Theorem 3. If a Hoare triple {P}δ{Q} is partially correct,
and M is a small model that M [s] |= P [s]∧DSC , then for all
M ′ ∈ prog[M, δ] we have M ′[s] |= Q[s].

Another important usage of our small models is to inform
us that the regression “goes wrong” during the process.
In particular, if some loop invariant is not satisfied by its
associated small models, the final regression result will be
too strong to be successfully verified. One step further,
when generating a loop invariant, any heuristic candidate not
satisfied by its associated small models should be discarded.

Proposition 3. If |=FOL ∀s.P [s] ∧ DSC ⊃ R̂D[Q[s], δ1; δ2]
and M [s] |= P [s] ∧ DSC , then for all M ′ ∈ prog[M, δ1] we
have M ′[s] |= R̂D[Q[s], δ2].

4 Algorithms
In this section we introduce three algorithms in detail:
the top-level main algorithm, the loop invariant inferring
algorithm and the state constraint discovering algorithm.
The implementations for extended regression R̂D and small
model progression prog are basically the same as their
definitions, and we omit the details. We assume that the
underlying D, DSC and a finite set of constants D used for
grounding are given, without providing them explicitly.

4.1 Main Algorithm
Algorithm 1 is the top-level algorithm of our system, which
combines static and dynamic analysis. It tries to imitate the
deduction process of a human reasoner: going back and forth
between the processes of attempting a proof, and looking for
a test case to illustrate why an attempted proof goes wrong.

Algorithm 1: veri(P, δ,Q,M)

Input: Hoare-triple {P}δ{Q};M - initial small models
that satisfy P and DSC .

1 Let asso be a function mapping each while construct in
δ to a pair 〈true, ∅〉

2 〈M′, asso〉 ← prog(M, δ, asso)
3 if ∃M ′ ∈M′ s.t. M ′[s] 6|= Q[s] then return no
4 counter ← 0
5 while counter < K1 do
6 counter ← counter + 1

7 〈reg(s), asso〉 ← R̂D(Q[s], δ, asso)
8 if |=FOL ∀s.P [s] ∧ DSC ⊃ reg(s) then return yes
9 while counter < K1 do

10 counter ← counter + 1
11 M0 ← genModel(DSC , P)
12 〈M′, asso〉 ← prog(M0, δ, asso)
13 if ∃M ′ ∈M′ s.t. M ′[s] 6|= Q[s] then return no
14 if ∃ loop δl s.t. asso(δl) = 〈Invt(s),Mt〉 and

∃Mt ∈Mt s.t. Mt[s] 6|= Invt(s) then break

15 return non-deter

At the beginning we initialize a function asso, mapping
each while construct to a pair 〈inv,mod〉, where inv is the
current candidate loop invariant and mod is the set of small
models progressed to the beginning of the while construct.
When we perform progression (Line 2, 12), the associated
small models will be updated; similarly when we perform
extended regression (Line 7), the associated candidate loop
invariant will be updated.

In Line 2, we progress the set of initial small models wrt
δ. Procedure prog returns a pair 〈M′, asso〉, where M′
is the progression result and asso is the updated mapping
function. If some model inM′ does not satisfy Q, we find a
counterexample and the system returns no. Variable counter
in Line 4 is used to guarantee the following loops terminate
in finite steps. During each iteration of the outer loop, we
first try to prove the positive result by extended regression
in Line 7. When regressing a loop statement, the associated
small models can be retrieved by asso function and be used
to filter out too strong heuristic candidates.

If the entailment in Line 8 can be proved by the theorem
prover, the system returns yes. Otherwise we enter a loop
starting at Line 9. In Line 11, we generate a small model
M0 that satisfies P [s] ∧ DSC and is different from those
in M and any small model generated before. In procedure
genModel, we ground DSC and P to a set of propositional
formulas in CNF and call a SAT solver. Next, we progress
M0 wrt δ. If some resulted small model does not satisfy
Q, we find a counterexample and the system returns no as

before. Then in Line 14, if there is a while construct δl such
that one of its associated small models does not satisfy its
associated loop invariant, we jump out of the loop and try the
extended regression again. The inner loop guarantees that
regression at Line 7 returns a new result each time.
Theorem 4. Algorithm veri(P, δ,Q,M) returns yes only if
the Hoare triple {P}δ{Q} is partially correct, and returns no
only if the Hoare triple is not partially correct.

4.2 Loop Invariant Inferring Algorithm
When regressing a loop statement, we call the infer proce-
dure listed as Algorithm 2.

Algorithm 2: infer(φ(s), δl, asso)

Input: φ(s) - formula being regressed; δl - loop
statement being regressed; asso as before

1 Let δl = while ϕ do δ od
2 η(s)← φ(s) ∨ ϕ[s]; counter ← 0
3 while counter < K2 do
4 counter ← counter + 1

5 〈reg(s), asso〉 ← R̂D(η(s), δ, asso)
6 if |=FOL η(s) ∧ ϕ[s] ∧ DSC ⊃ reg(s) then
7 asso(δl).inv = η(s)
8 return 〈η(s), asso〉
9 Let reg(s) ≡ A1(s) ∧ ... ∧An(s), choose a Ai(s)

s.t. 6|=FOL η(s) ∧ ϕ[s] ∧ DSC ⊃ Ai(s)
10 Let Ai(s) ≡ ∃∗ξ0(s) ∨ ∀∗ξ1(s)
11 Transform ξ1(s) into conjunction C1(s)∧ ...∧Ct(s)
12 Choose Ci(s) s.t.

6|=FOL η(s) ∧ ϕ[s] ∧ DSC ⊃ ∃∗ξ0(s) ∨ ∀∗Ci(s)
13 can(s)← heur(∃∗ξ0(s) ∨ ∀∗Ci(s), asso(δl).mod)
14 η(s)← η(s) ∧ can(s)

15 asso(δl).inv = false
16 return 〈false, asso〉

The candidate invariant η(s) is initialized as φ(s) ∨ ϕ[s].
In each step of the following iteration, we regress η(s) wrt
the loop body. If the entailment in Line 6 can be proved, then
η(s) is an appropriate invariant for δl. We update the asso
function accordingly, and return 〈η(s), asso〉 as the result. If
the entailment cannot be proven, we transform the regression
result to a conjunction, choosing a conjunct Ai(s) which
causes the failure of the entailment. If Ai(s) is not entailed,
there must be some Ci(s) such that ∃∗ξ0(s)∨∀∗Ci(s) cannot
be entailed. In function heur we repeatedly apply the three
heuristics in a greedy manner. Among all the possible can-
didates we select the one as strong as possible provided that
it is satisfied by the associated small models asso(δl).mod.
Finally we strengthen η(s) with the returned formula.
Proposition 4. Procedure infer(φ(s), δl, asso) returns
〈η(s), asso′〉, where η(s) is a formula that satisfies the defi-
nition of R̂D[φ(s), δl].

4.3 State Constraints Discovering Algorithm
We can strengthen a formula φ(s) to a state invariant by re-
gressing it wrt a constraint checking program δSC .

Definition 8. Suppose that the action functions in the appli-
cation domain are a1(~X1), ..., an(~Xn). The constraint check-
ing program δSC is defined to be
δSC

.
= while true do (π ~X1)a1(~X1) |...| (π ~Xn)an(~Xn) od.

Proposition 5. Loop invariant of δSC is also a state invariant.
When strengthening φ(s) to a loop invariant by regressing

it wrt δSC , the only change of Algorithm 2 is that the initial
formula to be strengthened is φ(s) instead of φ(s) ∨ true,
which is trivial. By Propositions 1 and 5, if R̂D[φ(s), δSC] is
entailed by the initial KB then every conjunct of it, including
φ(s), is a state constraint. In our implementation, the initial
KB is represented by a set of small models. So checking the
entailment could be done efficiently.

The constraint discovering algorithm follows the guess-
and-check paradigm as [Li et al., 2013] does, and we adopt
the candidate enumerating method from [Rintanen, 2000].
Our candidate formulas are of the form (x1 6= x′1∧ ...∧xn 6=
x′n) ⊃ (L1 ∨ ... ∨ Lm), where Li are literals while xi and
x′i are variables appearing as arguments of the literals. In
practice we restrict n ≤ 1 and m ≤ 2. The candidate set Σ
is initialized as Σ = {P1(~x1),¬P1(~x1), P2(~x2), ...}, where
P1(~x1), P2(~x2), . . . are all the predicates in the domain. If
we could verify it is a state constraint, we move it along with
the formulas used for strenghtening to DSC . Otherwise, we
replace it with some weaker candidate constraints. There are
three weakening operations for a given candidate constraint:
adding a disjunct to the consequent, adding a conjunct x 6= y
to the antecedent and identifying two variables.

5 Experimental Results
We implemented the algorithms in SWI-Prolog. All exper-
iments were conducted on a personal laptop equipped with
2.60 GHz CPU and 4.00GB RAM under Linux. We used E
Prover [Schulz, 2013] as the underlying theorem prover, and
MiniSat [Eén and Sörensson, 2003] as the SAT solver.

Our system successfully verified 22 programs in 9 do-
mains. Among them the logistics domain is from the
AIPS’00 planning competition, and the other 8 domains are
adapted from those used in [Hu, 2012]. For each domain,
we discovered state constraints in advance, and used them as
background knowledge in the later verifications.

5.1 Program Verification Examples
We use two examples to demonstrate the power of our system.

Green Domain Example
Figure 1 presents an example in the green domain, which
resembles the blocks world domain. We introduce two new
predicates green, collected and a new action collect. The
goal is to collect all green blocks.

The program is composed of two sequential loops. First
we unstack all towers onto the table, during which we collect
all green blocks held by the robot. The second loop examines
all the blocks remaining on the table and collect the green
ones. The loop invariants for the two loops are listed as Inv1
and Inv2. To save space and to improve readability, we omit
the initial formula being strengthened and manually simplify
the final result. Our algorithm verified this program in 46.0s.

{handempty ∧ ∀x.green(x) ⊃ ontable(x) ∨ ∃y.on(x, y)}
while (∃x, y)on(x, y) do

(πu, v)(unstack(u, v);
if green(u) then collect(u) else putdown(u) fi) od ;

while (∃x)(ontable(x) ∧ green(x)) do
(πu)(if green(u) then pickup(u); collect(u) fi) od

{∀x.green(x) ⊃ collected(x)}
Inv1: ... ∧ ∀x.green(x) ⊃

ontable(x) ∨ collected(x) ∨ ∃y.on(x, y)
Inv2: ... ∧ ∀x.green(x) ⊃ ontable(x) ∨ collected(x)

Figure 1: Example of the Green Domain

{holding(0) ∧ rob at(locA) ∧ ∀[o, obj].at(o, locB)}
while ∃[x, obj].at(x, locB) do

move(locA, locB);
while ∃[y, obj].at(y, locB) ∧ ¬holding(2) do

(π[y′, obj])rob load(y′, locB) od;
move(locB, locA);
while ∃[y, obj].gripped(y) do

(π[y′, obj])rob unload(y′, locA) od od
{∀[o, obj].at(o, locA)}
Inv1: ... ∧ ∀[o, obj].at(o, locA) ∨ at(o, locB)
Inv2, 3: ...∧∀[o, obj].at(o, locA)∨at(o, locB)∨gripped(o)

Figure 2: Example of the Gripper+ Domain

Gripper+ Domain Example
Figure 2 lists the verification of a program in the gripper+
domain. There is a robot with two hands, so it is able to hold
two objects at the same time. We use holding(x) to denote
that the robot is currently holding x objects, where x could
be 0, 1 or 2. With the robot starting at locA, it tries to move
all objects from locB to locA.

The program works as follows: As long as there are objects
remaining at locB, the robot moves there, and loads objects
until all its hands are occupied. Then it moves back to locA,
unloads all objects that it gripes. Formula Inv1 is the loop
invariant of the outer loop. The loop invariants of the two
inner loops, denoted as Inv2 and Inv3, are identical ones.
Our system succeeded in verifying the Hoare triple in 32.0s.

We hope to use the two examples above to demonstrate the
following points: (1) our method is able to verify some inter-
esting programs, and during the process succinct and compre-
hensible loop invariants are discovered; (2) the method can
handle programs with sequential loops and nested loops in a
uniform way; (3) the verification process usually terminates
in a reasonable amount of time for such size of programs.

5.2 State Constraint Discovering Examples
When discovering state constraints we assume that type
information is given. For instance, in predicate at(x, y) of
the logistic domain, x is of type obj and y is of type loc.
In this case we include ∀x, y.at(x, y) ⊃ obj(x) ∧ loc(y),
∀x.¬obj(x) ∨ ¬loc(x) in DSC beforehand.

Constraints discovered in the green domain cover the 12
ones of the blocks world domain presented in [Li et al.,

2013]. Since green domain introduces two new predicates
green and collected, we discovered 5 more constraints:
{collected(x) ⊃ ¬clear(x), collected(x) ⊃ ¬on(x, y),
collected(x) ⊃ ¬holding(x), collected(x) ⊃ ¬on(y, x),
collected(x) ⊃ ¬ontable(x)}

Our constraint discovering algorithm is much faster than
that in [Li et al., 2013]. We used 103.0s to discover all the 17
constraints in the green domain, while it took our previous
system about 15min to discover the 12 ones in blocks world.

We discovered 3 constraints in the gripper+ domain:
{∀[o, obj][l, loc].gripped(o) ⊃ ¬at(o, l),
∀[l1, loc][l2, loc].rob at(l1) ∧ rob at(l2) ⊃ l1 = l2,
∀[x, num][y, num].holding(x) ∧ holding(y) ⊃ x = y}

5.3 Summary

Domain Constraint Verification
#A T #A #N T.avg T.max

CornerA 2 3.0 1 0 1.0 1.0
Delivery 6 116.0 4 2 1.5 3.0

Green 17 103.0 3 2 24.7 46.0
Gripper 3 26.0 3 1 3.0 6.0

Gripper+ 3 26.0 3 2 17.7 32.0
Logistics 5 61.0 2 2 6.0 7.0
Recycle 7 139.0 2 1 15.5 18.0

Transport 2 1137.0 2 1 0.5 1.0
Trash 3 12.0 2 0 0.0 0.0

Table 1: Experimental Results on 9 Domains

We summarize the experimental results as Table 1. Under
the Constraint column, #A is the number of all constraints
we discovered, and T shows the total time cost. Under
the Verification column, #A is the number of all Hoare
triples we tested, and all of them were successfully verified.
#N is the number of non-trivial verifications. We say a
verification is trivial, if during the extended regression, every
R̂D[φ(s),while ϕ do δ od] returns φ(s) ∨ ϕ[s] as its loop
invariant. T.avg and T.max are the average and maximal time
costs of all verifications. Time costs are measured in seconds.

However, there are also a few programs in other domains
that our system failed to verify. One reason is that the
domains involve arithmetic, which calls for special heuristic
functions; another reason is that our method suffers from
the scalability problem, mostly due to the inefficiency of the
underlying theorem prover.

6 Conclusion
In this paper we have proposed a sound but incomplete
method for verifying partial correctness of Golog programs.
The basic idea is to use extended regression to reduce the ver-
ification of a Hoare triple to a first-order entailment problem.
When regressing a loop statement, we discover a proper loop
invariant by strengthening a formula with heuristic methods
and use small models to filter out too strong candidates.

We summarize our main contributions as follows. Firstly
we have developed a practical method with solid theoret-
ical foundations for verifying partial correctness of Golog
programs. Secondly, we have proposed heuristic methods
for discovering loop invariants, and identified three kinds of

simple but useful heuristics. Thirdly, our algorithm combines
static and dynamic analysis from the software engineering
community. Fourthly, the method can also be adapted to
discover state constraints. Lastly, we have implemented our
algorithms, and experimental results show that our method
can not only handle sequential and nested loops uniformly in
a reasonable among of time, but also discover succinct and
comprehensible loop invariants and state constraints.

There are at least three topics for future research. Firstly
we would like to introduce heuristics for programs that
involve arithmetic. The second challenge is to extend the
method such that it could verify total correctness. Finally,
we are interested in combining our approach with other
successful methods, for example the predicate abstraction
method in [Flanagan and Qadeer, 2002].

Acknowledgements
We thank Hector Levesque and Gerhard Lakemeyer for
many helpful discussions about this paper. We are grateful to
Yuxiao Hu for his valuable help with this work. Thanks also
to the anonymous reviewers for useful comments. Yongmei
Liu is also affiliated to the Guangdong Key Laboratory of
Information Security Technology, Sun Yat-sen University,
China. This work was partially supported by the Natural
Science Foundation of China under Grant No. 61073053.

References
[Eén and Sörensson, 2003] Niklas Eén and Niklas

Sörensson. An extensible sat-solver. In Proc. of
SAT-03, pages 502–518, 2003.

[Flanagan and Qadeer, 2002] Cormac Flanagan and Shaz
Qadeer. Predicate abstraction for software verification. In
Conference Record of POPL-02, pages 191–202, 2002.

[Hu, 2012] Yuxiao Hu. Generation and Verification of Plans
with Loops. PhD thesis, Department of Computer Science,
University of Toronto, 2012.

[Levesque et al., 1997] Hector J. Levesque, Raymond Reit-
er, Yves Lespérance, Fangzhen Lin, and Richard B. Scher-
l. GOLOG: A logic programming language for dynamic
domains. Journal of Logic Programming, 31:59–83, 1997.

[Li et al., 2013] Naiqi Li, Yi Fan, and Yongmei Liu. Rea-
soning about state constraints in the situation calculus. In
Proc. IJCAI-13, 2013.

[Lin and Reiter, 1997] Fangzhen Lin and Raymond Reiter.
How to progress a database. Artificial Intelligence, 92(1-
2):131–167, 1997.

[Liu, 2002] Yongmei Liu. A hoare-style proof system for
robot programs. In Proc. AAAI-02, pages 74–79, 2002.

[Nguyen et al., 2012] ThanhVu Nguyen, Deepak Kapur,
Westley Weimer, and Stephanie Forrest. Using dynamic
analysis to discover polynomial and array invariants. In
Proc. of ICSE-12, pages 683–693, 2012.

[Pasareanu and Visser, 2004] Corina S. Pasareanu and
Willem Visser. Verification of java programs using
symbolic execution and invariant generation. In Proc. of
11th SPIN Workshop, pages 164–181, 2004.

[Reiter, 2001] Raymond Reiter. Knowledge in Action: Logi-
cal Foundations for Specifying and Implementing Dynam-
ical Systems. MIT Press, 2001.

[Rintanen, 2000] Jussi Rintanen. An iterative algorithm for
synthesizing invariants. In Proc. of AAAI-00, pages 806–
811, 2000.

[Schulz, 2013] Stephan Schulz. System description: E 1.8.
In Proc. of 19th LPAR, pages 735–743, 2013.

