Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

Strategy Representation and Reasoning for Incomplete
Information Concurrent Games in the Situation Calculus

Liping Xiong and Yongmei Liu
Dept. of Computer Science
Sun Yat-sen University, Guangzhou 510006, China
xionglp3 @mail2.sysu.edu.cn, ymliu@mail.sysu.edu.cn

Abstract

Strategy representation and reasoning for incom-
plete information concurrent games has recently re-
ceived much attention in multi-agent system and Al
communities. However, most of the logical frame-
works are based on concrete game models, lack
the abilities to reason about strategies explicitly or
specify strategies procedurally, and ignore the is-
sue of coordination within a coalition. In this pa-
per, by a simple extension of a variant of multi-
agent epistemic situation calculus with a strategy
sort, we develop a general framework for strategy
representation and reasoning for incomplete infor-
mation concurrent games. Based on Golog, we pro-
pose a strategy programming language which can
be conveniently used to specify collective strategies
of coalitions at different granularities. We present a
formalization of joint abilities of coalitions under
commitments to strategy programs. Different kinds
of individual strategic abilities can be distinguished
in our framework. Both strategic abilities in ATL
and joint abilities of Ghaderi et al. can be consid-
ered as joint abilities under special programs in our
framework. We illustrate our work with a variant of
Levesque’s Squirrels World.

1 Introduction

Strategy representation and reasoning has recently received
much attention in multi-agent system and Al communities.
Many strategic logics have been established, and most of
them are built upon Alternating-time Temporal Logic (ATL)
[Alur ez al., 2002] where formula ((G))¢ expresses that coali-
tion G has a group strategy to ensure temporal goal ¢ holds
no matter what the other agents do.

Many extensions of ATL have been proposed, mainly along
two lines. On one hand, in reality, players often have incom-
plete information about the game states, e.g., in poker games.
Although they may have strategies to ensure a goal holds,
they may not know what these strategies are or how to exe-
cute strategies where the prescribed actions for indistinguish-
able states are not the same. Extensions of ATL are proposed
to deal with such games [van der Hoek and Wooldridge, 2003;
Jamroga and van der Hoek, 2004; Jamroga and Agotnes,

2007]. On the other hand, strategies are treated implicitly in
ATL, and extensions of ATL are proposed to reason about
strategies explicitly, that is, treat strategies as first-order ob-
jects [Walther et al., 2007, Mogavero et al., 2010].

However, the above extensions suffer from other limita-
tions. Firstly, the extensions are mainly propositional, hence
lacking expressiveness to compactly specify game structures
or indistinguishable states. Secondly, as pointed out by [Ra-
manujam and Simon, 2008; van Eijck, 2013], these exten-
sions treat strategies as abstract objects rather than consider-
ing the internal structure of strategies, that is, the combina-
tion of basic strategies to form complex ones. Thirdly, most
extensions ignore the coordination problem. As discussed in
[Ghaderi er al., 2007], a coalition may have many group
strategies to ensure a goal, yet a player may not know other
players’ choices, hence the coalition may end up with a group
strategy which may not ensure the goal.

Other than modal logics, another main family of logics
in Al is action formalisms. A prominent example of action
formalisms is the situation calculus [Reiter, 20011, which is
a first-order language with some second-order ingredients
suitable for reasoning about actions and change. Based on
the situation calculus, a logic programming language Golog
[Levesque et al., 1997] has been designed for high-level agent
control. There have been a few works studying strategic rea-
soning in the situation calculus [Schulte and Delgrande, 2004,
Farinelli et al., 2007; De Giacomo et al., 2010; Ghaderi et
al., 2007]. The first one deals with von Neumann Morgen-
stern games, while the second one focuses on Markov games,
using Golog to specify agent behavior. The third work stud-
ies complete information turn-based games, where ConGolog
[De Giacomo et al., 20001, a concurrent version of Golog, is
also used to specify game structures. However, these works
either focus on solution concepts like Nash equilibria rather
than ATL-like properties, or cannot reason about strategies
explicitly. Lastly, Ghaderi et al. study the coordination prob-
lem and present a formalization of joint ability of coalitions
based on the idea of iterated elimination of dominated strate-
gies [Osborne and Rubinstein, 1999]. Nonetheless, it is de-
sirable to have a more general account of joint ability of a
coalition under constraints, which maybe a rough collective
strategy which the coalition commits to, or a protocol that the
players must comply with, such as traffic rules.

In this paper, we propose a framework based on the sit-

1322

uation calculus for strategy representation and reasoning for
incomplete information concurrent games. We first propose a
simple extension with a strategy sort of a concurrent variant
of multi-agent epistemic situation calculus, which can be used
to compactly represent possibly infinite concurrent games,
and reason about strategies explicitly. Then we propose a
strategy programming language based on Golog, which can
be used to specify collective strategies of coalitions. We em-
phasize that in this paper, by the word “collective strategy”,
we mean group strategy which is common knowledge of the
coalition. Next, we adapt the approach of Ghaderi et al. to
formalize joint ability of coalitions under commitments to
strategy programs. We illustrate our logical framework with
a variant of Levesque’s Squirrels World.

2 Preliminaries

In this section, we introduce the situation calculus and Golog.

The situation calculus [Reiter, 2001] is a many-sorted
first-order logic language (with some second-order elements)
specifically designed for representing dynamically chang-
ing worlds. There are three disjoint sorts: situation for sit-
uations, action for actions, and object for everything else.
In this language, the constant Sy is used to denote the ini-
tial situation; the binary function do(a,s) is used to de-
note the successor situation of s resulting from perform-
ing action a, and do([ay, ag, ..., ag], s) is used as a short-
hand for do(ay, . ..,do(az,do(a1,s))); the binary predicate
Poss(a, s) means that action a is possible in situation s. Ac-
tions can be parameterized, e.g., pick(r, x) represents robot
r picking up object x. There are relational and functional
fluents whose values vary from situation to situation. These
fluents are denoted by symbols that take a situation term
as their last argument. There are also situation-independent
predicates and functions. Finally, there is a binary predicate
C on situations: s C s’ means that s is a proper subhistory of
s’. Weuse s C s’ as ashorthand for s C s'Vs = s’, and we let
s < s’ abbreviate for s C s’ A VaVs*(s C do(a,s*) C s’ D
poss(a, s*)), meaning that s is a subhistory of s’ and every
action on the way from s to s’ is possible. We say that a situa-
tion s is executable if it is possible to perform the actions in s
one by one: Exec(s) = Va, s'.do(a,s’) C s D Poss(a, s').

In this language, an application domain is specified by a
basic action theory (BAT) which describes how the world
changes as the result of the available actions. Each BAT D
consists of the following five disjoint parts:

1.
2.

3, the foundational axioms of the situation calculus;

Dgyp, a precondition axiom for each action specifying
when the action can be legally performed;

Dss, asuccessor state axiom (SSA) for each fluent which
describes how fluent values change between situations;

4.
5.

Liu and Levesque [2014] propose a multi-agent exten-
sion of the situation calculus. They use a special fluent
B(i, s, s), which means that agent ¢ considers situation s’
accessible from situation s, and introduce a special predicate

Duna» unique name axioms for actions;

Ds,, axioms describing the initial situation Sp.

1323

A(i,ad,a, s), meaning that in situation s, agent ¢ considers
action a’ as a possible alternative of action a. The following
is their successor state axiom for the B fluent:

B(i,s",do(a, s)) = 3s*Ja*.B(i,s*,5) A A(i,a*, a,s)

A (Poss(a, s) D Poss(a*,s*)) A s’ = do(a*, s").
Intuitively, for agent 4, situation s’ is accessible after action
a is performed in situation s iff it is the result of doing some
alternative a* of a in some s* accessible from s, and exe-
cutability of a in s implies that of a* in s*. Then beliefs are

defined as follows. Let ¢(s) be a formula with a single situa-
tion variable s.

e Agent i believes ¢:
Bel(i, ¢(now), s) = Vs .B(i,s',s) D ¢(s).
e Agent ¢ truly believes ¢:
T Bel(i, p(now), s) = ¢(s) A Bel(i, p(now),).

Based on the situation calculus, Golog [Levesque erf al.,
1997] has been proposed to represent complex actions ob-
tained by the combinations of primitive actions. Golog pro-
grams are defined by the following constructs:

1. «, primitive action;
d1; 02, action sequence;
w7, test;

01 | 62, nondeterministic choice of actions;

ok wn

mz.d, nondeterministic choice of arguments;
6.

Conditionals and loops are defined as abbreviations. The for-
mal semantics of Golog is usually specified by an abbrevi-
ation Do(d, s,s’), which intuitively means that executing &
brings us from situation s to s’. Another form of semantics
for Golog is the transition semantics, which is based on the
important concept of a configuration, denoted as a pair (6, o),
where ¢ is a program (that remains to be executed) and o a sit-
uation (of actions that have been performed). As presented in
[De Giacomo et al., 2000], the transition semantics for Golog
programs is defined by two predicates Trans(d, s,d’, s") and
Final (6, s).

4*, nondeterministic iteration.

3 A concurrent epistemic situation calculus

In this section, we present a concurrent epistemic situation
calculus with a strategy sort, which can be used to compactly
represent incomplete information games where a fixed finite
set of agents act simultaneously and instantly at each game
step, and to reason about strategies explicitly.

We fix a set of agents AG = {1,...,n}; we introduce an
agent sort and n agent constants, for which unique names
and domain closure hold. We introduce two additional sorts:
an action profile sort and a second-order strategy sort. Intu-
itively, an action profile is an n-ary vector of actions, one ac-
tion for each agent. A strategy is a function from situations
to actions. Let G C AG, a group strategy of coalition G is
a function from G to strategies. A strategy profile is a group

strategy of AG. We use variables d, d', . . . for action profiles,
f, f', ... for strategies, fa, fL, ... for group strategies of G,
and G to represent AG\G. We treat f the same as the set of
variables {f; | i € G}. When G is a singleton {i}, we simply
write 1.

We introduce a function joint(ay,...,a,) which maps
n actions into an action profile, and n projection functions
pri(d), 1 <14 < n, which maps an action profile into its -
th component. For simplicity, we write joint(ay,...,a,) as
(ay,...,an), and write pr;(d) as d;. Situations are now se-
quences of action profiles; so the first argument of the func-
tion do and the predicate Poss is of the action profile sort.

The set X of foundational axioms for situations is the same
as before except that we replace each action variable with an
action profile variable. We also add to X the following axioms
concerning action profiles:

e Vd3ay,...,an.d="{ay,...,a,);
o (a1,...,any=(a},...,al)Dar =aj A...Na, = a;
o pri({ay,...,an)) =a;i=1,...,n.

Reiter [2001] presents an account of true concurrency
where a concurrent action is modeled as a possibly infinite set
of simple actions. Our account of concurrent actions as action
profiles can be viewed as a special case of Reiter’s account.

To specify the precondition axioms for action profiles,
we introduce n predicates Poss;(a, s), meaning that it is
possible for agent ¢ to perform action a in situation s.
In general, the following holds: Poss({a1,...,an),s) D
Ni_, Poss;(a;, s). However, the converse does not neces-
sarily hold: two simple actions may each be possible, their
preconditions may be jointly consistent, yet intuitively they
should not be concurrently possible. This is the precondition
interaction problem as discussed in [Reiter, 2001].

To model turn-based games, we introduce an action wast,
and n fluents turn;(s), meaning that it is agent ¢’s turn to
make a move. We have Poss;(wait, s) = —turn,(s).

To model agents’ observability about action profiles, we
introduce a special predicate A’(i, j,a’,a, s), meaning that
when agent j performs action a in situation s, agent ¢ consid-
ers it possible that agent j does action a’. In general, we let
A(i,d' d, s) = Nj_y A'(4, 5, dj, dj,).

Let f¢ be a group strategy of coalition G. The abbreviation
s Cy,, s’ is used to represent the formula

s C ' AVs"Vd[s T do(d,s") C s' D N\;cqdi = fi(s")].

Intuitively, this means that s is a subhistory of s’, and on the
way from s to s’, each agent 7 in G performs actions accord-
ing to strategy f;. Further, we introduce the abbreviation:

§<p, 8 =sCys, s Ns<s.

Let ¢(faq, s) be asituation calculus formula. We introduce
the following abbreviations, where we use f,.(s) to repre-
sent the action profile at situation s, i.e., {f1(s),..., fn(s)).

o Next ¢: O¢ = ¢(fAGa do(fAG(s)’ 5))’
e Eventually ¢: 0¢ =3s'.s Ty, ' Ad(fac,s).

1324

(-1,1) (1,1)
X Squ.2
(0,0)
B (1,1)
Squ.1l X

Figure 1: The Squirrels World

We say that a strategy f is an executable strategy of agent
1, if in any situation, ¢ knows the action required by f and its
executability. Formally, we have:

EX (i, f)=Vs3a.T Bel(i, f(now) = aAPoss;(a,now), s).

For a coalition G, we let EX (G, f&) = N\;cq EX (4, fi). In
fact, the notion of executable strategy coincides with that of
uniform strategy in the literature, say [Jamroga and van der
Hoek, 2004]: a strategy f is uniform if for any situations s
and s’ indistinguishable for agent ¢, the values of f at s and
s’ are the same. Formally, we have:

Vs, s .B(i,s',s) D f(s) = f(s') A

Possi(f(s),s) A Poss;(f(s'),s).

In the following, we illustrate the use of our situation cal-

culus language with a variant of Levesque’s Squirrels World.

Example 1 Squirrels and acorns live in a plane, and there is a
fixed set of squirrels acting simultaneously at any time. Each
squirrel and acorn is located at a cell (p, q), where p, q € Z,
the set of integers, and each cell can contain any number of
acorns and squirrels.

Each squirrel can do actions below: pick up an acorn if he
is located at the same cell as this acorn and does not hold any
acorn in the current situation; drop an acorn that he is hold-
ing; move up, down, right and left a cell; also stay at the
current location and do nothing (n2l). A squirrel can observe
the action of another squirrel within a distance of one, but if
the action is a sensing action, the result is not observable.

There are only two squirrels 1 and 2. As shown in Figure
1, initially, squirrel 1 is located at the cell (—1, —1) and 2 is
located at the cell (1, 1), and any squirrel knows the location
of the other one; there is only one acorn in each of the cell
(—1,1) and (1, —1), and in other cells there are no acorns.

We use four ordinary fluents: in situation s, squirrel
i is holding an acorn (hold(i,s)); squirrel i is at cell
(p,q) (cell(i,p,q,s)); there are n acorns at cell (p,q)
(acorn(p, g, n, s)); the situation s will be achieved after m
steps from the initial situation Sy (step(s) = m).

For illustration purpose, we only present some axioms of
the BAT of this game, denoted by D,,:

T, 1=1,2;

Poss;(pick, s) = —hold(i, s) A Ip, q,n.cell(i, p,q, s)
Aacorn(p,q,n,s) An>0, i=12;

Poss({pick, pick),s) = /\?ZlPossi(pick, S)A

~3p, q. \i_ycell(i, p, g, s) A acorn(p, g, 1, 5);
hold(i, do(d, s)) = d; = pick V hold(i, s)Ad; #drop

Poss;(up, s)

A'(i,j,a,right,s) = Ip,p’, q,q .cell(i, p, q, s)A
cell(,p',¢'s8) A (Ip—p' | +]a—q'|< 1Da = right)
Alp=p'|+lg—d'[> 1Da = nil);

TBel(2,cell(1,—1,-1),So) AT Bel(1,cell(2,1,1),Sy);

Vp, g.acorn(p,q,n,So) An > 0=

p=—1Ag=1Vp=1Ag=—-1;

acorn(—1,1,1,8y) A acorn(1,—1,1,Sp). []

Finally, we show that our situation calculus can be used to
reason about games described by GDL-II [2014]. For the pur-
pose of General Game Playing, GDL (Game Description Lan-
guage) has been developed as a high-level language for the
specification of complete information games. GDL is based
on the standard syntax and semantics of logic programming,
characterized by a number of special keywords. GDL-II is an
extension of GDL for describing imperfect/incomplete infor-
mation games. It has two extra keywords: sees, which speci-
fies the information that each player gets, and random, which
denotes a special player who chooses moves randomly.

Schiffel and Thielscher present a full embedding of GDL-
IT into a multi-agent epistemic situation calculus, and for-
mally prove that this provides a sound and complete reason-
ing method for players’ knowledge about game states as well
as about the knowledge of the other players. In fact, the sit-
uation calculus they use is essentially our extended situation
calculus without the strategy sort. If we let A(4,d, d’, s)

d; = d; NYP.Sees(i, P,d, s) = Sees(i, P,d’,s'),

which intuitively means that agent ¢ cannot distinguish be-
tween two joint actions d and d’ if their own actions are the
same and the information 4 gets about d is the same as that
about d’, then their SSA for the knowledge fluent K coin-
cides with the SSA for our B fluent. Therefore, using their
embedding, we get that GDL-II can be embedded into the
concurrent epistemic situation calculus.

4 Individual strategic ability

In this section, we show that in our situation calculus, we
can distinguish between different kinds of individual strategic
abilities, including that studied by [Lespérance et al., 2000].

As discussed in the literature, say [Jamroga and Agotnes,
2007], by considering whether the strategies of agent 4 or
other agents are executable, and whether agent ¢ knows which
strategy to ensure his goal, there are different notions of
strategic abilities of agent . We can formalize these different
abilities in our situation calculus as follows. Let ¢(faq, s) be
a situation calculus formula which serves as the goal for agent
i. Note that by our notation, f; represents a group strategy of
agents other than i.

(1) Can1(¢a 8) = EleBel(Zvvfid)(fla ff? TLO’LU), S);
(2) Cana(¢,s) = Bel(i, 3f;V f;.¢(fi, f3, now), s);
(3) Canz(¢,s) =

ElfiEX(la fL) A BGZ(’L, vfng(fu f;v TLOU)), S)’
4) Cany(p,s) =

Bel(iv ElszX(Za fz) A vfng(gla 935 now)v 5)

1325

In (1), ¢ knows which strategy to ensure ¢. In (2), ¢ knows
there exists a strategy to ensure ¢. But in both (1) and (2),
the strategy of agent ¢ may not be executable. In (3), agent ¢
knows which strategy to ensure the goal ¢ and this strategy
is executable for him, but other agents’ strategies may not be
executable; in this case, agent ¢ considers the worst case. In
(4), © knows there exists an executable strategy to ensure ¢,
but does not know which strategy.

Example 1 Cont’d. We first give an abbreviation meaning that
the distance between agents 1 and 2 in s is not more than k:
dist(1,2,s) < k=3p,q,p’,q .cell(1,p,q,5) N

cell(2,p',q',s) Np—p'| + g — ¢'| < k.
Also, we let S; = do({right,left),Sp). Since in Sy, any
agent cannot see the action of the other one, in Sp, he no
longer knows the location of the other one.

1. Let ¢1 = (Odist(1,2) < 4. Then Dyq = Cansz(¢1,S1).
This is because when agent 1 moves up, no matter what
action agent 2 does, agent 1 believes that their distance
is no more than 4.

. Let g2 = OFp,q,p', ¢ -cell(2,p,q) A cell(1,p',q") A
lg <3A=(p=2Aqg=2) D [p—p/[<2A|qg—q| <2].
Then Dsq ’: Canl(qb% Sl) AN —|Can3(¢2, Sl) AN
Cang(¢a, S1). In Sy, after agent 1 does the same action
as agent 2 does in Sy, he believes that ¢ holds. Thus
we have Clani(¢2, S1). However, since agent 1 cannot
observe agent 2’s action in Sy, this strategy is not ex-
ecutable. In fact, we cannot find an executable strategy
of agent 1 which ensures ¢2, hence Cang(¢2, S1) does
not hold. On the other hand, for each possible action of
agent 2 in Sy, when agent 1 does the same action in 51,
¢2 holds; thus we have Cang(¢2, S1). [

Now we show that we can represent in our framework
the notion of ability Can(y, s) defined by Lespérance et al.
(2000) in the single-agent case, where ¢(s) is a formula about
situation s:

e OnPath(f,s,s) =
s < 8 AVa¥s*(s C do(a,s*) C s’ D f(s*) = a);
This is the same as our s <y s’.
o CanGet(yp, f,s)=3s'(OnPath(f,s,s")ABel(p, s)A
Vs*[s C s* C ¢ D JaBel(f(now) = a, s%)]);
Here the second line requires that g be uniform on the
way from s to 5.

o Can(yp,s) = 3f.Bel(CanGet(yp, f,now), s).

Recall that we use X to denote the set of foundational ax-
ioms for our extended situation calculus. Then we get

Theorem 1 ¥ | Can(y, s) = Cang(OBel(p, now), s).

5 A strategy programming language: SGolog

In this section, we propose a strategy programming language
SGolog for specifying collective strategies of coalitions.

We first consider a single-step fragment (SSF) of Golog,
which is used to specify an agent’s possible choice to perform
in one step. A situation-suppressed formula ¢ is a situation
calculus formula with all situation arguments suppressed, and
[s] denotes the formula obtained from ¢ by taking s as the
situation arguments of all fluents mentioned in ¢.

Definition 1 SSF programs are defined inductively as fol-
lows: 6 == (p?a) | (61]62) | (wz.0(x)), where ¢ is a
situation-suppressed formula, and « is an action term.

The formal semantics of SSF programs is defined by an
abbreviation Does(d, a, s), which intuitively means action a
forms a legal execution of 4 in situation s.

Definition 2 Does(9, a, s) is defined inductively as:
e Does(p?;aya,8) = p[s] Na = a;
e Does(01|d2,a,8) = Does(d1,a,s) V Does(da,a,s);
e Does(mz.d(z),a,s) = Jz.Does(§(x), a,).

We use T (resp. L) to represent true (resp. false). For
convenience, we let * be an extra SSF program, which
intuitively means taking an arbitrary action, and define
Does(x, s,a) = T.Next, we define SGolog programs, which
can be used to represent the collective behavior/strategy of a
coalition or the protocol of a multi-agent game. A primitive
SGolog program is an n-ary vector of SSF programs. We use
* to denote the n-ary vector of ’s. For a primitive program 6,
we use 6; to denote its i-th component.

Definition 3 SGolog programs are defined as follows:
p=019? [pr;p2 | pripa | map(z) | p* |

while pdo p | p1VpaV..Vom | prAp2 A o D P,
where 6 is a primitive program, and ¢ is a situation sup-
pressed formula.

A conditional [if ¢ then p; else ps] is defined as ab-
breviation for the program [p7?;p1 | —@?; p2]. The priori-
tized disjunction and conjunction operators V and A are in-
spired by the work of Zhang and Thielscher (2015). Intu-
itively, p1Vp2V...Vp,, means that if the program p; can be
executed in situation s, then only p; is executed and the other
programs are discarded, else if p» can be executed, then exe-
cute po, ..., i.e., p; has higher priority than p; ;. The program
p1A pa A ... A p,, means that if all of pq, ..., and p,, can
be applied together in s, then all of them are applied, else we
discard p,,, and consider whether the remaining p;’s can be
applied together.

The formal semantics of SGolog programs is defined by
two predicates: Trans(p, s, p’, s'), which holds if executing
one step of program p in situation s may lead to situation
s’ with p’ remaining to be executed; and Final(p, s), which
holds if program p may legally terminate in situation s. The
two predicates are inductively defined as follows.

1. Trans(6,s,p’,s') = 3d.Poss(d, s) A s =do(d,s) A
Ay Does(@z,dl,s)} ANp =T7

2. Trans(p?,s,p',s') = 1,
(

3. Trans(p1; p2,s,p',8') =
(304 Trans(py. s, ph,s') A p = phi p2) V
Final(p1,s) A Trans(pa, s, p',s');
TT(ITLS(pl | p2757p/75/) =
Trans(p1,s,p’,s")V Trans(ps,s,p',s');

5. Trans(rz.p, s, p',s') = Jx.Trans(p, s, p',s');
6. Trans(p*,s,p',s') =

3p" Trans(p, s, p”,s") N p" = p"; p™;

1326

7. Trans(while p do p,s,p’,s") = 3p".
@[s] A Trans(p, s, p”,s') A p’ = p"; (while p do p);
8. Trans(p1V...Vpm, s,p',s')=Trans(p1,s,p’,s') V
{30}, 8" Trans(p1, s, py,8") A
Trans(paV...V pm, s, p', 8}
9. Trans(pr A ... A pm,S,p,8) =
(Ap=y Iog-Trans(pr, s, i, YN = ph & .. & p) V
{=IAK=1 3oy, Trans(p, s, p, ") A
Tmns(pl A i A Pr—1,8,0",)}
1. Final(0,s) = L
2. Final(?,s) = [s};
3. Final(p1; p2,s) = Final(p1, s) A Final(pz, s);
4. Final(p1 | p2,) Final(p1,s) V Final(p2, s);
5. Final(rx.p, s) = Jz.Final(p, s);
6. Final(p*,s) =
7. Final(whllegodo p,s,p',8") =

©ls] A Final(p, s) V

8. Final(p1V...Vpp),s) =

9. Final(p1 A ... A pm,s) =

Example 1 Cont’d.

o Let py = ((up, *); (up, *); (pick, #))V ((right, =);
(mght x); (pick, *)). Then p; is a strategy for agent 1
in situation Sy such that he prefers the acorn in position
(—1,1).

o Let py = ((up | left,); (up,) A ((up | right, «);
(down,)). Since this is a prioritized conjunction, when
p2 is performed in Sy, agent 1 should move up twice.

—p[s];
Ny Final(pg, s);
Final(p1,s).

e Let p3 = (up, down); (right,left). Then ps is a group
strategy for the two agents in situation Sy to achieve the
goal of meeting at (0, 0). [|

We now formally define the notion that a group strategy

satisfies an SGolog program. First, we introduce an abbrevia-
tion Saty(fg, p, s), which intuitively means that group strat-
egy fe complies with program p in one step from s. It is in-
ductively defined as follows:

1. Sati(fe,0,5)=\;cq Does(0s, fi(s),s);
2. Sati(fe,e?,8)=1;
3. (forp13p2,8) =
Sat1(fe, p1,8) V Final(p1,s) A Sat1(fa, p2, $);
Sat1(fa,p1 | p2,5) =
Sati(fa, p1,8) V Sat1(fa, p2,$);
Satl(fc,wx p,8) = Jx.Sat1(fs, p,s);
Sati(fa, p*,s)=Sat1(fa,p,s);
Sat(fs whllecpdo p,8) =
Sat1(fa, p1V...Vpm,8) =

3, ' Trans(p1,s,p’,s") A Sat1(fs, p1,8) V
Vo', s'=Trans(p1,s,p’,s") A Sat1(fa, p2V...Vpm, S);
. Sat1(fey,p1 D o A Py S) =
3¢, d. [Ny 3p,, Trans(pk, s, pi,s') A 8" = do(d, s) A
da = fe(s)] V=3 Nje; 3pi.Trans(pk, s, pi,, s")] A
Satl(fc,pl AL A pm_l,s)

©[s] A Sat(fe, p, s);

® N

As for Saty (fe, p, s), we only consider one step from situ-
ation s. To represent a collective strategy of a coalition by an
SGolog program, we specify how a group strategy completely
complies with this program from a situation.

Definition 4 Sat(fc, p, s) is defined as:
Vs*.s <p, s*ANs#s* D3 s Transt(p,s,p',s") A
(s* =5V Final(p',s') Ns' T s*).

Here Trans™ is the transitive closure of Trans. Intu-
itively, Sat(fe,p,s) means that any situation s’ reachable
from s following f is either a situation resulting from the
execution of p, or an situation following a final situation of p.

Obviously, we can prove that ¥ = Sat(fe,p,s) D
Sat1(fe, p, s), that is, if f; complies with p from s on, then
it must comply with p in one step. In fact, any non-final con-
figuration (p’, s") which comes from configuration (p, s) ac-
cording to f will conform with the remaining p’ in s at the
next situation. That is,

Proposition 1 X |= Sat(fs,p,s) DVs',p'.s <p, s’ A
Trans™(p, s, p',s')A=Final(p',s") D Sat1(fs,p',s").

Therefore, we can say that program p completely deter-
mines a collective strategy f; from a situation s, if we have
Sat(fa,p,s) NYfL, s Sat(fl,p,s)Ns <z, s" D fals) =
fL(s"). According to the above results, we can also have:

Proposition 2
o X E Sat(fa,p?;p,8) = p[s] A Sat(fa,p, s).

o ¥ | [Aicg Possi(fi(s),s)] D Sat(fe,p,s), where
p = while T do *.

6 Joint ability under an SGolog program

In this section, we adapt the approach of [Ghaderi et al., 2007]
to formalize joint ability of coalitions under commitments to
strategy programs.

We first define the preferred strategies of agent ¢ under an
SGolog program p in situation s by the approach of iterated
elimination of dominated strategies. Given an agent ¢, a group
G, a strategy f;, a program p, a situation s, and a goal ¢,

Pref(ia Ga fi7p7 st 5) = Vn.Keep(z', Ga n, fia Py d)a 5)'

So agent ¢ prefers strategy f; for goal ¢ under the program p
if it is kept for all levels n, where n is a natural number.

There are two cases for the definition of Keep:

(1) i ¢ G- for any n,

Keep(i’ G> n, fia P ¢> 8) = EX(Za fl) A Sat(fia Ps 5)
So for agents outside the coalition, we keep those executable
strategies satisfying p.

(2) i € G: Keep is inductively defined as follows:
Keep(i7 G7 07 fi7 P d)y 5) = EX(Za fL) A Sat(flv 12 5)7
Keep(i, G, n—+ 17 fia P (ba 3) = Keep(iv Gv n, fiv P d)v 8) A
ﬁqu{'[l(eep(i? Ga n, fz/7 P, ¢7 S)AGTE(Z7 Ga n, fz/7 fi7 12 ¢7 S)

A _‘GTE(Za Ga n, f’ia fi/apv Qb’ S)}
For agent ¢, the strategies kept at level n + 1 are those kept at
level n for which there is not a better one at level n.
GTE is defined as follows:
GTE(i, G,n, fi> fl’lapa d)?) =
Bel(iv Vf{ /\]752 Keep(ja G7 Tl, f]a pa ¢a now) /\

(b(f% il7 now) > ¢(f€7 fiynow), S)

Strategy f; is as good as f/ for agent ¢ to achieve the goal ¢
under p if 7 believes that whenever f] works with strategies
kept by the rest of the agents so does f;.

If we omit p, then Pref(i, AG, f;, ¢, s) is exactly what is
defined by Ghaderi et al. If i ¢ G, then we have
Pref(i, G7 fivpa S)EEX(Za fi)/\SGt(fi7p7 S)

We now define the joint ability of a coalition to achieve a
goal under commitments to an SGolog program.

Definition 5 The joint ability of coalition G to achieve goal
¢ under SGolog program p in situation s is defined as:
SA(G,p,¢,8) = Afc {EX(G, fo) A

vf?[EX(Gv f?) A Sat(f07 f57 P, S) D ¢(fGa f@a 5)}} A
vaG- /\;{7’=1P’l"€f(7;7 G7 f’i7 P» ¢7 S)Asa/t(fAGu P7 8) D qb(fAGa S)

Intuitively, the meaning of SA(G,p,¢,s) is that first,
coalition G has a group strategy that complies with the pro-
gram, such that no matter which strategies complying with p
other agents choose, ¢ holds under the strategy profile; sec-
ond, all combinations of agents’ preferred strategies which
satisfy p can achieve ¢.

The definition of joint ability depends on the infinite
process of iterated elimination. However, for agents with
bounded rationality, we can define the concept of bounded
joint ability as follows: For n > 0, if in the above defini-
tionof SA(G, p, ¢, s), wereplace Pref (i, G, fi, p, ¢, s) with
Keep(i,G,n, fi, p, ¢, s), we get the definition of the n-th
level joint ability, which we denote by SA,, (G, p, ¢, s).

Now we give some properties about SA(G, p, ¢, s):

Proposition3 1. If p = while T do 0, then for any p/,
Y ESA(G, p;p', ¢, 8) = SA(G, p, ¢, 5);

2. X = SAG, p,OT,s) = 3fe. EX(G, fo).

In fact, those specifications of abilities defined by Ghaderi
et al. (2007) and in ATL can be viewed as joint abilities under
some special SGolog programs. First, we formalize them in
our framework with minor differences:

o JCan(¢,s) =3[V fa[EX(AG, fac) DOB(facss)]
A VfAG[/\ieAG’ Pref(i, AGa fi> ¢7 5) D) <>¢(fAG7 S)L

o ((G)p = HfG.EX(G,&) A

V]%.EX(G, fé)) ¢(fAG7 5)
Theorem 2 [. Let p = while T do %, then

Y | JCan(¢, s) = SA(AG, p, 0o, s).

2. Given fg, there exists a corresponding SGolog program
p' : while T do 0, where 0, = f;(now) for eachi € G
and 0; = * fori & G. We have

S k= ((G)¢ = 3fo-SAG, 1, 6, 5).

Intuitively, the above two cases are two extremes of
SGolog programs. For the former, no agent has any knowl-
edge about the other agents’ strategies. For the latter, the
group strategy f¢ is the common knowledge of group G.

From our definition of joint ability, we can see that SGolog
programs serve as the common knowledge of all agents. Thus
we can use SGolog programs to specify rough collective
strategies, protocols, conventions, or social laws.

Example 1 Cont’d. Suppose the goal of the two squirrels
is that each squirrel will hold an acorn in at most 4 steps

1327

carl

Move(2)

L

move(4)

2

car2

Figure 2: The Traffic Rule Example

from Sp. This can be represented with ¢, : O(step <
4 A hold(1) A hold(2)). We now consider whether the two
squirrels have joint abilities to achieve the goal under differ-
ent SGolog programs:

o Let py while T do (,x). Then Dy, F
SA({1,2}, p1, ¢sq, So). Under this program, for squir-
rel 1 (resp. 2), any of his preferred strategies should
move up (resp. down) or right (resp. left) in the first step.
However, if squirrel 1 moves up and squirrel 2 moves left
in the first step, no matter how they will act in the later
steps, their goal cannot be achieved.

Let 0, = (right,left), O3 = (up, down), and p be 6;
or 0. Then Dy, = SA({L, 2}, p2, ¢sq, So). We explain
using the example of ;. Under this program, the pre-
ferred strategy for squirrel 1 must be right; right; pick;
and for squirrel 2 it must be left; left; pick. Therefore,
any combination of the preferred strategies of the two
squirrels can ensure the goal.

Let p3 = 61V0,. Then Dsq ': SA({I, 2}, 03, ¢sq, So)
Since 6, can be executed in Sy, it will be executed due
to higher priority.

Let ps = (x,down); (x,down). Then Dy, =

SAI({]-v 2}, P ¢sqa SO) A _'SAO({]-v 2}7 P d)sqv SO) For
goal ¢, initially, agent 1 keeps all those executable
strategies, and agent 2 keeps those executable strate-
gies whose first two steps both are down. When agent
1 moves right in the first step, the two agents cannot
achieve their goal. However, at level 1, agent 1 should
consider those kept strategies of agent 2 at level O,
then he only keeps those strategies whose first 3 steps
are up, up, pick. Then any combination of the preferred
strategies of the two agents can achieve the goal.

Example 2 We now consider a traffic rule example. As
shown in Figure 2, there are two cars (1 and 2) driving in op-
posite directions on a road in which there are four lanes num-
bered as 1, 2, 3, 4. There is only one action move(k) which is
always possible, here k is a lane. For simplicity, we assume
the velocities of the two cars are the same, that is, when a
car executes move(k), then it moves one unit forward. For
i = 1,2, there is a fluent loc;(m, k, s), which means car ¢ is
on lane k with coordinate m in situation s. Two cars collide
when they are at the same location. In this game, we assume
that neither car can see the other car (for instance, when two
cars are driving in the night with broken lights).

1328

We have the following axioms:
Poss;(move(k),s) = T,i=1,2;
locy(m, k,do(d, s)) =
k' docy (m — 1, k', s) A dy = move(k);
loca(m, k,do(d, s)) =
3k loca(m + 1,K', s) A d2 = move(k);
Jk.loc1 (0, k, So) A k' loca(n, k', So).

We denote the BAT of this game as Dy,., and the goal formula
is ¢ = =03Im, k.locy (m, k) A loca(m, k), meaning that two
cars will never collide.

Let p while T do *. Under p, for any agent
i, any strategy is a preferred strategy. However, if both
agents choose to always perform move(1), they must collide.
Thus Dy, ¥ SA({1,2}, p, ¢, So). However, consider p’ =
while T do (move(1) | move(2), move(3) | move(4)). In-
tuitively, p’ requires that both agents should always drive on
the right. It is easy to see that under p’, the two cars have joint
ability to avoid collision. Thus Dy, = SA({1,2}, 0, ¢, So).

7 Conclusions

In this paper, by a simple extension of a variant of multi-agent
epistemic situation calculus with a strategy sort, we have de-
veloped a general framework for strategy representation and
reasoning for incomplete information concurrent games. The
framework can be used to compactly represent the structure
of such games, distinguish between different kinds of indi-
vidual strategic abilities, specify collective strategies of coali-
tions, and reason about joint abilities of coalitions under com-
mitments to collective strategy specifications. Both strategic
abilities in ATL and joint abilities of Ghaderi et al. can be
considered as joint abilities under special strategy specifica-
tions in our framework.

In our current framework, a strategy of an agent is a func-
tion from situations to actions, thus we have made the as-
sumption that all agents have perfect recall. But in reality,
agents may have limited memory, and are even memory-free.
In the future, we would like to extend our framework to ac-
commodate bounded-memory agents. Another future work is
to identify decidable fragments of our framework based on
existing work, e.g., [De Giacomo et al., 2013].

Acknowledgments

We thank the anonymous reviewers for helpful comments.
This work received support from the Natural Science Foun-
dation of China under Grant Nos. 61572535 and 61463044.

References

[Alur et al., 2002] Rajeev Alur, Thomas A. Henzinger, and
Orna Kupferman. Alternating-time temporal logic. J.
ACM, 49(5):672-713, 2002.

[De Giacomo et al., 2000] Giuseppe De Giacomo, Yves
Lespérance, and Hector J. Levesque. Congolog, a con-
current programming language based on the situation cal-
culus. Artif. Intell., 121(1-2):109-169, 2000.

[De Giacomo et al., 2010] Giuseppe De Giacomo, Yves
Lespérance, and Adrian R. Pearce. Situation calculus
based programs for representing and reasoning about game
structures. In Proc. of KR’10, pages 445455, 2010.

[De Giacomo et al., 2013] Giuseppe De Giacomo, Yves
Lespérance, and Fabio Patrizi. Bounded epistemic situ-
ation calculus theories. In Proc. of IJCAI’13, pages 846—
853, 2013.

[Farinelli et al., 2007] Alessandro Farinelli, Alberto Finzi,
and Thomas Lukasiewicz. Team programming in golog
under partial observability. In Proc. of IJCAI’07, pages
2097-2102, 2007.

[Ghaderi et al., 2007] Hojjat Ghaderi, Hector J. Levesque,
and Yves Lespérance. A logical theory of coordination and
joint ability. In Proc. of AAAI’0O7, pages 421-426, 2007.

[Jamroga and Agotnes, 2007] Wojciech ~ Jamroga and
Thomas Agotnes. Constructive knowledge: what agents
can achieve under imperfect information. Journal of
Applied Non-Classical Logics, 17(4):423-475, 2007.

[Jamroga and van der Hoek, 2004] Wojciech Jamroga and
Wiebe van der Hoek. Agents that know how to play. Fun-
damenta Informaticae, 63(2-3):185-219, 2004.

[Lespérance et al., 2000] Yves Lespérance, Hector J.
Levesque, Fangzhen Lin, and Richard B. Scherl. Ability
and knowing how in the situation calculus. Studia Logica,
66(1):165-186, 2000.

[Levesque et al., 1997] Hector J. Levesque, Raymond Re-
iter, Yves Lespérance, Fangzhen Lin, and Richard B.
Scherl. Golog: A logic programming language for dy-
namic domains. J. Log. Program., 31(1-3):59-83, 1997.

[Liu and Levesque, 2014] Yongmei Liu and Hector J.
Levesque. Incorporating action models into the situation
calculus. In Alexandru Baltag and Sonja Smets, editors,
Johan van Benthem on Logic and Information Dynamics,
Outstanding Contributions to Logic, volume 5, chapter 21,
pages 569-590. Springer, 2014.

[Mogavero et al., 2010] Fabio Mogavero, Aniello Murano,
and Moshe Y. Vardi. Reasoning about strategies. In Proc.
of FSTTCS’10, pages 133-144, 2010.

[Osborne and Rubinstein, 1999] Martin J. Osborne and Ariel
Rubinstein. A Course in Game Theory. The MIT Press,
1999.

[Ramanujam and Simon, 2008] Ramaswamy Ramanujam
and Sunil Easaw Simon. Dynamic logic on games with
structured strategies. In Proc. of KR’08, pages 49-58,
2008.

[Reiter, 2001] Raymond Reiter. Knowledge in Action: Logi-
cal Foundations for Specifying and Implementing Dynam-
ical Systems. The MIT Press, 2001.

[Schiffel and Thielscher, 2014] Stephan Schiffel and
Michael Thielscher. Representing and reasoning about
the rules of general games with imperfect information. J.
Artif. Intell. Res. (JAIR), 49:171-206, 2014.

1329

[Schulte and Delgrande, 2004] Oliver Schulte and James P.
Delgrande. = Representing von neumann-morgenstern
games in the situation calculus. Ann. Math. Artif. Intell.,
42(1-3):73-101, 2004.

[van der Hoek and Wooldridge, 2003] Wiebe van der Hoek
and Michael Wooldridge. Cooperation, knowledge, and
time: Alternating-time temporal epistemic logic and its ap-
plications. Studia Logica, 75(1):125-157, 2003.

[van Eijck, 2013] Jan van Eijck. PDL as a multi-agent strat-
egy logic. In Proc. of TARK 13, pages 206-215, 2013.

[Walther et al., 2007] Dirk Walther, Wiebe van der Hoek,
and Michael Wooldridge. Alternating-time temporal logic
with explicit strategies. In Proc. of TARK 07, pages 269—
278, 2007.

[Zhang and Thielscher, 2015] Dongmo Zhang and Michael
Thielscher. Representing and reasoning about game strate-
gies. J. Philosophical Logic, 44(2):203-236, 2015.

