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Abstract

In the past decades, forgetting has been investigated
for many logics and has found many applications in
knowledge representation and reasoning. However,
forgetting in multi-agent modal logics has largely
been unexplored. In this paper, we study forgetting
in multi-agent modal logics. We adopt the semantic
definition of existential bisimulation quantifiers as
that of forgetting. We propose a syntactical way of
performing forgetting based on the canonical for-
mulas of modal logics introduced by Moss. We
show that the result of forgetting a propositional
atom from a satisfiable canonical formula can be
computed by simply substituting the literals of the
atom with >. Thus we show that Kn, Dn, Tn, K45n,
KD45n and S5n are closed under forgetting, and
hence have uniform interpolation.

1 Introduction
In the past decades, forgetting has been investigated for many
logics and has found many applications in knowledge rep-
resentation and reasoning (KR). Intuitively, forgetting some
symbols from a knowledge base (KB) should result in a
weaker KB which entails the same set of sentences that do
not mention those symbols.

The seminal paper by Lin and Reiter [1994] studied for-
getting in propositional and first-order logics. Over the years,
forgetting in propositional logic has been used in abductive
reasoning [Lin, 2001], reasoning under inconsistency [Lang
and Marquis, 2010], reasoning about knowledge [Su et al.,
2009], epistemic planning [Herzig et al., 2003], etc; and for-
getting in first-order logic has been applied to progression for
basic action theories in the situation calculus [Lin and Reiter,
1997; Liu and Lakemeyer, 2009]. In recent years, forgetting
has been generalized to various description logics and applied
to ontology reuse [Wang et al., 2009; 2010; Konev et al.,
2009; Lutz and Wolter, 2011]. There exist some resolution-
based approaches for forgetting in expressive description log-
ics [Ludwig and Konev, 2014; Koopmann and Schmidt, 2014;
2015]. Forgetting has also been studied for logic pro-
grams and used in conflict solving [Zhang and Foo, 2006;
Eiter and Wang, 2008; Wang et al., 2014].

Forgetting for modal logics has also been investigated and
applied to reasoning about knowledge and belief. Baral and
Zhang [2005] studied knowledge update, a special form of
update with the effect that the agent becomes ignorant of a
propositional formula. Van Ditmarsch et al.

[2009] presented
a dynamic epistemic logic where the dynamic operator is the
action of forgetting a propositional atom. Zhang and Zhou
[2009] studied forgetting in propositional S5 logic and its ap-
plications in knowledge updates and knowledge games. Liu
and Wen [2011] explored forgetting in first-order S5 logic
and applied it to progression of knowledge in the situation
calculus, which concerns updating the current representation
of the world state and agents’ epistemic state to reflect the
change caused by an ontic or epistemic action. Later, Fang
et al.

[2015] extended the above results to progression of
both knowledge and belief for nondeterministic actions in the
single-agent propositional case.

Zhang and Zhou’s semantic definition of forgetting coin-
cides with that of existential bisimulation quantifiers. Bisim-
ulation quantifiers were introduced by Ghilardi and Zawad-
owski [1995] to study uniform interpolation, which is the
dual notion of forgetting, in modal logics. A logic has uni-
form interpolation if for any formula � and any set S of
symbols occurring in �, there is a formula  using only
symbols in S such that � and  entail the same set of
sentences formulated only in S. The semantics of exis-
tential bisimulation quantifiers is as follows: a model M
satisfies a formula 9p� where p is an atom iff there is a
model M 0 satisfying � such that M and M 0 are bisimi-
lar with exception on p. It turns out that any logic that
is invariant under bisimulation and closed under bisimula-
tion quantification, that is, closed under elimination of the
quantification, has uniform interpolation. It is well-known
that K, T and S5 have uniform interpolation [Ghilardi, 1995;
Bı́lková, 2007; Ghilardi and Zawadowski, 2000]. However,
neither K4 or S4 has uniform interpolation [Bı́lková, 2007;
Ghilardi and Zawadowski, 1995].

In the multi-agent case, D’Agostino and Lenzi [2006] gave
a constructive proof that µ-calculus, an extension of Kn with
a fixed-point operator, is closed under bisimulation quantifi-
cation and hence has uniform interpolation. Studer [2009]
showed that KC, which is Kn with common knowledge, does
not have uniform interpolation, and this also holds for K4C.
Pattinson [2013] showed that all modal logics axiomatizable
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by formulas whose modal depth uniformly equals one, in-
cluding Kn and Dn, have uniform interpolation. Reasoning
about knowledge and belief in the multi-agent case is cer-
tainly important from the KR point of view, since higher-
order knowledge and belief (i.e., knowledge and belief about
other agents’ knowledge and belief) play an important role
in coordination and interaction. However, to the best of our
knowledge, other than the above mentioned works, forgetting
in multi-agent modal logics has largely been unexplored, and
it remains an open problem whether Tn, K45n, KD45n or S5n
have uniform interpolation.

It is well-known that in propositional logic, the result of
forgetting atom p from a satisfiable term (i.e., a conjunction
of literals) � can be obtained from � by substituting any oc-
currence of literal p or ¬p with >. As every propositional
formula can be equivalently transformed into a disjunction of
satisfiable terms, and forgetting is distributive over disjunc-
tion, propositional logic is closed under forgetting. Interest-
ingly, the idea of literal elimination was used by D’Agostino
and Lenzi to prove that µ-calculus is closed under bisimula-
tion quantification.

In this paper, we study forgetting in multi-agent modal log-
ics. We adopt the semantic definition of existential bisimula-
tion quantifiers as that of forgetting. We resort to the normal
forms of propositional modal logics, called canonical formu-
las by Moss [2007], a nice property of which is that an ar-
bitrary modal formula is equivalent to a disjunction of a fi-
nite set of satisfiable canonical formulas. Due to the distribu-
tive law of forgetting over disjunction, forgetting from arbi-
trary modal formulas can be reduced to forgetting from satis-
fiable canonical formulas, which we show can be computed
via literal elimination. Hence we show that except K4n and
S4n, which do not have uniform interpolation, the other main
multi-agent modal systems are closed under forgetting.

2 Preliminaries
In this section, we introduce the background material, i.e.,
the syntax and semantics of multi-agent modal logics, and
the canonical formulas for modal logics as defined by Moss.

2.1 Multi-agent modal logics
We fix a set A of n agents and a countable set of atoms P .
Definition 1 The language LK

n is generated by the BNF:

� ::= p | ¬� | � ^ � | Ki�,

where p 2 P and i 2 A. We use Lpl for the propositional
language, i.e., the language without the Ki modality.

We let > and ? represent true and false respectively. We
use p and q to range over atoms, � and  to range over for-
mulas, and � and  to range over sets of formulas. We let
P(�) denote the set of atoms which appear in �.

The (modal) depth of a formula � in LK
n , written dep(�),

is the depth of nesting of modal operators in �. We let K̂i�
stand for ¬Ki¬�. We let

W
� (resp.

V
�) denote the disjunc-

tion (resp. conjunction) of members of �; and we use
V
K̂i�

to represent the conjunction of K̂i� where � 2 �.
Definition 2 A frame is a pair (S,R), where

L K D T K4 S4 K45 KD45 S5
Serial X X X X X

Reflexive X X X
Transitive X X X X X
Euclidean X X X

Table 1: The main modal systems

• S is a non-empty set of possible worlds;
• For each agent i 2 A, Ri is a binary relation on S, called

the accessibility relation for i.

For s 2 S, we write Ri(s) for {t 2 S | sRit}, and call it the
i-children of s.

Different modal systems result from different sets of condi-
tions on the accessibility relations. We say Ri is serial if for
any s 2 S, there is s0 2 S s.t. sRis0; we say Ri is Euclidean
if whenever sRis1 and sRis2, we have s1Ris2.

We list the main modal systems in Table 1. KD45 and S5
are well-accepted as the logics for knowledge and belief, re-
spectively. For each symbol L listed here, we use L for the
single agent case, Ln for the case where there are n agents.

Definition 3 A Kripke model is a triple M = hS,R, V i,
where (S,R) is a frame, and V is a valuation map, which
maps each s 2 S to a subset of P . A pointed Kripke model
is a pair (M, s), where M is a Kripke model and s is a world
of M , called the actual world.

For simplicity, we often omit the word “pointed”.

Definition 4 Let (M, s) be a Kripke model where M =
hS,R, V i. We interpret formulas in LK

n by induction:
• M, s |= p iff p 2 V (s);
• M, s |= ¬� iff M, s 6|= �;
• M, s |= � ^  iff M, s |= � and M, s |=  ;
• M, s |= Ki� iff for all t 2 Ri(s), M, t |= �.

We use L to range over modal systems. Consider the con-
text of a modal system L. We say � is satisfiable, if there
exists a model of �. We say � entails  , written � |=  , if for
any model (M, s), M, s |= � implies M, s |=  . We say �
and  are equivalent, written � ⌘  , if � |=  and  |= �.

D’Agostino and Lenzi [2005] presented another modal lan-
guage which is based on the cover modality ri:

Definition 5 Let i 2 A, and � a finite set of formulas in LK
n .

We use ri� to denote the formula Ki(
W
�) ^ (

V
K̂i�).

Note that ri; ⌘ Ki?.
Now, we can get the semantics of the cover modality.

Lemma 1 Let (M, s) be a Kripke model where M =
hS,R, V i and s 2 S. Then M, s |= ri� iff the following

conditions hold:

• for all t 2 Ri(s), there is � 2 � s.t. M, t |= �;

• for all � 2 �, there is t 2 Ri(s) s.t. M, t |= �.

Proposition 1 [

Janin and Walukiewicz, 1995

]

Every formula

in LK
n is equivalent to a formula using only the ri modalities.

1067



2.2 Canonical formulas
We will present our definitions and proofs via canonical for-

mulas of modal logics, as defined by Moss [2007], which cap-
ture Kripke models up to a given depth.

Definition 6 (Canonical formulas) Let P ✓ P be finite.
We inductively define the set EP

k as follows:

• EP
0 = {

V
p2P̃ p ^

V
p2P\P̃ ¬p | P̃ ✓ P};

• EP
k+1 = {�0 ^

V
i2A ri�i | �0 2 EP

0 and �i ✓ EP
k }.

Let � = �0 ^
V

i2A ri�i 2 EP
k+1. We denote �0 by w(�),

and call it the world of �; we denote �i by Ri(�), and call it
the i-children of �.

Intuitively, when we restrict our attention to the atoms in P ,
a canonical formula of depth k provides a complete syntactic
representation of a Kripke model up to depth k.

The following proposition says that every Kripke model
(M, s) satisfies a unique canonical formula of a given depth
k, which we call the depth k canonical formula of (M, s).

Proposition 2 [

Moss, 2007

]

Let (M, s) be a model and k 2
N. Let P ✓ P be finite. Then, there exists a unique � 2 EP

k
s.t. M, s |= �.

We can get the following corollary which means that every
modal formula can be equivalently transformed into a dis-
junction of satisfiable canonical formulas whose depth is not
less than that of the original formula.
Proposition 3 Consider the context of a modal system L. Let

� 2 LK
n and l 2 N s.t. l � dep(�). Let P = P(�). Then

there exists a unique set � ✓ EP
l s.t. � ⌘

W
�, and for every

� 2 �, � is satisfiable in L.

Now, we introduce the projection operations on canoni-
cal formulas. A canonical formula can be graphically rep-
resented as a tree. The operation �# prunes the leaves of this
tree. In �#l, we perform pruning l times sequentially. We call
�# the 1st-cut of �, and �#l the lth-cut of �.

Definition 7 Let P ✓ P be finite. Let k 2 N and � 2 EP
k .

Then, �# is inductively defined as follows:

�# =

8
<

:

�, if k = 0;
w(�), if k = 1;
w(�) ^

V
i2A ri(Ri(�))#, otherwise.

Let � be a set of canonical formulas. We use �# to denote
the set {�# | � 2 �}.

Definition 8 Let P ✓ P be finite. Let k, l 2 N s.t. k � l.
Let � 2 EP

k . Then, �#l is inductively defined as follows:

�#l =

8
<

:

�, if l = 0;
�#, if l = 1;
(�#l�1)#, otherwise.

Similarly to �#, �#l is the set {�#l | � 2 �}. Obviously, � |=
�#l for all l  dep(�).

It is easy to prove the following, which intuitively says that
the i-children of the lth-cut of a canonical formula is equal to
the lth-cut of its i-children, i.e., the two operations are com-
mutative.

Proposition 4 Let � be a canonical formula. Let l 2 N s.t.

l < dep(�). Then for all i 2 A, we have Ri(�#l) = Ri(�)#l.

Example 1 Let � = p ^ ri{¬p ^ri{p,¬p}}. Obviously,
the depth of � is 2. By Definitions 7 and 8, �#1 = �# =
p ^ri({¬p ^ri{p,¬p}})# = p ^ri{¬p}. Similarly, we
get Ri(�#1) = {¬p}, Ri(�) = {¬p ^ri{p,¬p}}, and
Ri(�)#1 = {¬p}. Hence Ri(�#1) = Ri(�)#1 = {¬p}.

3 Forgetting
In this section, we define forgetting in multi-agent modal log-
ics. We first review forgetting in propositional logic.

We use a subset of the atoms to denote a valuation.

Definition 9 Let � 2 Lpl and p an atom. A formula  2 Lpl

s.t. P( ) ✓ P(�)\{p} is a result of forgetting p in �, written
pforget(�, p) ⌘  , if for any valuation P , P |= � (meaning
P satisfies �) iff there is a valuation P 0 s.t. P 0 |=  and
P ⇠p P 0, i.e., P \ {p} = P 0 \ {p}.

The definition of forgetting in multi-agent modal logics is
analogous to that in propositional logic. For this purpose, we
use the well-known concept of bisimulation.

Definition 10 (p-bisimulation) Let (M, s) and (M 0, s0) be
two Kripke models where M = hS,R, V i and M 0 =
hS0, R0, V 0i. A p-bisimulation between (M, s) and (M 0, s0)
is a relation ⇢ ✓ S ⇥ S0 s.t. s⇢s0, and whenever t⇢t0, we get:

atoms V (t) ⇠p V 0(t0);
forth For all i, if tRiu, then there is u0 s.t. t0R0

iu
0 and u⇢u0;

back For all i, if t0R0
iu

0, then there is u s.t. tRiu and u⇢u0.

We say that (M, s) and (M 0, s0) are p-bisimilar, written
(M, s)$p(M

0, s0), if there is a p-bisimulation between them.
Clearly, $p is an equivalence relation. A nice property

of p-bisimilar Kripke models is that they agree on all modal
formulas wherein p does not appear.
Proposition 5 Let (M, s)$p(M

0, s0). Let � 2 LK
n where p

does not appear in �. Then M, s |= � iff M 0, s0 |= �.

Definition 11 (Forgetting) Consider the context of a modal
system L. Let � 2 LK

n and p an atom. A formula  s.t.
P( ) ✓ P(�) \ {p} is a result of forgetting p in �, written
kforget(�, p) ⌘  , if for any model (M 0, s0), M 0, s0 |=  iff
there is a model (M, s) of � s.t. (M, s)$p(M

0, s0).

So the semantics of forgetting is that of existential bisimu-
lation quantifiers as presented in the introduction. Clearly,
if both  1 and  2 are results of forgetting p in �, then
they are logically equivalent. In this paper, when we prove
kforget(�, p) ⌘  , the proof of the if direction of Definition
11 is straightforward by making use of (M, s)$p(M

0, s0)
and the induction hypothesis if applicable. To save space,
we only present the proof of the only-if direction.

We now analyze basic properties of forgetting.

Proposition 6 Consider the context of a modal system L. If

kforget(�, p) ⌘  , then � |=  ; and for any ⌘ where p does

not occur, � |= ⌘ iff  |= ⌘.

Proposition 7 Consider the context of a modal system L.
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1. If � 2 Lpl
and pforget(�, p)⌘  , then kforget(�, p) ⌘

 ;

2. kforget(�1 _ �2, p) ⌘ kforget(�1, p) _ kforget(�2, p).

Proof: We only prove the only-if direction of Part 1. Let
M 0, s0 |=  . We let the structure of M be a copy of that of
M 0; let V expand V 0 s.t. V (s) |= �. Then we have M, s |= �
and (M, s)$p(M

0, s0).

We now relate forgetting to uniform interpolation.

Definition 12 We say that a modal system L is closed under
forgetting if for any formula � and any atom p 2 P(�), there
exists an L formula  s.t. kforget(�, p) ⌘  .

Definition 13 We say a modal system L has uniform interpo-
lation if for every formula � and every P ✓ P(�), there is a
formula  such that P( ) ✓ P and such that for any formula
⌘ with P(⌘) ✓ P , we have � |= ⌘ iff  |= ⌘.

Zhang and Zhou [2009] proposed the forgetting postulates,
which correspond to the definition of uniform interpolation.

By Proposition 6, we have

Proposition 8 If a modal system L is closed under forgetting,

then L has uniform interpolation.

As mentioned in the introduction, neither K4 nor S4 has
uniform interpolation. Because K4 is indeed K41, which is a
special case of K4n, K4n does not have uniform interpolation.
Similarly, neither has S4n. Hence, we get

Corollary 1 Neither K4n nor S4n is closed under forgetting.

Finally, we propose a syntactical method of forgetting.

Definition 14 (Literal elimination) Let � 2 LK
n and p an

atom. We let �p denote the formula obtained from � by sub-
stituting all occurrences of ¬p with > and subsequently sub-
stituting all occurrences of p with >.

Merely requiring to replace ¬p and p by > would be am-
biguous. Because, should we then replace ¬p by > or by ??
The last would happen if we were to replace the p in ¬p by >.
That would be an undesirable outcome. The ‘subsequently’
in Definition 14 is not ambiguous and avoids that outcome.

Example 2 Let �1 = p ^ q ^ ri{¬p ^ ¬q}. Then, �p1 =
> ^ q ^ri{> ^ ¬q} ⌘ q ^ri{¬q}.

Typically, we only apply this substitution to formulas
wherein negations only bind atoms. Similarly to �#, �p is
the set {�p | � 2 �}.

In the following sections, we will show that when � is a
canonical formula satisfiable in L, kforgetL(�, p) ⌘ �p.

4 Forgetting in multi-agent modal logics
In this section, we show that forgetting from satisfiable
canonical formulas can be computed via literal elimination
in the following multi-agent modal logics: Kn, Dn, Tn, K45n,
KD45n and S5n. As an easy corollary, we have that the above
logics are closed under forgetting and they have uniform in-
terpolation.

Figure 1: Illustration for the proof of Theorem 1

4.1 Forgetting in Kn and Dn

In this subsection, we consider Kn and Dn cases. In fact, these
results were first proved by D’Agostino and Lenzi [2006].
As mentioned in the introduction, they gave a constructive
proof that µ-calculus is closed under bisimulation quantifica-
tion. The core result they proved is the following:
Theorem [

D’Agostino and Lenzi, 2006

]

Let � be a cover

disjunctive formula for µ-calculus. Then 9p� ⌘ �p.

In the theorem, a cover disjunctive formula is a generaliza-
tion of the notion of a disjunction of canonicial formulas that
we use in this paper.

Here 9p is the bisimulation quantifier we defined in the
introduction. Their proof is via an automata approach. Here
we present an easy inductive proof, which serves as the basis
for the proofs of all the forgetting results in this paper.
Theorem 1 (The basic theorem) Let L be Kn or Dn, and �
an L-satisfiable canonical formula. Then kforgetL(�, p) ⌘ �p.

Proof: We prove by induction on dep(�). The base case, i.e.,
� 2 EP

0 , follows from Proposition 7. We prove the only-if
direction of the induction case, i.e., � 2 EP

k where k � 1. Let
M 0, s0 |= �p. We construct M and define a relation ⇢ between
the worlds of M and M 0 as follows. Figure 1 illustrates the
construction.

1. Create a new world s, let s⇢s0, and V (s) |= w(�).
2. For all i 2 A, t0 2 R0

i(s
0), and ⌘ 2 Ri(�), if

M 0, t0 |= ⌘p, by the induction hypothesis, there ex-
ist (Mt0,⌘, tt0,⌘) and ⇢t0,⌘ s.t. Mt0,⌘, tt0,⌘ |= ⌘ and
⇢t0,⌘ : (Mt0,⌘, tt0,⌘)$p(M

0, t0). Add a new copy of
Mt0,⌘ into M , let sRitt0,⌘ , and expand ⇢ with ⇢t0,⌘ .

It is easy to show that ⇢ : (M, s)$p(M
0, s0) and M, s |= �.

In the case of Dn, it is obvious from the above construction
that if M 0 satisfies seriality, so does M .

As a corollary of Propositions 3, 7 and Theorem 1, we get
Corollary 2 Kn and Dn are closed under forgetting.
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Example 3 Let � be K̂ip^K̂i¬p, meaning that agent i is ig-
norant about p. Intuitively, after forgetting p, the agent should
still have consistent belief. We convert � into a disjunction of
two canonical formulas �1 and �2 where �1 = p ^ri{p,¬p}
and �2 = ¬p^ri{p,¬p}. Then �p1 = �p2 = >^ri{>}. The
disjunction of them is equivalent to K̂i>.

4.2 Forgetting in Tn

In this subsection, we analyze properties of Tn satisfiable
canonical formulas, and show that forgetting via literal elim-
ination applies to them.

We begin with a simple example which shows that Theo-
rem 1 does not hold for unsatisfiable canonical formulas.

Example 4 Let � = ¬p ^ ri{p}. Clearly, � is a canonical
formula, and it is equivalent to ? in Tn. However, �p =
> ^ri{>} which is equivalent to >.

The reason that forgetting via literal elimination does not
work on � is that � is unsatisfiable in Tn. This motivates us to
consider only satisfiable canonical formulas.

The following proposition says that any Tn satisfiable
canonical formula � has the reflexive property: for any agent
i and any 1  l  dep(�), the lth-cut of � is an i-child of its
(l � 1)th-cut.

Proposition 9 Let � be a Tn satisfiable canonical formula

where dep(�) � 1. Let l 2 N s.t. 1  l  dep(�). Then, for

all i 2 A, we have �#l 2 Ri(�#l�1).

Proof: Here, we only prove the base case, i.e., �# 2 Ri(�).
Let k = dep(�) and M, s |= �. Obviously, M, s |= �#.
Since M is reflexive, s 2 Ri(s). By the semantics of the ri

modality, there exists �i 2 Ri(�) s.t. M, s |= �i. So both �#
and �i are the depth k � 1 canonical formula of (M, s) (cf.
Proposition 2). Hence �# = �i 2 Ri(�).

Example 4 Cont’d We have �# = ¬p and Ri(�) = {p}.
Obviously, �# /2 Ri(�). So � is not satisfiable in Tn.

Example 5 Let � = p ^ q ^ ri{p ^ q, p ^ ¬q}. It is a Tn

satisfiable canonical formula. Then, �# = p^ q, and Ri(�) =
{p ^ q, p ^ ¬q}. Obviously, �# 2 Ri(�).

Theorem 2 (The Tn theorem) Let � be a Tn satisfiable

canonical formula. Then kforgetTn
(�, p) ⌘ �p.

Proof: The proof is the same as that of the basic theo-
rem except the following. In the induction case, we get
(M, s)$p(M

0, s0) and M, s |= �. Let k = dep(�). Then
for any l  k, M, s |= �#l. We now let sRis for each agent
i. It is obvious that (M, s) is a Tn model. It is easy to see
that (M, s)$p(M

0, s0) still holds. It remains to show that
M, s |= � still holds. We prove by induction on k � l that for
any l  k, M, s |= �#l still holds. Base case. M, s |= w(�),
which is �#k. Induction case. Suppose that M, s |= �#l. To
show that M, s |= �#l�1, it suffices to show that for each
i 2 A, there exists ⌘ 2 Ri(�#l�1) s.t. M, s |= ⌘. By Propo-
sition 9, �#l 2 Ri(�#l�1). Hence �#l is the desired ⌘.

4.3 Multi-pointed Kripke models

In the next subsection, we show that forgetting via literal
elimination applies to satisfiable canonical formulas of K45n,
KD45n and S5n. The proof for the basic theorem does not
immediately carry forward to these cases, because the model
constructed in the proof may not be transitive or Euclidean.
Also, we cannot simply fix the problem by adding edges as
we do in the proof of the Tn theorem. We will overcome the
problem via multi-pointed Kripke models which offers flexi-
bility in the construction of required models. In this subsec-
tion, we introduce the basic concepts regarding multi-pointed
models.

Definition 15 A multi-pointed Kripke model is a pair (M,T )
where M is a Kripke model, and T is a possibly empty set of
worlds of M .

Throughout this paper, we use (M, s) to denote a single-
pointed model, and (M,T ) a multi-pointed model.

Given a single-pointed model (M, s) and i 2 A, we can
naturally obtain a multi-pointed model (M,T ) where T =
Ri(s), i.e., the i-children of s.

Similarly to the semantics of the cover modality, we have:

Definition 16 Let � be a set of formulas. We say a multi-
pointed model (M,T ) is �-complete if the following hold:

• for every t 2 T , there exists � 2 � s.t. M, t |= �;

• for every � 2 �, there exists t 2 T s.t. M, t |= �.

Obviously, M, s |= ri� iff (M,Ri(s)) is �-complete.
Then, we can extend Proposition 2 to multi-pointed mod-

els: we have that a multi-pointed model (M,T ) corresponds
to a unique set of canonical formulas of a given depth k,
which we call the depth k canonical formula set of (M,T ).

Proposition 10 Let (M,T ) be a multi-pointed model, and

k 2 N. Let P ✓ P be finite. Then, there exists a unique

set � ✓ EP
k s.t. (M,T ) is �-complete.

We now extend the concept of bisimulation to multi-
pointed models.

Definition 17 Let (M,T ) and (M 0, T 0) be two Kripke mod-
els. A p-bisimulation between (M,T ) and (M 0, T 0) is a rela-
tion ⇢ between the worlds of M and M 0 s.t.

• for every t 2 T , there exists t0 2 T 0 s.t. t⇢t0;

• for every t0 2 T 0, there exists t 2 T s.t. t⇢t0;

• whenever u⇢u0, the atoms, forth and back conditions in
Definition 10 hold.

We end with a constraint on multi-pointed models, which
is crucial for constructing transitive and Euclidean models.

Definition 18 Let (M,T ) be a Kripke model and i 2 A. We
say that (M,T ) is i-equivalent if for all t1, t2 2 T , we have
t1Rit2, and for every s 2 S, if there exists t 2 T s.t. sRit or
tRis, then s 2 T .
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4.4 Forgetting in K45n, KD45n and S5n
In this subsection, we generalize the forgetting results for sat-
isfiable canonical formulas to K45n, KD45n and S5n.

The following proposition says that any K45n satisfiable
canonical formula � has the identical-children property: for
any agent i and any i-child �i of �, the lth-cut of �’s i-children
is equal to the i-children of the (l � 1)th-cut of �i.
Proposition 11 Let � be a K45n satisfiable canonical for-

mula where dep(�) � 2. Let l 2 N s.t. 1  l < dep(�).
Then, for all i 2 A and �i 2 Ri(�), (Ri(�))#l = Ri(�

#l�1
i ).

Proof: Let k = dep(�), M, s |= �, i 2 A and �i 2 Ri(�).
Here, we only prove the base case, i.e., (Ri(�))# = Ri(�i).
Then there exists t 2 Ri(s) s.t. M, t |= �i. Since M is tran-
sitive and Euclidean, Ri(s) = Ri(t). Obviously, (M,Ri(s))
is (Ri(�))#-complete and (M,Ri(t)) is Ri(�i)-complete. So
(M,Ri(s)) is also Ri(�i)-complete. So both (Ri(�))# and
Ri(�i) are the depth k�2 canonical formula set of (M,Ri(s))
(cf. Proposition 10). Hence (Ri(�))# = Ri(�i).

Now, we prove an important lemma, which is the multi-
pointed extension of the only-if direction of the version of the
basic theorem for K45n.
Lemma 2 (The K45n lemma) Let � be a K45n satisfiable

canonical formula where dep(�) � 1. Let (M 0, s0) be a K45n
model of �p. Then for all i 2 A, there exists a multi-pointed

K45n model (M,T ) that is i-equivalent, Ri(�)-complete and

(M,T )$p(M
0, R0

i(s
0)).

Proof: We prove by induction on dep(�).
Base case, i.e., Ri(�) is a set of propositional formulas.

We construct (M,T ) and define the p-bisimulation ⇢ between
(M,T ) and (M 0, R0

i(s
0)) as follows. Figure 2 illustrates the

construction. We initialize S = ; and ⇢ = ;.
1. For all t0 2 R0

i(s
0) and �i 2 Ri(�), if M 0, t0 |= �pi , we

create a world t s.t. V (t) |= w(�i). Then we add it into
S and T , and let t⇢t0.

2. For all t1, t2 2 T , we let t1Rit2.
3. For t 2 T and j 6= i, we make a copy of (M 0, R0

j(t
0)),

denoted by (Mt,j , Tt,j) where t0 is the original world of
t. We connect t to all worlds of Tt,j via j-edges, i.e., let
tRju for u 2 Tt,j . We let u⇢u0 when u is the copy of u0.

It is easy to verify (M,T ) satisfies the requirements.
Induction step. The construction of (M,T ) is similar

to that of the base case except the following. In Step 3,
since M 0, t0 |= �pi , by the induction hypothesis, there ex-
ist (Mt,j , Tt,j) that is j-equivalent and Rj(�i)-complete and
⇢t,j : (Mt,j , Tt,j)$p(M

0, R0
j(t

0)). We expand ⇢ with ⇢t,j .
Obviously, (M,T ) is transitive, Euclidean and i-equivalent,
and (M,T )$p(M

0, R0
i(s

0)).
It remains to verify that (M,T ) is Ri(�)-complete. Let

dep(�) = k. We prove by induction on k � l that for
all 0  l < k, (M,T ) is Ri(�)#l-complete. Base case:
l = k � 1, and Ri(�)#l is a set of propositional formu-
las. By Step 1, (M,T ) is Ri(�)#l-complete. Induction step.
Suppose that (M,T ) is Ri(�)#l-complete. We prove that
it is also (Ri(�))#l�1-complete. Let t 2 T . By the con-
struction, there exists �i 2 Ri(�) s.t. M, t |= w(�i). It

Figure 2: Illustration for the proof of Lemma 2

suffices to show that M, t |= �#l�1
i . Since w(�#l�1

i ) =

w(�i), M, t |= w(�#l�1
i ). By the identical-children prop-

erty (Proposition 11), (Ri(�))#l = Ri(�
#l�1
i ). By the induc-

tion hypothesis, (M,T ) is Ri(�
#l�1
i )-complete, so M, t |=

riRi(�
#l�1
i ). For j 6= i, because (Mt,j , Tt,j) is Rj(�i)-

complete and Rj(t) = Tt,j , M, t |= rjRj(�i), hence M, t |=
rjRj(�i)#l�1. By Proposition 4, Rj(�i)#l�1 = Rj(�

#l�1
i ),

so M, t |= rjRj(�
#l�1
i ).

Now, we get the following theorem via Lemma 2.

Theorem 3 (The K45n theorem) Let � be a K45n satisfiable

canonical formula. Then kforgetK45n(�, p) ⌘ �p.

Proof: The proof is the same as that of the basic theo-
rem except Step 2 of the induction case. By the K45n
lemma, for every i 2 A, there exist (Mi, Ti) and ⇢i :
(Mi, Ti)$p(M

0, R0
i(s

0)). Add a new copy of Mi into M ,
let sRit for all t 2 Ti, and expand ⇢ with ⇢i.

From the construction of the K45n lemma and the K45n
theorem, if the given model M 0 is a KD45n model, then we
can acquire a KD45n model M . Hence we can get

Theorem 4 Let � be a KD45n satisfiable canonical formula.

Then kforgetKD45n(�, p) ⌘ �p.

We proceed to S5n. The models constructed in the proofs
of the K45n lemma and the K45n theorem may not be reflex-
ive. We can fix it via adding edges as follows: for all i 2 A,

1. for all t 2 S, we let tRit; (reflexive edges)
2. for all t, u 2 S, if tRiu, we let uRit. (symmetric edges)

It is easy to verify that the new models are S5n models.

Example 6 In Figure 3, given a model (M,T ) shown
in Figure 2, we add blue edges so that it is an S5n
model. Note that it is not necessary to add edges for four
submodels (Mt1,j , Tt1,j), (Mt1,k, Tt1,k), (Mt2,j , Tt2,j) and
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Figure 3: Adding reflexive and symmetric edges

(Mt2,k, Tt2,k). All of them are S5n models since they are ac-
quired by the induction hypothesis. We just add the edges as
follows:

1. Let t1Rjt1, t1Rkt1, t2Rjt2 and t2Rkt2;
2. For u 2 Tt1,j (resp. Tt1,k), let uRjt1 (resp. uRkt1).
3. For u 2 Tt2,j (resp. Tt2,k), let uRjt2 (resp. uRkt2).
All that remains now is to prove that the constructed mod-

els satisfy the original formulas. Since the logic S5n is both
K45n and Tn logics, any S5n satisfiable canonical formula has
the reflexive and identical-children properties (Propositions 9
and 11). Hence, we get
Theorem 5 (The S5n theorem) Let � be an S5n satisfiable

canonical formula. Then kforgetS5n(�, p) ⌘ �p.

Proof: Let k = dep(�). Here, we only verify that M, s |= �
when k � 1. We prove by induction on k � l that for any
l  k, M, s |= �#l still holds. Base case. M, s |= w(�),
which is �#k. Induction case. Suppose that M, s |= �#l. To
show that M, s |= �#l�1, it suffices to show that for each
i 2 A, M, s |= riRi(�#l�1), i.e., (M,Ri(s)) is Ri(�#l�1)-
complete. Here, we only prove that for every t 2 Ri(s), there
exists ⌘ 2 Ri(�#l�1) s.t. M, t |= ⌘. The other direction can
be similarly proved.

Suppose that t = s. By the reflexive property, �#l 2
Ri(�#l�1). Let ⌘ = �#l. This, together with the hypothe-
sis, imply that M, s |= ⌘ where ⌘ 2 Ri(�#l�1).

Suppose that t 2 S \ {s}. Before adding the edges,
by construction, there exists �i 2 Ri(�) s.t. M, t |= �i.
Let ⌘ = �#l�1

i . After adding the edges, that M, t |=
w(⌘)^

V
j2A\{i} rjRj(⌘) holds. Now, we prove that M, t |=

riRi(⌘), i.e., (M,Ri(t)) is Ri(⌘)-complete. By transitive
and Euclidean properties, we get Ri(t) = Ri(s). By the
identical children property, Ri(⌘) = Ri(�#l). These, together
with the hypothesis, imply that M, t |= riRi(⌘).

As a corollary of Theorems 2-5, we get

Corollary 3 Tn, K45n, KD45n and S5n are closed under for-

getting.

By Proposition 8 and Corollary 3, we can get the next
corollary which settles the open problems regarding uniform
interpolation in multi-agent modal logics.

Corollary 4 Tn, K45n, KD45n and S5n do have uniform in-

terpolation.

5 Conclusions
In this paper, we have studied forgetting in multi-agent modal
logics. We adopted the semantic definition of existential
bisimulation quantifiers as that of forgetting. We showed that
except the two modal systems K4n and S4n, which have been
shown lack of uniform interpolation, the other main multi-
agent modal systems, namely Kn, Dn, Tn, K45n, KD45n, and
S5n, are closed under forgetting.

To achieve the above results, we presented a syntactical
method of forgetting: to forget an atom from an arbitrary
modal formula, first transform the formula to a disjunction
of canonical formulas, then remove all the unsatisfiable ones,
and lastly substitute any literal of the atom with >. To prove
that this syntactical method of forgetting produces the desired
result, given a model satisfying the formula obtained from a
satisfiable canonical formula via literal elimination, we con-
struct a model satisfying the original formula and p-similar to
the given model. To this end, we analyze properties of sat-
isfiable canonical formulas in different logics, and use multi-
pointed models to gain flexibility in model construction.

In multi-agent systems, background information is formal-
ized as common knowledge of propositional formulas. We
have also shown that the extensions of the above logics with
propositional common knowledge are closed under forget-
ting. These results were omitted for lack of space.

It is well-known that the size of a canonical formula is non-
elementary. So the proposed syntactic method of forgetting
is obviously an unpractical one. Thus one topic for future
research is to investigate more efficient approaches for com-
puting forgetting. Yet another one is to explore forgetting
for distributed knowledge and more general cases of common
knowledge. It would also be interesting to apply forgetting to
progression and abductive reasoning of knowledge and belief
in multi-agent systems.
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Jérôme Lang, and Pierre Marquis. Introspective forgetting. Syn-

these, 169(2):405–423, 2009.
[Wang et al., 2009] Kewen Wang, Zhe Wang, Rodney Topor,

Jeff Z. Pan, and Grigoris Antoniou. Concept and role forgetting
in ALC ontologies. In Proceedings of the Eighth International

Semantic Web Conference (ISWC-2009), pages 666–681, 2009.
[Wang et al., 2010] Zhe Wang, Kewen Wang, Rodney Topor, and

Jeff Z. Pan. Forgetting for knowledge bases in DL-Lite. Annals of

Mathematics and Artificial Intelligence, 58(1-2):117–151, 2010.
[Wang et al., 2014] Yisong Wang, Yan Zhang, Yi Zhou, and

Mingyi Zhang. Knowledge Forgetting in Answer Set Program-
ming. Journal of Artificial Intelligence Research, 50(1):31–70,
2014.

[Zhang and Foo, 2006] Yan Zhang and Norman Y. Foo. Solving
logic program conflict through strong and weak forgettings. Ar-

tificial Intelligence, 170(8-9):739–778, 2006.
[Zhang and Zhou, 2009] Yan Zhang and Yi Zhou. Knowledge

forgetting: Properties and applications. Artificial Intelligence,
173(16-17):1525–1537, 2009.

1073


