
A Uniform Abstraction Framework for Generalized Planning

Zhenhe Cui1 , Yongmei Liu1∗ , Kailun Luo2

1Dept. of Computer Science, Sun Yat-sen University, Guangzhou 510006, China
2Dongguan University of Technology, Dongguan 523808, China

cuizhh3@mail2.sysu.edu.cn, ymliu@mail.sysu.edu.cn, luokl@dgut.edu.cn

Abstract
Generalized planning aims at finding a general
solution for a set of similar planning problems. Ab-
stractions are widely used to solve such problems.
However, the connections among these abstraction
works remain vague. Thus, to facilitate a deep un-
derstanding and further exploration of abstraction
approaches for generalized planning, it is important
to develop a uniform abstraction framework for
generalized planning. Recently, Banihashemi et al.
proposed an agent abstraction framework based on
the situation calculus. However, expressiveness of
such an abstraction framework is limited. In this
paper, by extending their abstraction framework,
we propose a uniform abstraction framework for
generalized planning. We formalize a generalized
planning problem as a triple of a basic action
theory, a trajectory constraint, and a goal. Then
we define the concepts of sound abstractions of
a generalized planning problem. We show that
solutions to a generalized planning problem are
nicely related to those of its sound abstractions. We
also define and analyze the dual notion of complete
abstractions. Finally, we review some important
abstraction works for generalized planning and
show that they can be formalized in our framework.

1 Introduction
Generalized planning, where a single plan works for possibly
infinitely many similar planning problems, has received con-
tinual attention in the AI community [Srivastava et al., 2008;
Hu and De Giacomo, 2011; Srivastava et al., 2011;
Segovia-Aguas et al., 2016; Bonet and Geffner, 2018;
Illanes and McIlraith, 2019]. For example, the generalized
plan “while the block A is not clear, pick the top block above
A and place it on the table” meets the goal clear(A) no
matter how many blocks the tower has.

Abstractions are widely used to solve generalized planning
problems. The idea is to develop an abstract model of
the problem that suppresses less important details, find
a solution in the abstract model, and use this solution to

∗Corresponding Author

guide the search for a solution in the concrete model. For
example, Srivastava et al. [2011] introduced qualitative
numerical planning (QNP) problems, which represents a set
of quantitative numerical planning problems. They showed
that a QNP problem P can be easily abstracted into a FOND
(fully observable non-deterministic planning) problem whose
strong cyclic solutions that terminate in P are solutions to P .
To explain why the termination condition is needed and how
it can be removed, Bonet et al. [2017] showed that a planning
problem can be extended with a trajectory constraint and
the solutions to the problem are programs whose executions
satisfying the constraint terminate. Bonet and Geffner [2018]
considered solving generalized classical planning problems.
They showed that if such a problem P can be abstracted into
a QNP problem P ′ and if the abstraction is sound, then the
solution of P ′ is a solution of P . Illanes and McIlraith [2019]
considered solving a class of generalized classical planning
problems by automatically deriving a sound QNP abstraction
from an instance of the problem, by introducing a counter for
each set of indistinguishable objects.

The existing abstraction works for generalized planning
are closely related to each other. However, the similarities
and differences of them remain vague. Thus, to facilitate a
deep understanding and further exploration of abstraction
approaches for generalized planning, it is important to
develop a uniform theoretical framework for them.

Recently, Banihashemi et al. [2017] proposed an agent
abstraction framework based on the situation calculus
[Reiter, 2001] and the Golog [Levesque et al., 1997] agent
programming language. They relate a high-level action
theory to a low-level action theory by the notion of a refine-
ment mapping, which specifies how each high-level action
is implemented by a low-level Golog program and how each
high-level fluent can be translated into a low-level formula.
They define the concepts of sound/complete abstractions of
a low-level action theory and prove properties that relate the
behavior of a low-level action theory to the behavior of its
sound/complete abstractions. However, expressiveness of
such an abstraction framework is limited, and cannot serve
as a uniform abstraction framework for generalized planning.

In this paper, by extending the abstraction framework of
Banihashemi et al., we propose a uniform abstraction frame-
work for generalized planning. We first extend the situation
calculus with counting and use non-deterministic Golog

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1837

programs to represent actions with non-deterministic effects,
and formalize a generalized planning problem as a triple of a
basic action theory, a trajectory constraint, and a goal. Then
we define the concepts of sound/complete abstractions of a
generalized planning problem. We show that solutions to a
generalized planning problem are nicely related to those of
its sound/complete abstractions. Finally, we review some
important abstraction works for generalized planning and
show that they can be formalized in our framework.

2 Preliminaries
In this section, we introduce the situation calculus extended
with infinite histories and Golog.

The situation calculus [Reiter, 2001] is a many-sorted first-
order language with some second-order ingredients suitable
for describing dynamic worlds. There are three disjoint sorts:
action for actions, situation for situations, and object for
everything else. The language also has the following com-
ponents: a situation constant S0 denoting the initial situa-
tion; a binary function do(a, s) denoting the successor situ-
ation to s resulting from performing action a; a binary re-
lation Poss(a, s) indicating that action a is possible in sit-
uation s; a binary relation s v s′, meaning situation s is a
sub-history of s′; a set of relational (functional) fluents, i.e.,
predicates (functions) taking a situation term as their last ar-
gument. A formula is uniform in s if it does not mention any
situation term other than s. We call a formula with all sit-
uation arguments eliminated a situation-suppressed formula.
For a situation-suppressed formula φ, we use φ[s] to denote
the formula obtained from φ by restoring s as the situation
arguments to all fluents.

In the situation calculus, a particular domain of application
can be specified by a basic action theory (BAT) of the form

D = Σ ∪ Dap ∪ Dss ∪ Duna ∪ DS0
, where

1. Σ is the set of the foundational axioms for situations;

2. Dap is a set of action precondition axioms, one for
each action function A of the form Poss(A(~x), s) ≡
ΠA(~x, s), where ΠA(~x, s) is uniform in s;

3. Dss is a set of successor state axioms, one for each re-
lation fluent symbol P of the form P (~x, do(a, s)) ≡
ΦP (~x, a, s), and one for each functional fluent symbol f
of the form f(~x, do(a, s)) = y ≡ φf (~x, y, a, s), where
ΦP (~x, a, s) and φf (~x, y, a, s) are uniform in s;

4. Duna is the set of unique name axioms for actions;

5. DS0 is the initial knowledge base stating facts about S0.

The situation calculus cannot be used to express and rea-
son about infinite sequences of actions. Schulte and Del-
grande [2004] extended the situation calculus with infinite
histories. They introduce: a sort infhist for infinite se-
quences of actions, with variables h, h′; the extended binary
relation v, where s v h means s is a subhistory of h; predi-
cates possible(s) and possible(h) stating that no impossible
action occurs in s and h respectively. The set Σ∞ of axioms
that characterize infinite histories are as follows:

• S0 < h; possible(S0);

• s < h→ ∃s′.s < s′ ∧ s′ < h;

• (s′ < s ∧ s < h)→ s′ < h;

• possible(h) ≡ ∀s < h.possible(s);

• possible(do(a, s)) ≡ possible(s) ∧ Poss(a, s).

Levesque et al. [1997] introduced a high-level program-
ming language Golog with the following syntax:

δ ::= α| ϕ? | δ1; δ2 | δ1|δ2 | πx.δ | δ∗,
where α is an action term; ϕ is a situation-suppressed formula
and ϕ? tests whether ϕ holds; program δ1; δ2 represents the
sequential execution of δ1 and δ2; program δ1|δ2 denotes the
non-deterministic choice between δ1 and δ2; program πx.δ
denotes the non-deterministic choice of a value for parameter
x in δ; program δ∗ means executing program δ for a non-
deterministic number of times.

Golog has two kinds of semantics: transition semantics
and evaluation semantics. In transition semantics, a config-
uration of a Golog program is a pair (δ, s) of a situation s
and a program δ remaining to be executed. The predicate
Trans(δ, s, δ′, s′) means that there is a transition from con-
figuration (δ, s) to (δ′, s′) in one elementary step. The predi-
cate Final(δ, s) means that the configuration (δ, s) is a final
one, which holds if program δ may legally terminate in situ-
ation s. Please refer to [De Giacomo et al., 2000] for details
of the definitions of Trans and Final. We use C to denote
the axioms for defining Trans and Final. In evaluation se-
mantics, the predicate Do(δ, s, s′) means that executing the
program δ in situation s will terminate in a situation s′. Do
can be defined with Trans and Final as follows:

Do(δ, s, s′)
.
= ∃δ′.T rans∗(δ, s, δ′, s′)∧Final(δ′, s′),where

Trans∗ denotes the reflexive transitive closure of Trans.

3 Extension of the Situation Calculus
To represent the property of termination, we use the situation
calculus with infinite histories. To represent planning with
non-deterministic actions, following [Bacchus et al., 1995],
we treat a non-deterministic action as a non-deterministic
program. To represent numerical planning based on count-
ing, we extend the situation calculus with counting.

The counting ability of first-order logic is very limited.
Kuske and Schweikardt [2017] extended FOL by counting,
getting a new logic FOCN. The key construct of FOCN are
counting terms of the form #ȳ.ϕ, meaning the number of
tuples ȳ satisfying formula ϕ. Formulas of FOCN are inter-
preted over finite structures.

To extend the situation calculus with counting, as in [Li
and Liu, 2020], we make the assumption that there are finite-
ly many non-number objects. We introduce a sort nat for
natural numbers with the + and · operations, and a function
symbol µ of sort object → nat. The intended interpretation
of µ is a coding of objects into natural numbers. We use n,
m for variables of nat, and x, y for variables of non-number
objects. If ϕ(ȳ) is a formula, then #ȳ.ϕ is a nat term, with
the same meaning as in FOCN.

Transitive closure is often used to define counting terms.
Following transitive closure logic [Immerman and Vardi,

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1838

1997], we introduce the notation [TCx̄,ȳϕ](ū, v̄), where
ϕ(x̄, ȳ) is a formula with 2k free variables, ū and v̄ are
two k-tuples of terms, which says that the pair (ū, v̄) is
contained in the reflexive transitive closure of the binary
relation on k-tuples that is defined by ϕ. It is defined as
an abbreviation in the situation calculus using a formula in
second-order logic. We omit the definition here. In case
P (x, y) is a binary predicate, we simply write P ∗(x, y) to
mean [TCx,yP (x, y)](x, y), and write P+(x, y) to mean
P ∗(x, y) ∧ x 6= y.

To formalize planning problems where actions may have
non-deterministic effects, following [Bacchus et al., 1995],
we represent a non-deterministic action A(~x) as follows: we
introduce associated deterministic actions Ad(~x, ~y), and de-
fineA(~x) as a non-deterministic program ofAd(~x, ~y) actions.
For example, suppose we have a functional fluent f(x, s) and
an action dec(x) which decreases the value of f(x, s) by an
arbitrary positive amount. To represent dec(x), we introduce
a deterministic action decd(x, y) which is possible when
y > 0 and has the effect of decreasing the value of f(x, s)
by y. Then we have the definition dec(x)

.
= πy.decd(x, y).

A particular domain of application where there are finitely
many non-number objects is specified by a finite model basic
action theory of the following form:

D = Du ∪ Σ∞ ∪ P ∪ C ∪ F ∪ Ddef ,where

1. Du = Σ∪Dap∪Dss∪Duna∪DS0 as before, whereDap
and Dss specify the action precondition and successor
state axioms for the deterministic actions, respectively.

2. Σ∞ is the set of axioms for infinite histories.
3. P: the second-order axiomatization of Peano arithmetic.
4. C is the set of axioms for defining Trans and Final.
5. F is the set of the following axioms:

• ∀x, y.µ(x) = µ(y)→ x = y;
• ∃n∀x.µ(x) ≤ n.

The above axioms state that the codings of different ob-
jects are different and there is a largest coding.

6. Ddef is a set of definition axioms where for each non-
determinstic action A(~x), there are two axioms of the
form Trans(A(~x), s, δ, s′) ≡ Trans(δA(~x), s, δ, s′)
and Final(A(~x), s) ≡ Final(δA(~x), s), where δA(~x)
is the definition for A(~x).

Note that we treat non-deterministic actions as abbrevia-
tions for non-deterministic programs, thus we do not define
their preconditions and successor state axioms.
Example 1. An agent needs to clear all the blocks above
a block. Her behavior is constrained by the battery level.
She needs to charge her battery when its level is < 10 (we
assume that the battery level is an integer between 0 and
100). Action execution may consume electricity. There are
4 relational fluents: on(x, y, s), holding(x, s), clear(x, s),
handempty(s), and a functional fluent battery-level(s). We
also have 3 actions: unstack(x, y), drop(x) and charge.
The effect of unstack(x, y) is unstacking x from y, non-
deterministically decreasing the battery level by 1 or 2, de-
pending on the weight of x. To represent unstack(x, y), we

introduce a deterministic action unstack(x, y, η), where η is
the amount of electricity consumption. Below are example
axioms from the BAT for this domain.
Precondition Axioms:
Poss(unstack(x, y, η), s) ≡ on(x, y, s) ∧ 1 ≤ η ≤ 2∧
clear(x, s) ∧ handempty(s) ∧ battery-level(s) ≥ 10

Successor State Axioms:
clear(x, do(a, s)) ≡ (∃y, η)a = unstack(y, x, η)∨
clear(x, s) ∧ ∀z, η.a 6= unstack(x, z, η)

battery-level(do(a, s)) = r ≡ r = 100 ∧ a = charge∨
r = battery-level(s)− 1 ∧ (∃x)a = drop(x)∨
∃x, y, η.a = unstack(x, y, η) ∧ r = battery-level(s)− η.

Non-deterministic Action Definitions:
unstack(x, y)

.
= πη. unstack(x, y, η)

Initial Situation Axiom:
handempty(S0) ∧ battery-level(S0) ≥ 10

4 Our Abstraction Framework
In this section, based on the agent abstraction framework in
[Banihashemi et al., 2017], we propose a uniform abstraction
framework for generalized planning.

4.1 Generalized Planning Problems and Solutions
A generalized planning (g-planning) problem can be defined
as a pair of an action theory and a goal. However, in the pres-
ence of non-deterministic actions, solutions to planning prob-
lems are programs whose execution under certain trajectory
constraints are guaranteed to terminate and achieve the goal.
For example, strong cyclic solutions to FOND problems are
policies that terminate and achieve the goal under the fairness
assumption, which states that if an action occurs infinitely
often, then any of its possible effects occurs infinitely often.
Thus when defining g-planning problems, we include an ex-
tra component of a trajectory constraint, which is a situation
calculus formula with a free variable h of infinite histories.
Definition 1. A generalized planning problem is a tuple
G = 〈D, C,G〉, where D is a BAT, C is a trajectory con-
straint, i.e., a situation calculus formula with a free variable
of infinite histories, and G, a situation-suppressed formula, is
a goal condition.

For example, the fairness assumption can be expressed as
follows. We use ND to denote the set of non-deterministic
actions. For each A ∈ ND, we assume that its definition is
A(~x)

.
= π~y.Ad(~x, ~y). Then the fairness assumption is ex-

pressed as
∧
A∈ND ∀~x.ψ1 ⊃ ψ2, where

ψ1 = ∀s < h∃s′ < h∃~y.s v s′ ∧ do(Ad(~x, ~y), s′) < h,

ψ2 = ∀~y∀s < h∃s′ < h.s v s′ ∧ do(Ad(~x, ~y), s′) < h.

Example 1 cont’d. Let Dl denote the BAT specified earlier.
The low-level g-planning problem is Gl = 〈Dl, Cl, Gl〉,
where Cl is >, and Gl is clear(A).

Solutions to g-planning problems take the form of Golog
programs. To define solutions, we introduce three abbrevia-
tions. Achieve(δ,G) means starting in S0, there is an execu-
tion of δ that makes δ hold:

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1839

Achieve(δ,G)
.
= ∃s.Do(δ, S0, s) ∧G[s].

Ensure(δ,G) means starting in S0, whenever program δ ter-
minates, G is satisfied:

Ensure(δ,G)
.
= ∀s.Do(δ, S0, s) ⊃ G[s].

Term(δ, s, C) means starting in situation s, program δ termi-
nates under constraint C, i.e., there is no infinite execution of
δ starting in s and satisfying C:

Term(δ, s, C)
.
= ¬∃h.C(h)∧∀s′ < h∃δ′ Trans∗(δ, s, δ′, s′).

Note that when ∃s.Do(δ, S0, s) is false, Ensure(δ,G)
holds trivially. The execution of a Golog program may abort
when a test falsifies or the precondition of a primitive action
does not hold. For example, the execution of φ?;α may abort
when φ falsifies or the precondition of α does not hold.
Definition 2. Let G = 〈D, C,G〉 be a g-planning problem,
and δ a Golog program.

1. We say δ is a weak solution to G if D |= Achieve(δ,G).
2. We say δ is a strong solution to G if

D |= Term(δ, S0, C) ∧ Ensure(δ,G) ∧ ∃s.Do(δ, S0, s).

So a weak solution is a program that may achieve the goal,
but is not guaranteed to do so. A strong solution is a weak
solution that, under the trajectory constraint, is guaranteed to
achieve the goal unless the program execution aborts.
Example 2. There is a block on the table and the goal is to
have the block at hand. We have an action pickup, which
may succeed or fail. A weak solution is to pickup the block.
Under the fairness assumption, a strong solution is to pickup
the block until it is at hand. The only infinite executions of
the program are unfair ones.

4.2 Simulations and Back-simulations
The concept of refinement mappings is the same as that in
[Banihashemi et al., 2017] except that a refinement mapping
can also map a high-level function to a low-level term.
Definition 3. A function m is a refinement mapping from
Gh= 〈Dh, Ch, Gh〉 to Gl= 〈Dl, Cl, Gl〉 if for each high-level
deterministic or non-deterministic action typeA,m(A(~x)) =
δA(~x), where δA(~x) is a low-level program; for each high-
level relational fluent P , m(P (~x)) = φP (~x), where φP (~x) is
a low-level situation-suppressed formula; for each high-level
functional fluent f , m(f(~x)) = τf (~x), where τf (~x) is a low-
level term, possibly a counting term.

In the following, we will relate models of Dh and Dl.
When we relate a model Mh of Dh and a model Ml of Dl,
we do not require that the two models have the same object
domain, which is the case in [Banihashemi et al., 2017]. By
m(A(~x)) = δA(~x), we mean that the arguments of δA are
included in ~x, but some xi’s may not appear as arguments of
δA. If some xi is an argument of δA, it represents an object
belonging to both the high-level and low-level models.

Let δ be a high-level program, and φ a high-level formula.
We use m(δ) to denote the program resulting from replac-
ing each high-level symbol in δ with its low-level definitions.
m(φ) is similarly defined.

Example 1 cont’d. We have two high-level actions:
clearablock(x) and charge, where clearablock(x) mean-
s removing the top block of the tower of x. We have two
high-level functional fluents: n(x, s) and battery-level(s),
where n(x, s) counts the number of blocks above x. The ini-
tial KB is battery-level(S0) ≥ 10. We omit axioms from the
high-level action theory Dh. The high-level g-planning prob-
lem is Gh = 〈Dh, Ch, Gh〉, where Ch is also >, and Gh is
n(A) = 0. Below is the refinement mapping from Dh to Dl:

m(clearablock(x)) =

πy, z.(on(y, z) ∧ on∗(z, x))?;unstack(y, z); drop(y),

m(n(x)) = #y. on+(y, x),

where on∗(z, x) and on+(y, x) are transitive closure formu-
las which we introduce in Section 3.

To relate high-level and low-level models, we first define
the m-isomorphism relations between high-level and low-
level situations. The main difference from the definition in
[Banihashemi et al., 2017] is that we do not require that Mh

and Ml have the same object domain, as stated earlier.
We use the following notation. For a variable assignment

v, v[s/sh] denotes the assignment which maps variable s to
situation sh and is the same as v elsewhere. For a model
M of the situation calculus, let ∆M

S stand for the domain of
situations in M , and SM0 for the denotation of S0 in M .

Definition 4. Given a refinement mapping m, a situation sh
of a high-level model Mh is m-isomorphic to a situation sl
in a low-level model Ml, written sh ∼Mh,Ml

m sl, if: for
any high-level relational fluent P , variable assignment v, we
have Mh, v[s/sh] |= P (~x, s) iff Ml, v[s/sl] |= m(P)(~x, s);
for any high-level functional fluent f , variable assignment
v, we have Mh, v[s/sh] |= f(~x, s) = y iff Ml, v[s/sl] |=
m(f)(~x, s) = y.

Note that as before, by writing m(P)(~x, s), we mean that
the object arguments of m(P) are included in ~x, but some
xi’s may not appear as arguments of m(P). If some xi is an
argument of m(P), it represents an object belonging to both
Mh and Ml.
Example 1 cont’d. Let Ml be a model of Dl where there are
3 blocksA,B,C, and letMh be a model ofDh with only one
block A. Then a low-level situation where C is on B, B is on
A, and battery-level = 10 is m-isomorphic to a high-level
situation where n(A) = 2 and battery-level = 10.

Proposition 1. Suppose sh ∼Mh,Ml
m sl. Let φ be a high-level

situation-suppressed formula. Then Mh, v[s/sh] |= φ[s] iff
Ml, v[s/sl] |= m(φ)[s].

In [Banihashemi et al., 2017], high-level and low-level
models are related by an m-bisimulation relation. To define
sound/complete abstractions, we do not require the strong
condition of bisimulation, so we break the bisimulation
relation into the simulation and back-simulation relations.
Intuitively, simulation means: whenever a refinement of a
high-level action can occur, so can the high-level action, and
back-simulation means the other direction. Two extra condi-
tions distinguish our definitions from that of [Banihashemi et
al., 2017]: for each high level actionA(~o), programm(A(~o))

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1840

terminates; we relate the infinite histories of the high-level
and low-level models satisfying the trajectory constraints.

Definition 5. (m-simulation) A relation B ⊆ ∆Mh

S ×
∆Ml

S is an m-simulation relation between Mh and Ml, if
〈SMh

0 , SMl
0 〉 ∈ B and the following hold:

1. 〈sh, sl〉 ∈ B implies that: sh ∼Mh,Ml
m sl; for any high-

level actionA, and variable assignment v,Ml, v[s/sl] |=
Term(m(A(~x)), s, Cl), and if there is a situation s′l s.t.
Ml, v[s/sl, s

′/s′l] |= Do(m(A(~x)), s, s′), then there is a
situation s′h s.t. Mh, v[s/sh, s

′/s′h] |= Do(A(~x), s, s′)
and 〈s′h, s′l〉 ∈ B.

2. For any infinite high-level action sequence σ, if there is
an infinite history in Ml generated by m(σ) and satisfy-
ing Cl, then there is an infinite history in Mh generated
by σ and satisfying Ch.

By an infinite history generated by a program, we mean an
infinite execution of the program.

Definition 6. (m-back-simulation) A relation B ⊆ ∆Mh

S ×
∆Ml

S is an m-back-simulation relation between Mh and Ml,
if 〈SMh

0 , SMl
0 〉 ∈ B, and the following hold:

1. 〈sh, sl〉 ∈ B implies that: sh ∼Mh,Ml
m sl; for

any high-level action A, and variable assignment v,
Ml, v[s/sl] |= Term(m(A(~x)), s, Cl), and if there is a
situation s′h s.t. Mh, v[s/sh, s

′/s′h] |= Do(A(~x), s, s′),
then there is a situation s′l s.t. Ml, v[s/sl, s

′/s′l] |=
Do(m(A(~x)), s, s′) and 〈s′h, s′l〉 ∈ B;

2. For any infinite high-level action sequence σ, if there is
an infinite history in Mh generated by σ and satisfying
Ch, then there is an infinite history in Ml generated by
m(σ) and satisfying Cl.

4.3 Sound/Complete Abstractions on Model Level
We first define sound/complete abstractions on model level,
then we define sound/complete abstractions on theory level.
For both model and theory levels, sound abstractions mean
that high-level behavior entails low-level behavior, and com-
plete abstractions mean the other direction.
Definition 7. We say that Mh is a sound m-abstraction of
Ml, written Mh ∼→m Ml, if there is an m-back-simulation
relation B between Mh and Ml.

The following proposition generalizes the back-simulation
from actions to programs.
Proposition 2. Suppose thatMh is a soundm-abstraction of
Ml via the m-back-simulation relation B. Let δ be a high-
level Golog program, and 〈sh, sl〉 ∈ B. Then

1. if there is a situation s′h inMh s.t. Mh, v[s/sh, s
′/s′h] |=

Do(δ, s, s′), then there is a situation s′l in Ml s.t.
Ml, v[s/sl, s

′/s′l] |= Do(m(δ), s, s′) and 〈s′h, s′l〉 ∈ B;
2. if there is an infinite history in Mh generated by δ and

satisfying Ch, then there is an infinite history in Ml gen-
erated by m(δ) and satisfying Cl.

Proof. To prove 1, use structural induction on δ. For the case
of tests, use Prop. 1. To prove 2, use the condition that for
each high level action A(~o), m(A(~o)) terminates.

Definition 8. We say thatMh is a completem-abstraction of
Ml, written Mh ∼←m Ml, if there is a m-simulation relation
B between Mh and Ml.

Proposition 3. Suppose thatMh is a completem-abstraction
of Ml via the m-simulation relation B. Let δ be a high-level
Golog program, and 〈sh, sl〉 ∈ B. Then

1. if there is a situation s′l in Ml s.t. Ml, v[s/sl, s
′/s′l] |=

Do(m(δ), s, s′), then there is a situation s′h in Mh s.t.
Mh, v[s/sh, s

′/s′h] |= Do(δ, s, s′) and 〈s′h, s′l〉 ∈ B;

2. if there is an infinite history in Ml generated by m(δ)
and satisfying Cl, then there is an infinite history in Mh

generated by δ and satisfying Ch.

4.4 Sound/Complete Abstractions on Theory Level
For both sound and complete abstractions, we first define
their weak versions.

Definition 9. Gh is a weak sound m-abstraction of Gl, if for
any model Ml of Dl, there is a model Mh of Dh s.t.

1. Mh is a sound m-abstraction of Ml via B;

2. for any situations sh in Mh and sl in Ml, if 〈sh, sl〉 ∈ B
and Mh, v[sh/s] |= Gh[s], then Ml, v[sl/s] |= Gl[s].

In case that Gl ≡ m(Gh), by Prop. 1, the above Condition
2 holds, and thus it can be removed from the definition.

Sound abstractions of theories require that each low-level
model should have both sound and complete abstractions.

Definition 10. Gh is a sound m-abstraction of Gl, if it is a
weak sound m-abstraction of Gl, and for any model Ml of
Dl, there is a model Mh of Dh s.t.

1. Mh is a complete m-abstraction of Ml via B;

2. for any situations sh in Mh and sl in Ml, if 〈sh, sl〉 ∈ B
and Mh, v[sh/s] |= Gh[s], then Ml, v[sl/s] |= Gl[s].

Theorem 1. Let Gh be a weak sound m-abstraction of Gl. If
δ is a weak solution to Gh, so is m(δ) to Gl.

Proof. LetMl be a model ofDl. Then there is a modelMh of
Dh s.t. Mh is a sound abstraction of Ml via B. We show that
Ml |= Achieve(m(δ), Gl). Since Mh |= Achieve(δ,Gh),
there is a situation sh in Mh s.t. Mh, v[s/sh] |=
Do(δ, S0, s) ∧ Gh[s]. By Prop. 2, there is a situation sl in
Ml s.t. Ml, v[s/sl] |= Do(m(δ), S0, s) and 〈sh, sl〉 ∈ B. By
Condition 2 of Definition 9, Ml, v[s/sl] |= Gl[s].

Theorem 2. Let Gh be a sound m-abstraction of Gl. If δ is a
strong solution to Gh, so is m(δ) to Gl.

Proof. By Theorem 1, m(δ) is weak solution to Gl. We
now prove it is also a strong solution. Let Ml be a model
of Dl. Then there is a model Mh of Dh s.t. Mh is a
complete abstraction of Ml via B. We first show that
Ml |= Ensure(m(δ), Gl). Let sl be a situation in Ml s.t.
Ml, v[s/sl] |= Do(δ, S0, s). By Prop. 3, there is a situation
sh in Mh s.t. Mh, v[s/sh] |= Do(δ, S0, s) and 〈sh, sl〉 ∈ B.
Since Mh |= Ensure(δ,Gh), Mh, v[s/sh] |= Gh[s]. By Con-
dition 2 of Definition 10, Ml, v[s/sl] |= Gl[s]. We now show
that Ml |= Term(m(δ), S0, Cl). Assume that hl is an infinite
history in Ml generated by m(δ) and satisfying Cl. By Prop.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1841

3, there is an infinite history in Mh generated by δ and satis-
fying Ch, contradicting with Mh |= Term(δ, S0, Ch).

Example 1 cont’d. It is easy to prove that Gh is a sound
abstraction of Gl. The following is a strong solution to Gh:

[(n(A) > 0 ∧ battery-level ≥ 10)?; clearablock(A) |
(battery-level < 10)?; charge]∗.

Then, by Theorem 2, we get a strong solution of Gl as follows:

[(∃x.on+(x,A) ∧ battery-level ≥ 10)?;

πy, z.(on(y, z) ∧ on∗(z,A))? unstack(y, z); drop(y); |
(battery-level < 10)?; charge]∗.

Definition 11. Gh is a weak complete m-abstraction of Gl, if
for any model Mh of Dh, there is a model Ml of Dl s.t.

1. Mh is a complete m-abstraction of Ml via B;

2. for any situations sh in Mh, sl in Ml, if 〈sh, sl〉 ∈ B
and Ml, v[sl/s] |= Gl[s], then Mh, v[sh/s] |= Gh[s].

Complete abstractions of theories require that every high-
level model is both a sound abstraction of a low-level model
and a complete abstraction of a low-level model.

Definition 12. Gh is a complete m-abstraction of Gl, if it is
a weak complete m-abstraction of Gl, and for any model Mh

of Dh, there is a model Ml of Dl s.t.

1. Mh is a sound m-abstraction of Ml via B;

2. for any situations sh in Mh, sl in Ml, if 〈sh, sl〉 ∈ B
and Ml, v[sl/s] |= Gl[s], then Mh, v[sh/s] |= Gh[s].

Theorem 3. Let Gh be a weak complete m-abstraction of Gl.
If m(δ) is a weak solution to Gl, so is δ to Gh.

Theorem 4. Let Gh be a complete m-abstraction of Gl. If
m(δ) is a strong solution to Gl, so is δ to Gh.

Corollary 1. Let Gh be a sound and complete m-abstraction
of Gl. Then δ is a strong solution to Gh iff m(δ) is a strong
solution to Gl.

5 Formalizing Existing Abstraction Works
In this section, we show that three main abstraction works in
generalized planning can be formalized in our framework.

5.1 Srivastava et al.’s Work
QNP problems are classical planning problems extended with
a set of non-negative numerical variables whose values are
real numbers and can be decreased or increased randomly.

Definition 13. Let X be a set of non-negative numeric vari-
ables. LX denotes the class of all consistent sets of literals
of the form x = 0 and x 6= 0, for x ∈ X . A QNP problem
Q = 〈X, I,G,O〉 consists of X; I ∈ LX , a set of initial-
ly true literals; G ∈ LX , a set of goal literals; and O, a set
of action operators. Every o ∈ O has a set of preconditions
pre(o) ∈ LX , and a set eff(o) of effects of the form inc(x)
or dec(x) for x ∈ X . An instance of Q is a quantitative
planning problem whose initial state, which specifies a non-
negative real number for each x ∈ X , satisfies I .

Definition 14. Let Q = 〈X, I,G,O〉 be a QNP problem. A
policy for Q is a mapping from qualitative states to actions.
For ε > 0, a trajectory of states is ε-bounded, if for any action
o performed, if o decreases a variable x, then either the old
value is < ε and the new value equals 0 or the amount of
decrease is ≥ ε. A policy π solves an instance of Q if for
any ε > 0, every ε-bounded trajectory induced by π is goal
reaching. A policy π solvesQ if it solves every instance of it.

FOND problems are like classical planning problems ex-
cept that an action o may have non-deterministic effects ex-
pressed as eff1(o)| . . . |effn(o).

Definition 15. A QNP problemQ = 〈X, I,G,O〉 is abstract-
ed into a FOND problem Q′ as follows: the literal x 6= 0
is replaced by an atom px; effect inc(x) is replaced by de-
terministic effect px; and effect dec(x) is replaced by non-
deterministic effect px|¬px.

Theorem 3 in [Srivastava et al., 2011]. π is a policy that
solves Q iff it is a strong cyclic policy for Q′ that terminates.

Srivastava et al. proposed the Sieve algorithm to determine
if a policy terminates. They made the key observation: In any
ε-bounded trajectory, no variable can be decreased infinitely
often without an intermediate increase. Based on this obser-
vation, Bonet and Geffner [2018] formalized the concept of
conditional fairness. A strong cyclic policy for Q′ that ter-
minates can be equivalently defined as: a policy π s.t. every
conditional fair trajectory induced by π is goal reaching.

Definition 16. A trajectory of states of Q′ is conditionally
fair if: from any time point on, for any x ∈ X , if no action
with effect px ever occurs and actions with effect px|¬px oc-
cur infinitely often, then eventually px falsifies.

We now formalize the above work in our framework:
The low-level language is as follows: for each x ∈ X , we

have a functional fluent fx(s); for each o ∈ O, we have an
action Ao and a primitive action ao(~ηo), where ~ηo contains
a parameter ηx for each x ∈ X s.t. inc(x) or dec(x) is in
eff(o). The following is the specification of the g-planning
problem Gq . We omit the initial KB and the goal condition.
Precondition axioms: for each action o ∈ O,

Poss(ao(~ηo), s) ≡
∧

x=0∈pre(o)

fx(s) = 0∧

∧
x 6=0∈pre(o)

fx(s) 6= 0 ∧
∧

ηx∈~ηo

ηx > 0

Successor state axioms: for each x ∈ X ,

fx(do(a, s)) = r ≡∨
o∈O s.t. inc(x)∈eff(o)

∃~ηo. a = ao(~ηo) ∧ r = fx(s) + ηx ∨

∨
o∈O s.t. dec(x)∈eff(o)

∃~ηo. a = ao(~ηo) ∧ r = fx(s)− ηx

Non-deterministic action definitions: for each o ∈ O,

Ao ≡ π~ηo. ao(~ηo)

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1842

Trajectory constraint (ε-boundedness):

∃ε > 0∀s < h∀s′
∧

(x,o)∈S

∀~ηo.s = do(ao(~ηo), s
′)

⊃ fx(s′) < ε ∧ fx(s) = 0 ∨ ηx ≥ ε,

where S = {(x, o) | x ∈ X, o ∈ O, dec(x) ∈ eff(o)}.
The high-level language is as follows: for each x ∈ X ,

we have a relational fluent px(s), meaning x > 0; for each
o ∈ O, we have an action Bo and a primitive action bo(~ηo),
where each ηx takes values from {0, 1}, where 0 means px
becomes false and 1 means true.

We omit the specification of the high-level g-planning
problem Gf except the trajectory constraint for conditional
fairness. We let dec(x, s) abbreviate for the following formu-
la, which means s results from an action which decreases x
(inc(x, s) can be similarly defined.):

∃a∃s′.s = do(a, s′) ∧
∨

o∈O s.t. dec(x)∈eff(o)

∃~ηo.a = bo(~ηo).

Then conditional fairness is formalized as follows:
∀s < h.ψ ⊃ ∃s′ < h.s v s′ ∧ ¬px(s′), where ψ is

∀s′ < h[s v s′ ⊃ ¬inc(x, s′) ∧ ∃s′′(s′ v s′′ ∧ dec(x, s′′))].

Below is the refinement mapping: for each x ∈ X ,
m(px) = fx > 0; for each o ∈ O, m(Bo) = Ao.

Theorem 5. Gf is a sound & complete m-abstraction of Gq .

Proof. Note that we have Gq = m(Gf). To prove that a
conditional fair high-level infinite history corresponds to a ε-
bounded low-level infinite history, we use the technique in the
proof of Theorem 5 (Completeness of the Sieve algorithm) in
[Srivastava et al., 2011].

5.2 Bonet and Geffner’s Work
Bonet and Geffner [2018] proposed solving generalized clas-
sical planning problems by abstracting them into QNP prob-
lems. For example, for the problem of achieving clear(A), it
can be abstracted into a QNP problem with one numeric fea-
ture depth(A), meaning the number of blocks aboveA, an ac-
tion that decrements depth(A), and the goal depth(A) = 0.
They showed that if the abstraction is sound, then a solution
to the QNP problem is also a solution to the original problem.
However, their abstract actions are restricted in the sense that
the execution of an abstract action results in the execution of
a single concrete action.

Using our framework, we can give a more general formal-
ization of their work where the execution of an abstract action
may correspond to that of a sequence of concrete actions. The
language of a generalized classical planning problem Gc con-
sists of a set of relational fluents and a set of deterministic
actions. The trajectory constraint of Gc is simply >. Such
a problem is abstracted into a generalized numerical plan-
ning problem Gbq extended with a set of relational fluents
p(s). The refinement mapping maps a relational fluent to a
low-level formula, a functional fluent to a low-level nat term,
possibly a counting term, and maps an actionA to a low-level
program δ executable when the precondition of A holds and

achieving the effect of A. Gbq is a sound abstraction of Gc,
if for every instance Mc of Gc, which is a classical planning
problem, there is an instance of Gbq , which is a quantitative
numerical planning problem, s.t. Mbq is a sound abstraction
of Mc. Then we have the following result:

Corollary 2. If Gbq is a sound abstraction of Gc and δ is a
strong solution to Gbq , then m(δ) is a strong solution to Gc.

5.3 Illanes and McIlraith’s Work
Illanes and McIlraith[2019] considered solving a class of gen-
eralized classical planning problems by automatically deriv-
ing a sound QNP abstraction from an instance of the problem.
The automatic abstraction process is based on introducing a
counter for each set of indistinguishable objects using the idea
from [Fuentetaja and de la Rosa, 2016]. For example, sup-
pose we have an instance where a number of packages must
be delivered from a source location to either of two other loca-
tionsA orB. Then we can automatically extract two counter-
s, one for packages to be relocated toA, and one for packages
to be relocated toB. Then the QNP problem is solved by con-
verting it into a FOND problem, which they call a quantified
planning problem. What distinguishes this work from that of
[Bonet and Geffner, 2018] is that the latter didn’t address the
issue of automatical derivation of sound QNP abstractions.

Similarly to [Bonet and Geffner, 2018], Illanes and McIl-
raith’s abstraction from generalized classical planning to QN-
P can be formalized in our framework as G′c and G′bq , and the
refinement mapping maps each functional fluent to a counting
term. Then we have the following result:

Corollary 3. G′bq is a sound abstraction of G′c. Thus if δ is a
strong solution to G′bq , then m(δ) is a strong solution to G′c.

6 Conclusions
In this paper, we proposed a uniform abstraction frame-
work for generalized planning based on the situation calcu-
lus and Golog. We formalized the concept of generalized
planning problems and solutions, covering generalized clas-
sical planning, QNP, and FOND. We defined the concepts
of sound/complete abstractions of generalized planning prob-
lems and show that solutions to a generalized planning prob-
lem are nicely related to those of its sound/complete abstrac-
tions. In this paper, we only give model-theoretic definitions
of sound/complete abstractions. In the future, we are inter-
ested in their proof-theoretic characterizations. Further, we
would like to explore automatic discovery of sound/complete
abstractions.

Acknowledgments
We thank Yves Lespérance for helpful discussions on the pa-
per. We acknowledge support from the Natural Science Foun-
dation of China under Grant No. 62076261.

References
[Bacchus et al., 1995] Fahiem Bacchus, Joseph Y. Halpern,

and Hector J. Levesque. Reasoning about noisy sensors in
the situation calculus. In Proceedings of the Fourteenth

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1843

International Joint Conference on Artificial Intelligence
(IJCAI-95), pages 1933–1940, 1995.

[Banihashemi et al., 2017] Bita Banihashemi, Giuseppe De
Giacomo, and Yves Lespérance. Abstraction in situation
calculus action theories. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence, pages 1048–
1055, 2017.

[Bonet and Geffner, 2018] Blai Bonet and Hector Geffner.
Features, projections, and representation change for gener-
alized planning. In Proceedings of the 27th International
Joint Conference on Artificial Intelligence, pages 4667–
4673, 2018.

[Bonet et al., 2017] Blai Bonet, Giuseppe De Giacomo, Hec-
tor Geffner, and Sasha Rubin. Generalized planning: Non-
deterministic abstractions and trajectory constraints. In
Proceedings of the Twenty-sixth International Joint Con-
ference on Artificial Intelligence, 2017.

[De Giacomo et al., 2000] Giuseppe De Giacomo, Yves
Lespérance, and Hector J. Levesque. Congolog, a con-
current programming language based on the situation cal-
culus. Artif. Intell., 121(1-2):109–169, 2000.

[Fuentetaja and de la Rosa, 2016] Raquel Fuentetaja and
Tomás de la Rosa. Compiling irrelevant objects to
counters. Special case of creation planning. AI Commun.,
29(3):435–467, 2016.

[Hu and De Giacomo, 2011] Yuxiao Hu and Giuseppe
De Giacomo. Generalized planning: Synthesizing plans
that work for multiple environments. In Proceedings
of the 22nd International Joint Conference on Artificial
Intelligence, 2011.

[Illanes and McIlraith, 2019] León Illanes and Sheila A. M-
cIlraith. Generalized planning via abstraction: Arbitrary
numbers of objects. In Proceedings of the 33rd AAAI Con-
ference on Artificial Intelligence, pages 7610–7618, 2019.

[Immerman and Vardi, 1997] Neil Immerman and Moshe Y.
Vardi. Model checking and transitive-closure logic. In
Proceeding of 9th International Conference on Computer
Aided Verification, pages 291–302, 1997.

[Kuske and Schweikardt, 2017] Dietrich Kuske and Nicole
Schweikardt. First-order logic with counting. In 32nd
Annual ACM/IEEE Symposium on Logic in Computer Sci-
ence, pages 1–12, 2017.

[Levesque et al., 1997] Hector J. Levesque, Raymond Reit-
er, Yves Lespérance, Fangzhen Lin, and Richard B. Scher-
l. Golog: A logic programming language for dynamic do-
mains. Journal of Logic Programming, 31(1–3):59–83,
1997.

[Li and Liu, 2020] Jian Li and Yongmei Liu. Automatic ver-
ification of liveness properties in the situation calculus. In
Proceedings of the Thirty-Fourth AAAI Conference on Ar-
tificial Intelligence, pages 2886–2892, 2020.

[Reiter, 2001] Raymond Reiter. Knowledge in Action: Logi-
cal Foundations for Specifying and Implementing Dynam-
ical Systems. MIT Press, 2001.

[Schulte and Delgrande, 2004] Oliver Schulte and James P.
Delgrande. Representing von Neumann-Morgenstern
games in the situation calculus. Annals of Mathematics
and Artificial Intelligence, 42(1-3):73–101, 2004.

[Segovia-Aguas et al., 2016] Javier Segovia-Aguas, Sergio
Jiménez, and Anders Jonsson. Generalized planning with
procedural domain control knowledge. In Proceedings of
the Twenty-Sixth International Conference on Automated
Planning and Scheduling (ICAPS), 2016.

[Srivastava et al., 2008] Siddharth Srivastava, Neil Immer-
man, and Shlomo Zilberstein. Learning generalized plan-
s using abstract counting. In Proceedings of the Twenty-
Third AAAI Conference on Artificial Intelligence, 2008.

[Srivastava et al., 2011] Siddharth Srivastava, Shlomo Zil-
berstein, Neil Immerman, and Hector Geffner. Qualitative
numeric planning. In Proceedings of the 25th AAAI Con-
ference on Artificial Intelligence, pages 1010–1016, 2011.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1844

	Introduction
	Preliminaries
	Extension of the Situation Calculus
	Our Abstraction Framework
	Generalized Planning Problems and Solutions
	Simulations and Back-simulations
	Sound/Complete Abstractions on Model Level
	Sound/Complete Abstractions on Theory Level

	Formalizing Existing Abstraction Works
	Srivastava et al.’s Work
	Bonet and Geffner’s Work
	Illanes and McIlraith’s Work

	Conclusions

