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Abstract
In the past decade, multi-agent epistemic planning
has received much attention from both dynamic
logic and planning communities. Common knowl-
edge is an essential part of multi-agent modal
logics, and plays an important role in coordination
and interaction of multiple agents. However,
existing implementations of multi-agent epistemic
planning provide very limited support for common
knowledge, basically static propositional common
knowledge. Our work aims to extend an existing
multi-agent epistemic planning framework based
on higher-order belief change with the capability
to deal with common knowledge. We propose a
novel normal form for multi-agent KD45 logic
with common knowledge. We propose satisfi-
ability solving, revision and update algorithms
for this normal form. Based on our algorithms,
we implemented a multi-agent epistemic planner
with common knowledge called MEPC. Our plan-
ner successfully generated solutions for several
domains that demonstrate the typical usage of
common knowledge.

1 Introduction
Reasoning about knowledge and beliefs and their change
plays an important role in many intelligent tasks, since
actions may have preconditions involving agents’ knowledge
and beliefs, which may be changed by agents’ actions. In
some applications, even higher-order knowledge and beliefs,
i.e., knowledge and beliefs about other agents’ knowledge
and beliefs, turn out to be insufficient, and common knowl-
edge is needed. We say that φ is common knowledge of a
group of agents if everybody knows φ, everybody knows
everybody knows φ, and so on to infinity. For example,
common knowledge is needed for agreement and coordina-
tion. To illustrate, suppose that Alice and Bob are trying to
coordinate their actions. This involves the agents’ agreeing
on when to perform the actions, which we represent by φ. We
expect that if Alice and Bob agree on something, then each
of them knows that they have agreed on that. By induction,
Alice and Bob have common knowledge of φ. The common
knowledge modality adds a great deal of expressive power to

multi-agent modal logics. As a result, deciding satisfiability
becomes EXPTIME-complete [Halpern and Moses, 1992].

In the past decade, multi-agent epistemic planning has
received much attention from both dynamic logic and
planning communities. On the theory side, Bolander and
Andersen [2011] formalized multi-agent epistemic planning
(MEP) based on dynamic epistemic logic [Van Ditmarsch et
al., 2007], where both states and actions are represented as
Kripke models. Very recently, Huang et al. [2017] proposed
a general representation framework for MEP, where the
initial knowledge base (KB) and the goal, the preconditions
and effects of actions can be arbitrary multi-agent epistemic
formulas, progression of KBs wrt actions is achieved through
higher-order belief revision or update based on effects of
actions, and the solution is an action tree branching on
sensing results. On the implementation side, Kominis and
Geffner [2015] and Muise et al. [2015] solved restricted
versions of MEP problems by compiling them into classical
planning, and Huang et al. [2017] implemented a contingent
MEP planner based on AND/OR forward search. However,
the implementation of [Muise et al., 2015] does not support
common knowledge, and those of [Kominis and Geffner,
2015] and [Huang et al., 2017] provide very limited support
for common knowledge, basically static propositional com-
mon knowledge. To the best of our knowledge, LoTREC [del
Cerro et al., 2001], a theorem prover for S5, is the only im-
plementation capable of reasoning with common knowledge.

In this paper, we extend the MEP framework proposed by
Huang et al. to incorporate general common knowledge. To
support efficient reasoning in multi-agent KD45 logic, they
made use of a normal form called alternating cover disjunc-
tive formulas [Hales et al., 2012]. However, this normal form
cannot be directly generalized to support reasoning with
common knowledge. Thus we propose a novel normal form
for multi-agent KD45 with common knowledge. This normal
form makes use of a new common knowledge modality Caφ
which means that it is common knowledge that everybody
except agent a knows φ. We propose a novel algorithm for
checking satisfiability for this normal form. Also, we propose
revision and update algorithms for this normal form. The
essential idea is to change agents’ common knowledge before
changing agents’ knowledge, and carry the changed common
knowledge to change knowledge to ensure the consistency
between knowledge and common knowledge. Based on our
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reasoning, revision, and update algorithms, we implemented
a multi-agent epistemic planner called MEPC. Our planner
successfully generated solutions for several domains that
demonstrate the typical usage of common knowledge.

2 Preliminaries
In this section, we introduce the background work of our pa-
per, i.e., the multi-agent modal logic and the epistemic plan-
ning modeling framework proposed by Huang et al.

2.1 Multi-agent Modal Logic
We fix a finite set of atoms P and a finite set of agents A.

Definition 2.1. The languageLKC of multi-agent modal log-
ic with common knowledge is generated by the BNF:

φ ::= p | ¬φ1 | φ1 ∧ φ2 |Kaφ1 | Cφ1,

where p ∈ P , a ∈ A, φ1, φ2 ∈ LKC .

Intuitively, Kaφ means agent a knows φ, and Cφ means
all agents commonly know φ. We let Laφ and Dφ abbre-
viate for ¬Ka¬φ and ¬C¬φ, respectively. Intuitively, Laφ
means agent a thinks φ is possible, and Dφ means all agents
commonly think φ is possible.

We use φ and ψ to represent formulas, Φ and Ψ to rep-
resent sets of formulas, > and ⊥ to denote true and false,
respectively.

∨
Φ stands for the disjunction of members in

Φ, while LaΦ (resp. DΦ) stands for the conjunction of Laφ
(resp. Dφ) where φ ∈ Φ. The modal depth of a formula
φ ∈ LKC is the depth of nesting of modalities in φ.

Definition 2.2. A frame is a pair (W,R), where W is a non-
empty set of possible worlds; for each agent a ∈ A, Ra is a
binary relation on W , called the accessibility relation for a.

When wRaw′, we say w′ is an a-child of w. We say Ra is
serial if for any w ∈ W , there is a w′ ∈ W s.t. wRaw′; we
say Ra is transitive if wRau and uRav imply wRav; we say
Ra is Euclidean if wRau and wRav imply uRav. A KD45n
frame is a frame whose accessibility relations are serial, tran-
sitive and Euclidean.

Definition 2.3. A Kripke model is a triple M = (W,R, V ),
where (W,R) is a frame, and V : W → 2P is a valuation
map. A pointed Kripke model is a pair s = (M,w), where
M is a Kripke model and w is a world of M .

Definition 2.4. Let s = (M,w) be a Kripke model where
M = (W,R, V ). We interpret formulas in LKC inductively:

• M,w |= p iff p ∈ V (w);

• M,w |= ¬φ iff M,w 2 φ;

• M,w |= φ ∧ ψ iff M,w |= φ and M,w |= ψ;

• M,w |= Kaφ iff for all v s.t. wRav, M,v |= φ;

• M,w |= Cφ iff for all v s.t. wRAv, M,v |= φ, where
RA is the transitive closure of the union ofRa for a ∈ A.

Consider the context of KCn or KD45Cn . We say φ is sat-
isfiable if there is a Kripke model (M,w) s.t. M,w |= φ.
We say φ entails ψ, written φ |= ψ, if for any Kripke model
(M,w), M,w |= φ entails M,w |= ψ. We say φ and ψ are
equivalent, written φ⇔ ψ, if φ |= ψ and ψ |= φ.

Theorem 2.5. [Halpern and Moses, 1992] The satisfiability
problems for KCn and KD45Cn are EXPTIME-complete.

Halpern and Moses presented an algorithm for checking
satisfiability in KCn . Given a formula φ ∈ LKC , their algo-
rithm first generates a set S consisting of all subformulas of
φ and their negations. Then it computes a set W consisting
of all subsets A of S that are propositionally consistent and
maximal, i.e., either ψ ∈ A or ¬ψ ∈ A for each ψ ∈ S.
Finally it iteratively builds a model for φ with worlds in W .

We now define a normal form for KCn .

Definition 2.6. The set of modal terms is inductively defined:

• A propositional term, i.e., a conjunction of propositional
literals, is a modal term;

• A formula of the form φ0 ∧
∧
a∈A(Kaφa ∧ LaΨa) ∧

Cµ ∧ DΛ is a modal term, where φ0 is a propositional
term, Ψa,Λ are sets of modal terms, and φa, µ are con-
junctions of disjunctions of modal terms.

A formula φ is in DNF if it’s a disjunction of modal terms. A
formula φ is in CDNF if it’s a conjunction of DNFs.

So the knowledge and common knowledge parts of a modal
term are in CDNF.

Proposition 2.7. In KCn , any formula in LKC can be trans-
formed to an equivalent DNF whose length is at most singly
exponential in the length of the original formula.

Proof. For an arbitrary modal formula φ ∈ LKC , we first put
it into negation normal form. Then we treat modal atoms, ie,
formulas of the form Kψ, Lψ, Cψ and Dψ, as proposition-
al atoms and transform the whole formula into propositional
DNF. Then for the ψ in each modal atom, we repeat this pro-
cess. By induction on the modal depth of φ, we can show that
the length of the resulting DNF is at most singly exponential
in the length of φ.

In the rest of the paper, the logic we use is KD45Cn , except
that in Section 3.1, we discuss satisfiability for KCn .

2.2 Epistemic Planning Modeling Framework
We follow the modeling framework for multi-agent epistemic
planning (MEP) in [Huang et al., 2017], and extend it with the
support of general common knowledge.

We illustrate the framework with the classic muddy chil-
dren example [Fagin et al., 1995]. There are n children play-
ing together and m of them get mud on their foreheads. Each
can see the mud on others but not on his own forehead. The
father announces “At least one of you has mud on your fore-
head”. The father then keeps asking “Does any of you know
whether you have mud on your own forehead?” It turns out
the first m−1 times he asks the question, they will all say
“No”, but then the mth time the children with muddy fore-
heads will all answer “Yes”.

Definition 2.8. A MEP problem is a tuple 〈A,P,D,S, I,G〉,
where A is a set of agents, P is a set of atoms, D is a set of
deterministic actions, S is a set of sensing actions, I ∈ LKC
is the initial KB, and G ∈ LKC is the goal.
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Example 1. Assume that there are three children (A =
{a, b, c}) and all of them are muddy. The atoms are: mi,
indicating the ith child is muddy. The deterministic action-
s are: announce, the father announces that at least one of
them is muddy; askno, the father asks whether anyone knows
that he is muddy, but no child answers “Yes”. The initial
KB is ma ∧ mb ∧ mc ∧

∧
i∈A(Ki

∧
j 6=imj). The goal is∧

i∈A(mi → Kimi).

Definition 2.9. A deterministic action is a pair 〈pre, eff〉,
where pre∈LKC is the precondition; eff is a set of condi-
tional effects, each of which is a pair 〈con, cef〉, where con,
cef ∈LKC indicate the condition and the effect, respectively.
Definition 2.10. A sensing action is a triple 〈pre, pos, neg〉,
where pre, pos, neg ∈ LKC indicate the precondition, the
positive result, and the negative result, respectively.

For example,
announce = 〈>, {eff}〉, where eff = 〈>, C

∨
imi〉.

askno = 〈pre, {eff1, eff2}〉, where:
• pre =

∧
i(¬Kimi ∧ ¬Ki¬mi),

• eff1 = 〈C
∨
imi, C

∨
i6=j(mi ∧mj)〉,

• eff2 = 〈C
∨
i6=j(mi ∧mj), C

∧
imi〉.

Here pre says that no child knows if he is muddy, eff1 says:
under the condition that the children commonly know that at
least one child is muddy, they commonly know at least two of
them are muddy, and eff2 says: under the condition that the
children commonly know that at least two of them are muddy,
they commonly know that all three children are muddy.

An action a is executable wrt a KB φ ∈ LKC if φ |=
pre(a). Suppose a is executable wrt φ. The progression of
φ wrt a is defined by resorting to belief change operators.
Two main types of belief change are revision and update: re-
vision concerns belief change about static environments due
to partial and possibly incorrect information, whereas update
concerns belief change about dynamic environments due to
the performance of actions. We use a revision operator ◦ and
an update operator � for LKC . We use update for progression
wrt deterministic actions and revision for sensing actions.
Definition 2.11. Let φ ∈ LKC and a a deterministic ac-
tion where eff(a) = {〈φ1, ψ1〉, . . . , 〈φn, ψn〉}. Suppose
φi1 , . . . , φim are all the φi’s s.t. φ |= φi. Then the progres-
sion of φ wrt a is defined as ((φ � ψi1) . . . ) � ψim .
Definition 2.12. Let φ ∈ LKC and a a sensing action. Then
the progression of φwrt awith positive (resp. negative) result
is φ+ = φ ◦ pos(a) (resp. φ− = φ ◦ neg(a)).

The progression of φ wrt a sequence of actions (with
sensing results for sensing actions) is inductively de-
fined as follows: prog(φ, ε) = φ; prog(φ, (a;σ)) =
prog(prog(φ, a), σ) if φ |= pre(a), and undefined otherwise.

A solution of a MEP problem is an action tree branching
on sensing results, such that the progression of the initial KB
wrt each branch in the tree entails the goal.

3 Checking Satisfiability
In this section, we first present an algorithm for checking sat-
isfiability in KCn , and then extend it to KD45Cn .

3.1 KC
n Satisfiability

The main idea of our algorithm for checking satisfiability in
KCn is as follows. The input formula is in DNF, and we at-
tempt to build a model for it recursively. When checking a
model term δ = φ0 ∧

∧
a∈A(Kaφa ∧ LaΨa) ∧ Cµ ∧ DΛ,

if φ0 is unsatisfiable, we immediately return ⊥, otherwise we
proceed as follows:
• For each agent a and each possibility ψa ∈ Ψa, we

conjoin it with knowledge φa and common knowledge
µ∧Cµ, and check if the resulting formula is satisfiable.
• If not, we immediately return ⊥, otherwise we check
λ ∧ φa ∧ µ ∧Cµ and Dλ ∧ φa ∧ µ ∧Cµ for each agent
a and each common possibility λ ∈ Λ.

Each of the above formulas is in CDNF, we call it a child of
δ. When checking a CDNF φ, we put it into a DNF

∨
∆, and

recursively check each δ′ ∈ ∆. We call δ′ a derivant of φ.
However, the complication is that due to the presence

of common knowledge, some newly generated modal terms
might be the same as previous ones. To handle this issue, we
maintain a graph whose nodes are modal terms. When a new
modal term is generated, we mark it by>, and when we know
it is unsatisfiable, mark it by ⊥. Also, when a new modal ter-
m δ′ is derived from a child of a modal term δ, we add an
edge from δ to δ′, mark the edge by 1 if δ′ is derived from
ψa ∧ µ∧Cµ, and 2 otherwise. Now, when checking a modal
term δ which already exists, we return its current mark.

A formula δ may not be satisfiable if it’s marked > by the
above methods. We further update each modal term’s mark by
checking whether its common possibilities are satisfied. For
each conjunct Dλ in each modal term δ, we check whether
there is a modal term δ′ reachable from δ s.t. λ is a conjunct of
δ′ and δ′ is marked by >. If not, we mark δ by ⊥ and further
propagate ⊥ to its ancestors through 1-edges. We repeat this
procedure until no mark is updated.
Definition 3.1. Let δ be a modal term. For a ∈ A, let γa
denote a’s knowledge, i.e., γa = φa ∧ µ∧Cµ. We define the
set of δ’s children, GenK(δ), as the union of the following:
• S1 = {γa ∧ ψa | a ∈ A, ψa ∈ Ψa};
• Sλ1

= {γa ∧ λ | a ∈ A}, and
Sλ2

= {γa ∧Dλ | a ∈ A}, where λ ∈ Λ.
Proposition 3.2. Let δ be a satisfiable modal term. Then the
following hold for GenK(δ):
• for all φ ∈ S1, φ is satisfiable;
• for all λ ∈ Λ, there is φ ∈ Sλ1

∪Sλ2
s.t. φ is satisfiable.

Algorithm 1: CheckK(φ)

input: φ ∈ LKC is in DNF
∨

∆ output: > / ⊥
set G = (W,R) to the empty graph;
if SatK(φ,⊥, a, 1) = ⊥ then return ⊥;
call Update;
foreach δ in ∆ do

if Mark(δ) = > then return >;
return ⊥;
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Function SatK(φ, φ′, i, n)

input: φ is in CDNF, φ′ is a modal term, i ∈ A, n = 1, 2

if φ is not a modal term then
transform φ into DNF

∨
∆;

foreach δ in ∆ do
if SatK(δ, φ′, i, n) = > then return >;

return ⊥;
else

if φ′ 6= ⊥ then Ri ← Ri ∪ {(φ′, φ)n};
if φ ∈W then return Mark(φ);
W ←W ∪ {φ}, Mark(φ)← >;
GenK(φ) = S1 ∪

⋃
λ∈Λ(Sλ1

∪ Sλ2
);

if one of the following conditions holds:
1. φ0 is propositionally unsatisfiable;
2. ∃δa ∈ S1: SatK(δa, φ, a, 1) = ⊥.
then Mark(φ)← ⊥, return ⊥;
foreach δa in

⋃
λ∈Λ Sλ1

∪ Sλ2
do

call SatK(δa, φ, a, 2);
return >;

Procedure Update
foreach δ in W and λ s.t. Dλ is a conjunct of δ do

let Child(δ, λ) be a set of modal terms δ′ where:
1. δ′ is reachable from δ; 2. λ is a conjunct of δ′;
3. Mark(δ′) = >.

Updated← >;
while Updated = > do

Updated← ⊥; UpdatedNodes← ∅;
foreach δ in W and λ s.t. Dλ is a conjunct of δ do

if Mark(δ) = > and Child(δ, λ) = ∅ then
Mark(δ)← ⊥; Updated← >;
UpdatedNodes← UpdatedNodes ∪ {δ};

foreach δ in UpdatedNodes do
call Propagate(δ);

foreach δ in W and λ do
delete δ′ in Child(δ, λ) s.t. Mark(δ′) = ⊥;

We demonstrate the procedure of CheckK(φ) by Figure 1.
Let φ = Cp ∧D¬p and A = {a}.

1. We calculateGenK(φ) = {δ1, δ2}, where δ1 = ¬p∧p∧
Cp and δ2 = D¬p ∧ p ∧ Cp, and set W = {φ, δ1, δ2}
and Ra = {(φ, δ1)2, (φ, δ2)2}.

2. We check δ1 next. Since its propositional part is unsat-
isfiable, we set Mark(δ1) = ⊥.

3. We turn to δ2, GenK(δ2) = {δ1, δ2}, Ra ←
Ra∪{(δ2, δ1)2, (δ2, δ2)2}, Mark(δ2) = >. Thus
Mark(φ) = >.

4. Since D¬p is a conjunct of φ and δ2 but there isn’t a
reachable modal term δ′ s.t. ¬p is a conjunct of δ′ and
Mark(δ′) = >, we set Mark(φ) = Mark(δ2) = ⊥.
Eventually CheckK(φ) returns ⊥.

Theorem 3.3. The complexity of CheckK(φ) is
O(4(d+1)cl+l), where l is the length of φ, d is the modal
depth of φ, and c is the depth of nesting of C modalities in φ.

Figure 1: Procedure of CheckK(Cp ∧D¬p)

Procedure Propagate(δ)
input: δ is a modal term

foreach δ′ in W s.t. (δ′, δ)1 ∈ R do
if Mark(δ′) = > then

Mark(δ′)← ⊥; call Propagate(δ′);

Proof sketch. First consider φ without C. For any modal term
δ generated during the algorithm, δ corresponds to a substring
of φ. Hence the graph has at most 2l nodes. Now consider
that φ containsC modalities. LetCν be the conjunction of all
subformulas Cµ in φ. The maximal length of Cν is cl. The
children generated from Cν are in the form ν1 ∧ Cν, where
ν1 doesn’t contain common knowledge since Cν is maximal.
For 1 ≤ i < d, we name the children generated from νi as
νi+1. All νi corresponds to a substring of ν, thus the length
of νi is less than cl. Since the children of Cν without com-
mon knowledge will be reduced to propositional formulas af-
ter at most (d−1) recursions, the maximal length of the form∧

1≤i≤d νi ∧ Cν in a modal term generated during the algo-
rithm is cl + dcl. Hence the maximum number of nodes is
2(d+1)cl+l. Let n be the number of nodes. Cycle checking
and updating marks requires O(n2) time. Thus we obtain the
complexity result O(4(d+1)cl+l). �

We proceed to prove soundness and completeness of
CheckK . For soundness, when CheckK(φ) returns >, we
build a model Mφ for φ by modifying the frame G = (W,R)
as follows: remove δ ∈ W s.t. Mark(δ) = ⊥; rename
δ ∈ W to wδ; and create a valuation map V s.t. V (wδ) satis-
fies φ0 in δ. We show that for each wδ in Mφ, Mφ, wδ |= δ.
To facilitate the proof, we introduce the notion of implicants.

Definition 3.4. If the conjunction of a CDNF φ and another
CDNF φ′ is equivalent to a DNF

∨
∆, we call each δ ∈ ∆ an

implicant of φ, and write δ | .= φ.

Obviously, if δ | .= φ, then δ |= φ. If a modal term δ′

is a subterm of a modal term δ, i.e., the conjuncts of δ′ is a
subset of those of δ, then δ is an implicant of δ′. In Algorithm
1, when a modal term δ′ is added as an a-child of a modal
term δ = φ0 ∧

∧
a∈A(Kaφa ∧ LaΨa) ∧ Cµ ∧ DΛ, δ′ is an

implicant of φa, µ and Cµ; similarly, δ′ is an implicant of
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some ψa ∈ Ψa, or an implicant of λ or Dλ for some λ ∈ Λ.

Lemma 3.5. When CheckK(φ) returns >, for all wδ ∈Mφ,
we have Mφ, wδ |= ψ if δ | .= ψ.

Proof. We prove by structural induction on ψ. Consider ψ in
the following forms:

• A propositional literal. Then ψ is a conjunct of the
propositional term of δ. By the definition of V (wδ), we
have Mφ, wδ |= ψ.
• ψ1 ∧ ψ2. Then δ | .= ψ1 and δ | .= ψ2. By induction, Mφ,
wδ |= ψ1 and Mφ, wδ |= ψ2. So Mφ, wδ |= ψ1 ∧ ψ2.
• ψ1 ∨ ψ2. Then δ | .= ψ1 or δ | .= ψ2. By induction,
Mφ, wδ |= ψ1 or Mφ, wδ |= ψ2. So Mφ, wδ |= ψ1 ∨ψ2.

• Kaψ
′. By Algorithm 1, for all wδ′ s.t. wδRawδ′ , δ′ |

.
=

ψ′. By induction, Mφ, wδ′ |= ψ′. So Mφ, wδ |= Kaψ
′.

• Laψ′. By Algorithm 1, there is wδ′ s.t. wδRawδ′ and
δ′ | .= ψ′. If not, δ will be marked ⊥ by Propagate. By
induction, Mφ, wδ′ |= ψ′. So Mφ, wδ |= Laψ

′.
• Cψ′. By Algorithm 1, for all wδ′ reachable from wδ , δ′
| .= ψ′. By induction,Mφ, wδ′ |= ψ′. SoMφ, wδ |= Cψ′.

• Dψ′. By Algorithm 1, there is wδ′ reachable from wδ
s.t. δ′ | .= ψ′. If not, δ will be marked ⊥ by Update. By
induction, Mφ, wδ′ |= ψ′. So Mφ, wδ |= Dψ′. �

For completeness, we prove a modal term δ is unsatisfiable
if it’s marked ⊥. The difficult case is when δ is marked ⊥
during update. We introduce a lemma to handle this case.

Lemma 3.6. Let δ be a modal term s.t. δ | .= Dλ. When δ
is satisfiable, there is a modal term δ′ reachable from δ s.t.
δ′ | .= λ and δ′ is satisfiable.

Proof. Since δ is satisfiable, there is a model (M,w) s.t.
M,w |= δ. Since δ | .= Dλ, there is a path w,w1, . . . , wm, w

′

in M s.t. M,w′ |= λ. Assume that wRa1w1, wmRa′w′ and
wiRai+1

wi+1 for 1 ≤ i < m. By Algorithm 1, there is a
path δ, δ1, . . . , δm, δ

′ in W where δi |
.
= Dλ for each i and

δ′ | .= λ. Moreover, we have (δ, δ1) ∈ Ra1 , (δm, δ
′) ∈ Ra′

and (δi, δi+1) ∈ Rai+1 . By induction, we can show that for
each i = 1, . . . ,m, M,wi |= δi. So M,w′ |= δ′.

Theorem 3.7. CheckK(φ) = > iff φ is satisfiable in KCn .

Proof. ⇒: Suppose CheckK(φ) returns >. Then there is a
world wδ ∈ Mφ s.t. δ | .= φ. By Lemma 3.5, Mφ, wδ |= φ.
Thus φ is satisfiable.
⇐: Suppose CheckK(φ) returns ⊥. Let φ =

∨
∆. Then

each modal term in ∆ is marked ⊥. We prove by induction
on k that if δ is the kth modal term that CheckK marks ⊥, δ
is unsatisfiable. There are 3 cases:

• The propositional term of δ is unsatisfiable.
• There is δ′ ∈ S1 marked by ⊥. By induction, δ′ is un-

satisfiable. By Proposition 3.2, δ is unsatisfiable.
• δ contains a conjunct Dλ and for each δ′ reachable from
δ where δ′ | .= λ, δ′ is marked ⊥. By induction, δ′ is
unsatisfiable. By Lemma 3.6, δ is unsatisfiable. �

3.2 KD45Cn Satisfiability
The main idea of our algorithm for checking satisfiability in
KD45Cn is as follows. We require the input formula φ to be
in a certain normal form. We apply to φ the algorithm for
checking satisfiability in KCn . When the algorithm returns >
and a model for φ, we add edges to the model to make it
serial, transitive, and Euclidean. The normal form we use
ensures that after adding edges, the model still satisfies φ. To
motivate our normal form, let’s consider two examples.
Example 2. Let A = {a, b}, P = {p}, and φ = DKap.
Consider M = (W,R, V ) where W = {0, 1, 2}, Ra =
{(0, 1), (1, 2)},Rb = ∅, V (0) = V (1) = ∅, and V (2) = {p}.
Then (M, 0) is a model for φ in KCn , but it can’t be made a
model for φ in KD45Cn by adding edges. Now suppose we
have an modalityDaφmeaning φ holds in some world reach-
able by a path whose last edge is not of agent a. Let M ′ be
the same as M except Ra = {(1, 2)} and Rb = {(0, 1)}.
Then (M ′, 0) is a model for φ′ = DaKap in KCn , and it can
be made a model for φ′ in KD45Cn by adding edges.
Example 3. Let φ = La(p∧Ka¬p). Then φ is satisfiable in
KCn but not in KD45Cn , thus KCn algorithm obtains the wrong
answer. Note that φ entails Ka¬p in KD45Cn . If we add
Ka¬p to φ, KCn algorithm could answer false correctly.

In the following, we introduce our normal form.
Definition 3.8. The semantics of the subscripted common
knowledge modality Ca where a ∈ A is defined as follows:
• M,w |= Caφ iff for all u, v s.t. wR∗Au and uRbv where
b 6= a, we have M,v |= φ, where R∗A is the reflexive
transitive closure of the union of Ra for a ∈ A.

We let Daφ abbreviate for ¬Ca¬φ. We use LKCS to refer
to LKC where the Ca modality is used instead of C.
Definition 3.9. The set of modal S-terms (resp. normal S-
terms) is inductively defined as follows:
• A propositional term is a modal (resp. normal) S-term;
• A formula of the form φ0 ∧

∧
a∈A(Kaφa ∧ LaΨa ∧

Caµa∧DaΛa) is a modal S-term (resp. normal S-term),
where φ0 is a propositional term, Ψa,Λa are sets of
modal S-terms (resp. normal S-terms), Ψa is not empty,
and φa, µa are conjunctions of disjunctions of modal S-
terms (resp. φa, µa are disjunctions of normal S-terms).

A formula φ is in SDNF (resp. normal SDNF) if it’s a dis-
junction of modal S-terms (resp. normal S-terms).

In the above definition, note the requirement that Ψa is not
empty. Due to seriality, we can always replace an empty Ψa

with the set {>} in KD45Cn .

Proposition 3.10. The following hold in KD45Cn :
• Cφ⇔

∧
a∈A(Kaφ ∧ CaKaφ);

• Dφ⇔
∨
a∈A(Laφ ∨DaLaφ).

Proof. We only prove Item 1. The ⇒ direction is obvi-
ous. For the ⇐ direction, suppose M,w |=

∧
a∈A(Kaφ ∧

CaKaφ). Let v be reachable from w and p a shortest path
from w to v. If p is of length 1, since M,w |=

∧
a∈AKaφ,
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M,v |= φ. If p is of length > 1, then the last two edges on
the path must be of different agents; otherwise, by transitiv-
ity, there is a shorter path from w to v. Let a be the agent
of the last edge. Since M,w |= CaKaφ, M, v |= φ. Thus
M,w |= Cφ.

By Proposition 3.10, in KD45Cn , every formula is equiva-
lent to a formula in SDNF and a formula in normal SDNF.

As motivated by Example 3, we present the following rules
for unfolding nested knowledge.

Proposition 3.11. The following hold in KD45Cn :

• Ka(Kaφ ∧ φ+ ∨ ψ)⇔ Ka(φ ∧Kaφ ∧ φ+ ∨ ψ);
• Ka(Cbφ ∧ φ+ ∨ ψ)⇔ Ka(φ ∧ Cbφ ∧ φ+ ∨ ψ);
• La(Kaφ ∧ φ+)⇔ Kaφ ∧ La(Kaφ ∧ φ+);
• La(Cbφ ∧ φ+)⇔ Ka(φ ∧ Cbφ) ∧ La(Cbφ ∧ φ+).

Here φ ∈ LKCS , φ+ is a modal S-term and ψ is in SDNF.

Definition 3.12. Let φ be in SDNF. We apply the rules for
unfolding knowledge to φ, from inside to outside, and then
put the resulting formula into an SDNF φ′. We say that φ′ is in
unfolded SDNF. Unfolded normal SDNF is similarly defined.

For example, LaKaφ⇔ Kaφ ∧ LaKaφ, and
KaKaKaφ⇔ Ka(φ ∧Ka(φ ∧Kaφ)).

Proposition 3.13. Let φ be in unfolded SDNF. Given any
formula ψ and agent a, if φ |= Kaψ in KD45Cn , then we also
have φ |= Kaψ in KCn .

Now we define the set of children of a modal S-term. Note
that due to transitivity, Kaφa entails KaKaφa in KD45Cn .

Definition 3.14. Let δ = φ0 ∧
∧
a∈A(Kaφa ∧ LaΨa ∧

Caµa ∧ DaΛa) be a modal S-term. For a ∈ A, we let γa
denote the knowledge of a, i.e., γa = φa ∧Kaφa ∧ Caµa ∧∧
b6=a(µb ∧ Cbµb). We define the set of δ’s children, written

GenKD45(δ), as the union of the following sets:

• S1 = {γa ∧ ψa | a ∈ A, ψa ∈ Ψa},
• Sbλ1 = {γa ∧ λ | a ∈ A, a 6= b}, and
Sbλ2 = {γa ∧Dbλ | a ∈ A}, where b ∈ A, λ ∈ Λb.

Proposition 3.15. Let δ be a satisfiable modal S-term. Then
the following hold for GenKD45(δ):

• for all δ′ ∈ S1, δ′ is satisfiable;
• for all b ∈ A and λ ∈ Λb, there is δ′ ∈ Sbλ1 ∪ Sbλ2 s.t.
δ′ is satisfiable.

Algorithm 2: CheckKD45(φ)

input: φ is in unfolded SDNF output: > / ⊥
CheckK(φ) where GenK is replaced by GenKD45

When CheckKD45(φ) returns >, we first build a model
Mφ for φ as we do for CheckK(φ), and then set each acces-
sibility relation to its transitive and Euclidean closure. Note
that seriality is ensured by requiring Ψa non-empty. The nor-
mal form we use and the definition of GenKD45 ensure that
the resulting KD45Cn model M ′φ still satisfies φ.

Lemma 3.16. Let a, b ∈ A. When CheckKD45(φ) returns
>, for all wδ, wδ′ ∈M ′φ s.t. wδRawδ′ , we have:

• when δ | .= Kaφ, δ′ | .= φ ∧Kaφ;
• when δ′ | .= Kaφ, δ | .= Kaφ;
• when δ | .= Cbφ, δ′ | .= Cbφ;
• when δ′ | .= Cbφ, either δ | .= Cbφ or δ | .= KaCbφ.

Proof. We prove by induction on the order (wδ, wδ′) is added
to Ra. The induction cases are straightforward. We prove the
base case where (wδ, wδ′) is in Ra before edges are added.
Item 1 and Item 3 follow from the definition of GenKD45.
From δ′ | .= Kaφ we can infer that δ is an implicant of Kaφ,
KaKaφ or LaKaφ. Since δ is in unfolded SDNF, we have
δ | .= Kaφ. From δ′ | .= Cbφ we can infer that δ is an implicant
of Cbφ, KaCbφ or LaCbφ. If δ is an implicant of LaCbφ, we
have δ | .= KaCbφ by unfolding rules.

Lemma 3.17. When CheckKD45(φ) returns >, for all wδ ∈
M ′φ, we have M ′φ, wδ |= ψ if δ | .= ψ.

Proof. We only prove the cases whose proofs are different
from those for KCn . Consider ψ in the following forms:
• Kaψ

′. By Lemma 3.16, for all wδ′ s.t. wδRawδ′ , δ′ |
.
=

ψ′. By induction, Mφ, wδ′ |= ψ′. So Mφ, wδ |= Kaψ
′.

• Caψ′. By Lemma 3.16, for all wδ′′ s.t. wδR∗Awδ′′ , δ
′′

| .= Caψ
′. Then by the definition of GenKD45, for all

wδ′ s.t. wδ′′Rbwδ′ where b 6= a, we have δ′ | .= ψ′. By
induction, M ′φ, wδ′ |= ψ′. So M ′φ, wδ |= Caψ

′. �

Theorem 3.18. CheckKD45(φ) returns > iff φ is satisfiable
in KD45Cn .

The proof for soundness follows from Lemma 3.17, while
the proof for completeness is identical to that in Theorem 3.7.
Theorem 3.19. The complexity of CheckKD45(φ) is
O(4(d+1)(c+d)nl+l), where n is the number of agents, l, c,
and d are as in Theorem 3.3.
Proof sketch. The complexity follows from Theorem 3.3 with
two increasing from two factors: the common knowledge op-
erator C is transformed into n copies of the subscripted ver-
sion; knowledge of each agent is preserved when generating
children of a modal S-term. �

4 Belief Revision and Update
In this section, we introduce our algorithms for higher-order
belief change involving common knowledge. As Huang et
al. [2017], we reduce change of epistemic formulas to that
of lower-order epistemic formulas, and as basis we resort to
change of propositional formulas. The essential difference
between revision and update is: revision satisfies the conjunc-
tion property that when φ∧ φ′ is satisfiable, φ ◦ φ′ ⇔ φ∧ φ′,
while update satisfies the distribution property that when both
φ1 and φ2 are satisfiable, (φ1 ∨ φ2) � φ′ ⇔ φ1 � φ′ ∨ φ2 � φ′.
We illustrate our main ideas with three examples.
Example 4. Revise Ka(¬p ∧ Ka¬p) with Cp. When we
recursively revise ¬p∧Ka¬p, we cannot simply revise it with
p, which will give us the incorrect resultKa(p∧Ka¬p)∧Cp;
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we will have to revise it with p and carry Cp, which gives us
the correct result Ka(p ∧Kap) ∧ Cp.
Example 5. Revise Ka(¬p ∧ q) with Ka¬q ∧ Lap. We can-
not simply revise old knowledge with new knowledge, which
gives us ¬p ∧ ¬q, inconsistent with new possibility p. We
will take the disjunction of ¬p ∧ ¬q and the revision of old
knowledge with the conjunction of new knowledge and new
possibility. This gives us ¬p∧¬q ∨ p∧¬q, equivalent to ¬q.
The same idea applies to the revision of common knowledge.
Example 6. Revise La(p∧ q)∧La(¬p∧ q) with Kap∧Lar.
Since there are old possibilities consistent with new knowl-
edge, we will only keep such old possibilities and revise them
with new knowledge. Thus we get La(p ∧ q) ∧Kap ∧ Lar.
However, consider revising La(p ∧ ¬q) ∧ La(¬p ∧ ¬q) with
Kaq ∧ Lar. Since all old possibilities are inconsistent with
new knowledge, we revise all of them with new knowledge.
The result is La(p∧ q)∧La(¬p∧ q)∧Kaq∧Lar. The same
idea applies to the revision of common possibilities.

Motivated by Example 4, we define a “revision with carry”
operator φ ◦γ φ′ where γ is the carry. The difference between
φ′ and γ is that the revision result must entail φ′ while the
result only need to be consistent with γ.
Definition 4.1. Let ◦ be a revision operator. The revision of
φ with φ′ and carry γ, written φ ◦γ φ′ is defined as follows:
• φ ◦γ φ′ = φ ◦ φ′, if φ ∧ γ is satisfiable;
• φ ◦γ φ′ = φ ◦ (φ′ ∧ γ), otherwise.

Similarly, we can define the “update with carry” operator.
Motivated by Example 6, we define the ∗ operator to re-

strict attention to consistent pairs of formulas if possible.
Definition 4.2. Φ ∗ Φ′ =

• {(φ, φ′) | φ ∈ Φ, φ′ ∈ Φ′, φ ∧ φ′ is satisfiable}, if there
are φ ∈ Φ and φ′ ∈ Φ′ s.t. φ ∧ φ′ is satisfiable;
• {(φ, φ′) | φ ∈ Φ, φ′ ∈ Φ′}, otherwise.
Below is the formal definition of our revision operator.

Item 4 needs some explanation. In order to obtain a satis-
fiable result, we revise different parts of the old S-term in the
following order, using the ideas behind the three motivating
examples:

1. When old common knowledge is consistent with new
knowledge and new possibilities, revise it with new
common knowledge; otherwise simply assume new
common knowledge.

2. Revise knowledge using revised common knowledge.
3. Revise possibilities using revised common knowledge

and knowledge.
4. Keep old common possibilities that are consistent with

revised common knowledge, knowledge and possibili-
ties.

Definition 4.3. Let φ and φ′ be in unfolded normal SDNF.
The revision of φwith φ′, written φ◦φ′, is defined recursively:

1. When φ and φ′ are propositional formulas, φ ◦ φ′ =
φ ◦s φ′, where ◦s is Satoh [1988]’s revision operator;

2. When φ =
∨

∆ and φ′ =
∨

∆′,
φ ◦ φ′ =

∨
{δ ◦ δ′ | (δ, δ′) ∈ ∆ ∗∆′};

3. When φ and φ′ are normal S-terms and φ ∧ φ′ is satisfi-
able, φ ◦ φ′ is φ ∧ φ′ converted to a normal S-term;

4. Otherwise, φ and φ′ are normal S-terms, and φ ∧ φ′ is
not satisfiable. Let φ = φ0 ∧

∧
a∈A(Kaφa ∧ LaΨa ∧

Caµa ∧DaΛa), and φ′ = φ′0 ∧
∧
a∈A(Kaφ

′
a ∧LaΨ′a ∧

Caµ
′
a∧DaΛ′a). Then φ◦φ′ = φ′′ = φ′′0∧

∧
a∈A(Kaφ

′′
a∧

LaΨ′′a ∧ Caµ′′a ∧DaΛ′′a) where:

(a) φ′′0 = φ0 ◦ φ′0;
(b) If Caµa ∧

∧
b6=a(Kbφ

′
b ∧ LbΨ′b) is satisfiable,

µ′′a = (µa ◦γ1 µ′a) ∨
∨
λ′
a∈Λ′

a
(µa ◦γ2 (µ′a ∧ λ′a))

where γ1 = Caµ
′
a and γ2 = Caµ

′
a ∧Daλ

′
a;

otherwise µ′′a = µ′a;
(c) φ′′a = (φa ◦γ1 (φ′a ∧

∧
b6=a µ

′′
b ))∨∨

ψ′
a∈Ψ′

a
(φa ◦γ2 (ψ′a ∧ φ′a ∧

∧
b6=a µ

′′
b )),

where γ1 = Kaφ
′
a ∧

∧
a∈A Caµ

′′
a

and γ2 = Kaφ
′
a ∧ Laψ′a ∧

∧
a∈A Caµ

′′
a;

(d) Ψ′′a = {ψ◦γψ′ | (ψ,ψ′) ∈ Ψa∗{φ′′a∧
∧
b6=a µ

′′
b }}∪

Ψ′a, where γ = Kaφ
′′
a ∧

∧
a∈A Caµ

′′
a;

(e) Λ′′a = {λ | λ ∈ Λa and Daλ ∧
∧
a∈A(Kaφ

′′
a ∧

LaΨ′′a ∧ Caµ′′a) is satisfiable} ∪ Λ′a.

We now state properties of our revision operator.

Definition 4.4. The set of disjunct-wise satisfiable (d-sat)
normal SDNFs is inductively defined:

• A disjunction
∨

∆ of normal S-terms is d-sat if each
δ ∈ ∆ is d-sat;
• A normal S-term φ0 ∧

∧
a∈A(Kaφa ∧ LaΨa ∧ Caµa ∧

DaΛa) is d-sat if it is satisfiable and each disjunct in
each φa or µa is d-sat.

Proposition 4.5. An unfolded normal S-term without D
modalities φ = φ0 ∧

∧
a∈A(Kaφa ∧ LaΨa ∧ Caµa) is satis-

fiable if the following hold:

1. φ0 is propositionally satisfiable;
2. For all a ∈ A and for all ψa ∈ Ψa, φψa

= ψa ∧ φa ∧
Kaφa ∧

∧
b6=a µb ∧

∧
a∈A Caµa is satisfiable.

Proof. We construct a model (M,w) for φ. By Item 1, we
create a worldw where V (w) satisfies φ0. By Item 2, for each
a ∈ A and ψa ∈ Ψa, there is a KD45Cnmodel (Mψa , wψa)
satisfying φψa . We add each (Mψa , wψa) to M and let
wRawψa

. Then (M,w) is a KD45Cnmodel for φ after cal-
culating the transitive and Euclidean closures.

Proposition 4.6. Let φ and φ′ be two d-sat unfolded normal
SDNFs. Then φ◦φ′ is a d-sat normal SDNF, and φ◦φ′ |= φ′.
Moreover, when φ ∧ φ′ is satisfiable, φ ◦ φ′ ⇔ φ ∧ φ′.
Proof. The conjunction property follows from Definition 4.3
Item 3 directly. Now we assume that φ ∧ φ′ is unsatisfiable.

We first prove φ ◦ φ′ |= φ′ by induction on the modal
depth of φ. Let md(φ) denote the modal depth of φ. When
md(φ) = 0, we consider φ′ in two cases:

• md(φ′) = 0. Then φ ◦s φ′ |= φ′ by Satoh’s revision.
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• md(φ′) > 0. Let φ =
∨

∆ and φ′ =
∨

∆′. By Defini-
tion 4.3 Item 2, φ◦φ′ =

∨
{δ◦δ′ | (δ, δ′) ∈ ∆∗∆′}. For

each (δ, δ′) ∈ ∆ ∗∆′, since higher-order subformulas in
δ′ are directly conjoined into δ ◦ δ′, we have δ ◦ δ′ |= δ′.
Let φ◦φ′ =

∨
∆′′. For each δ′′ ∈ ∆′′, there is a δ′ ∈ ∆′

s.t. δ′′ |= δ′. Therefore, φ ◦ φ′ |= φ′.
When md(φ) = n+ 1, we consider φ and φ′ in two cases:
• φ and φ′ are normal S-terms. Let φ′′ = φ ◦ φ′. By Item-

s (a), (d) and (e), we have φ′′0 |= φ′0,
∧
a∈A LaΨ′′a |=∧

a∈A LaΨ′a and
∧
a∈ADaΛ′′a |=

∧
a∈ADaΛ′a. By

Item (b) and induction, for each agent a we have µ′′a |=
µ′a, thus

∧
a∈A Caµ

′′
a |=

∧
a∈A Caµ

′
a. Similarly, by

Item (c) we have
∧
a∈AKaφ

′′
a |=

∧
a∈AKaφ

′
a. Take

the conjunction of the above results, we have φ′′ |= φ′.
• Otherwise, we follow the proof in the base case.
Let γ be a modal S-term s.t. φ′∧γ is d-sat and φ′′ = φ◦γφ′.

Now we prove that φ′′ and φ′′ ∧ γ are d-sat by induction on
the modal depth of φ. When md(φ) = 0, φ ∧ γ is d-sat and
φ ◦γ φ′ = φ ◦ φ′. We consider φ′ in two cases:
• md(φ′) = 0. Then φ ◦s φ′ is d-sat by Satoh’s revision.
• md(φ′) > 0. Let φ =

∨
∆ and φ′ =

∨
∆′. We have

φ ◦φ′ =
∨
{δ ◦ δ′ | (δ, δ′) ∈ ∆ ∗∆′}. For each (δ, δ′) ∈

∆∗∆′, let δ = φ0 and δ′ = φ′0∧
∧
a∈A(Kaφ

′
a∧LaΨ′a∧

Caµ
′
a∧DaΛ′a). Thus δ◦δ′ = (φ0◦sφ′0)∧

∧
a∈A(Kaφ

′
a∧

LaΨ′a∧Caµ′a∧DaΛ′a). Again by Satoh’s revision, δ◦δ′
is d-sat. Therefore, φ′′ and φ′′ ∧ γ are d-sat.

When md(φ) = n+ 1, we consider φ and φ′ in two cases:
• φ and φ′ are normal S-terms. By Item (a) and Satoh’s

revision, φ′′0 is d-sat. By Item (b) and induction, µ′′a is d-
sat. By definitions of “revision with carry” and unfolded
formulas, we can show that Caµ′′a is d-sat. Similarly, we
have that φ′′a and Kaφ

′′
a are d-sat. Since φ′′a |=

∧
b6=a µ

′′
b ,

φ′′a ∧
∧
b6=a µ

′′
b ∧

∧
a∈A Caµ

′′
a is d-sat. By Item (d) and

induction, ψ′′a ∧ φ′′a ∧ Kaφ
′′
a ∧

∧
b6=a µ

′′
b ∧

∧
a∈A Caµ

′′
a

is d-sat for each ψ′′a ∈ Ψ′′a . By Proposition 4.5 and Item
(e), φ′′ is d-sat. By Definition 4.1, we can show that
φ′′ ∧ γ is d-sat.
• Otherwise, we follow the proof in the base case. �

Finally, we present the formal definition of our update op-
erator. For Item 4, the difference with that of the revision
operator lies with Item (d) where we update each possibility.
Recall that for Item 4 (d) of the revision operator, when there
are possibilities consistent with new common knowledge and
knowledge, we only keep them and revise them.
Definition 4.7. Let φ and φ′ be in unfolded normal SDNF.
The update of φ with φ′, written φ�φ′, is defined recursively:

1. When φ and φ′ are propositional formulas, φ � φ′ =
φ �w φ′, where �w is Winslett [1988]’s update operator;

2. When φ =
∨

∆, φ � φ′ =
∨
δ∈∆ δ � φ′;

3. When φ is an S-term, and φ′ =
∨

∆′,
φ � φ′ =

∨
{φ � δ′ | (φ, δ′) ∈ {φ} ∗∆′};

4. Otherwise, φ and φ′ are normal S-terms, φ � φ′ = φ′′

where φ, φ′, φ′′ have the form as in Definition 4.3, and:

(a) φ′′0 = φ0 � φ′0;
(b) If Caµa ∧

∧
b6=a(Kbφ

′
b ∧ LbΨ′b) is satisfiable,

µ′′a = (µa �γ1 µ′a) ∨
∨
λ′
a∈Λ′

a
(µa �γ2 (µ′a ∧ λ′a))

where γ1 = Caµ
′
a and γ2 = Caµ

′
a ∧DaΛ′a;

otherwise µ′′a = µ′a;
(c) φ′′a = (φa �γ1 (φ′a ∧

∧
b6=a µ

′′
b ))∨∨

ψ′
a∈Ψ′

a
(φa �γ2 (ψ′a ∧ φ′a ∧

∧
b6=a µ

′′
b )),

where γ1 = Kaφ
′
a ∧

∧
a∈A Caµ

′′
a

and γ2 = Kaφ
′
a ∧ Laψ′a ∧

∧
a∈A Caµ

′′
a;

(d) Ψ′′a = {ψ �γ (φ′′a ∧
∧
b6=a µ

′′
b ) | ψ ∈ Ψa} ∪Ψ′a,

where γ = Kaφ
′′
a ∧

∧
a∈A Caµ

′′
a;

(e) Λ′′a = {λ | λ ∈ Λa and Daλ ∧
∧
a∈A(Kaφ

′′
a ∧

LaΨ′′a ∧ Caµ′′a) is satisfiable} ∪ Λ′a.

Proposition 4.8. Let φ and φ′ be two d-sat unfolded normal
SDNFs. Then φ�φ′ is a d-sat normal SDNF, and φ�φ′ |= φ′.
Moreover, (φ1 ∨ φ2) � φ′ ⇔ φ1 � φ′ ∨ φ2 � φ′.

The distribution property can be obtained from Definition
4.7 Item 2 directly. We omit the proofs for the other properties
of update since they are similar to those of revision.

5 Implementation and Experimental Results
Based on our reasoning, revision and update algorithms, we
implemented a planner called MEPC for multi-agent epis-
temic planning with common knowledge. Our planning al-
gorithm supports contingent planning by extending breadth-
first search to AND/OR graphs. We evaluate MEPC with five
domains which use common knowledge in different ways.

Collaboration-and-Communication: CC(n). There are 4
rooms, 2 agents and n boxes. Agents can enter rooms and
sense boxes in it. Also, agents can share information. The
goal is to let agents know the positions of boxes. The com-
mon knowledge is that each box is in exactly one room.

Muddy-Children: MC(n,m). There are n children and m
of them are muddy.

Public-Announcing: PA(n). There are n agents in room 1.
Agent 1 can sense whether the book is in room 2 and take
it away. Each agent can share his belief about the book to
others, while agent n can make a public announcement. The
goal is to achieve common knowledge that agent 1 belives the
book is missing.

Selective-Communication: SC(n). There are n rooms and
n agents in different rooms. A secret is false, but initially it’s
common knowledge that agent 1 believes the secret is true.
Agent 1 can find out that the secret is false. Each agent can
move to a neighboring room and tell the secret to others in
the room. The goal is to let all agents except agent 1 believe
that the secret is false, while agent 1 believes that it is true.

Prisoners-and-Lightbulb: PL(n). This domain is adapted
from a puzzle in [van Ditmarsch and Kooi, 2015]. There are n
prisoners in the prison. Every day one of them is interrogated
in a room furnished with a light bulb. The goal is to let one
of them know that all the prisoners have been interrogated.

Our experiments were run on a Windows machine with
3.50GHz CPU and 8GB RAM. The results are shown in Ta-
ble 1. The 2nd-4th columns indicate the number of agents, the

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1919



Domain A P |S +D| MEPC
CC(2) 2 16 6+16 44.831-33.830(5/10165)
CC(3) 2 20 14+16 1953.0-1703.0(5/35351)

MC(2,2) 2 3 0+2 0.014-0.001(2/3)
MC(3,3) 3 4 0+2 0.101-0.013(3/4)
MC(4,2) 4 5 0+2 0.201-0.027(2/3)
MC(4,3) 4 5 0+2 2.603-0.435(3/4)
MC(4,4) 4 5 0+2 5.101-0.895(4/5)
MC(5,5) 5 6 0+2 108.682-20.187(5/6)

PA(2) 2 1 1+3 0.011-0.001(4/11)
PA(3) 3 1 1+4 0.013-0.001(5/15)
PA(4) 4 1 1+5 0.019-0.003(6/20)
PA(5) 5 1 1+6 0.027-0.008(7/25)
SC(2) 2 5 0+13 0.103-0.018(0/42)
SC(3) 3 10 0+25 9.198-1.597(9/2610)
SC(4) 4 17 0+41 738.566-61.571(10/70951)
PL(2) 2 12 0+6 0.061-0.002(5/21)
PL(3) 3 15 0+9 0.416-0.050(7/93)
PL(4) 4 18 0+12 4.040-0.443(9/385)
PL(5) 5 21 0+15 30.944-3.582(11/1493)

Table 1: Experimental Results

number of atoms, and the number of sensing and determinis-
tic actions. In the last column, A-B(C/D) indicates A seconds
of total time, B seconds spent on satisfiability solving, depth
C of solution tree (C=0 means the problem is unsolvable),
and D nodes searched. The results show that our planner is
capable of solving these problems of planning with common
knowledge. However, our planner doesn’t scale well, due to
the exponential time complexity of the satisfiability solving
algorithm and the naive search method we use.

6 Conclusion
In this paper, we have extended an existing framework for
multi-agent epistemic planning with the capability to deal
with general common knowledge. We propose a novel nor-
mal form for multi-agent KD45 with common knowledge
which makes use of the subscripted common knowledge op-
erator and unfolds knowledge in a certain way. We propose
satisfiability solving, revision and update algorithms for this
normal form. We implemented a planner MEPC, and it is ca-
pable of solving several domains involving typical usage of
common knowledge. Despite the current limitations of our
work, we have made a significant first step towards multi-
agent epistemic planning with common knowledge. In the
future, we are interested in extending our work to handle
common knowledge of a subset of agents. Proposing more
efficient algorithms for reasoning about common knowledge
is another important future work.
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