Solving QNP and FOND™" with Generating, Testing and Forbidding

Zheyuan Shi, Hao Dong, Yongmei Liu*
Dept. of Computer Science, Sun Yat-sen University, Guangzhou 510006, China
{shizhy5,dongh33} @mail2.sysu.edu.cn, ymliu@mail.sysu.edu.cn

Abstract

Qualitative Numerical Planning (QNP) extends
classical planning with numerical variables that can
be changed by arbitrary amounts. FOND™ extends
Fully Observable Non-Deterministic (FOND) plan-
ning by introducing explicit fairness assumptions,
resulting in a more expressive model that can also
capture QNP as a special case. However, existing
QNP and FOND™ solvers still face significant scal-
ability challenges. To address this, we propose a
novel framework for solving QNP and FOND™ by
generating strong cyclic solutions of the associated
FOND problem, testing their validity, and forbid-
ding non-solutions in conducting further searches.
For this, we propose a procedure called SIEVE*,
which generalizes the QNP termination testing al-
gorithm SIEVE to determine whether a strong
cyclic solution is a FOND™ solution. Additionally,
we propose several optimization techniques to fur-
ther improve the performance of our basic frame-
work. We implemented our approach based on the
advanced FOND solver PRP; experimental results
show that our solver shows superior scalability over
the existing QNP and FOND™ solvers.

1 Introduction

Fully Observable Non-Deterministic (FOND) planning ex-
tends classical planning to handle non-deterministic actions.
In this context, strong-cyclic (SC) planning seeks to find a
policy that ensures any reachable state has a trajectory lead-
ing to the goal. In contrast, strong planning finds policies
that are guaranteed to reach the goal. It turns out that strong
cyclic solutions are policies that are guaranteed to achieve
the goal under the fairness assumption, which states that if
an action occurs infinitely often, then any of its possible ef-
fects occurs infinitely often. Building on these, Qualitative
Numerical Planning (QNP) [Srivastava et al., 2011] further
introduces non-deterministic numeric effects, while FOND+
[Rodriguez et al., 2022] generalizes SC, strong, and QNP
planning by incorporating explicit fairness assumptions.

*Corresponding author

There are a number of existing solvers for QNP and
FOND™. Srivastava et al. [2011] proposed a generate-and-
test method for solving a QNP problem, which translates the
QNP problem into a FOND problem, solves it in the strong-
cyclic setting and verifies termination using the SIEVE algo-
rithm. However, there is no efficient implementation of this
idea. Later, Bonet and Geffner [2020] proposed a method
called gqnp2fond, which compiles QNP into a more complex
FOND problem and solves it with existing FOND solvers like
PRP [Muise et al., 2012]. Another recent QNP solver, DSET
[Zeng et al., 2022], introduced an algorithm that directly
searches for a solution on the AND/OR graph induced by the
QNP problem. FOND-ASP [Rodriguez et al., 2022] provides
a unified framework for solving QNP and FOND™ problems
by reducing them to Answer Set Programming (ASP) [Lif-
schitz, 2008], characterizing solutions as policies where all
reachable states “terminate” under conditional fairness as-
sumptions.

While existing solvers perform well on small problems,
they often struggle with large-scale problems. For example,
gnp2fond introduces a large number of additional actions and
variables, leading to overly complex and hard-to-parse en-
codings. DSET lacks effective heuristics, resulting in poor
scalability on large QNPs. As the only efficient FOND™
solver currently, FOND-ASP frequently encounters timeouts
or memory issues due to its need to encode all reachable
states, leading to large and costly representations.

Motivated by the idea of building an efficient QNP and
FOND™ solver based on the advanced PRP solver which uses
a key technique of forbidden state action pairs (fsaps), we
propose a novel Generate-Test-and-Forbid (GTF) framework
for solving QNP and FOND™ problems. Our approach itera-
tively generates SC solutions by adapting PRP, tests their va-
lidity under explicit fairness assumptions, and conducts fur-
ther searches by forbidding existing state-action assignments
(referred to as steps). For this purpose, we propose a test-
ing algorithm for FOND™ called SIEVE* that generalizes
SIEVE, and show that the solutions of a FOND™ problem are
the strong-cyclic solutions of the underlying FOND problem
that pass the SIEVE* test. If a generated solution is invalid,
the framework refines the search by forbidding specific steps,
guiding the solver toward valid solutions.

To improve the efficiency of this process, we introduce
several optimization techniques: 1) Pruning with key steps.

By identifying essential state-action assignments that must
be preserved for any valid solution, we prune unnecessary
branches in the search space. 2) Precomputing vital fsaps.
We precompute some vital fsaps and forbid them in advance.
3) Heuristics for ordering forbidden steps. We leverage in-
sights from SIEVE* and numeric planners to rearrange the
order of forbidding steps, guiding the search toward branches
that are more likely to contain valid solutions.

Based on our proposed approach, we implemented three
variants of QNP and FOND™ solvers. Through extensive ex-
periments on existing and newly constructed problems, we
demonstrate that our method shows superior performance
over existing solvers on large-scale QNP problems and the
majority of FOND™ problems, and performs comparably to
state-of-the-art solvers on small-scale QNP problems.

2 Preliminaries
2.1 FOND Planning

We follow the representation of fully observable non-
deterministic (FOND) problems from [Muise et al., 2012].
Let V be a finite set of variables, each with a finite domain
D that includes | to denote undefined values. A partial
state is a function mapping each v € V to a value in D,
while a complete state (or simply state) assigns every vari-
able a defined value (i.e., no L). A partial state s entails s’
(written s |= ') if s agrees with s’ on all variables defined in
s'. The update s @ s’ applies s to s, taking values from s’
where defined, and from s otherwise.

Definition 1. A FOND planning problem is a tuple
(V, ", 5%, A), where V is a finite set of variables, the initial
state s¥ is a complete state, the goal s* is a partial state, and A
is a set of actions. Each action in A is made up of two parts:
Pre,, a partial state that describes the condition under which
a may be executed; and Eff,, a finite set of partial states that
describe the possible outcomes of the action.

An action ¢ is non-deterministic if [Eff,| > 1, and deter-
ministic if |Eff,| = 1. It is applicable in a partial state s if
s |= Pre,. The progression of a partial state s w.r.t. an action
a and effect e € Eff,, denoted Prog(s, a,e), is the updated
partial state s & e when a is applicable in s, and undefined
otherwise. The set of successor states after executing action
a in s is denoted by: F'(a, s) = {Prog(s,a,e) | e € Eff,}.

Definition 2. A policy 7 for a FOND problem P is a partial
function mapping non-goal states into applicable actions.

Given a policy 7, a state trajectory sg, s1, . . . (finite or in-
finite) is called a 7-trajectory if s is the initial state, and for
alli > 0, s,41 € F(ay, s;) where a; = 7(s;). A m-trajectory
is maximal if it is infinite, or it is finite and the last state s,,
is the first goal state in the sequence or 7(s,) = L. A state
s is reachable by m if there is a m-trajectory sg,...,s; and
a state s is reachable from s by 7 if there is a 7w-trajectory
805+, Sy..., 8.

There are three types of solutions in the FOND setting
[Cimatti et al., 2003]:

Definition 3. Let P be a FOND problem.

1. A policy 7 is a weak solution of P if there exists a -
trajectory reaching the goal.

2. A policy 7 is a strong solution of P if every maximal
m-trajectory is finite and goal-reaching.

3. A policy 7 is a strong cyclic (SC) solution of P if every
state reachable by 7 can reach the goal.

In the rest of this section, we will use the Boolean version
of FOND problems where all variables are Boolean.

22 QNP

Given a set of Boolean atoms At and a set of non-negative
numerical variables V', we use £ to denote the class of all
consistent sets of literals of the form p and —p for p € At,
and X > 0and X = 0 for X € V. A set of literals is said
to be consistent if it does not contain both p and —p for any
Boolean atom p, and does not contain both X > O0and X =0
for any numerical variable X.

Definition 4. A qualitative numerical planning (QNP) prob-
lem @ is atuple (At, V, I, O, G) where At is a set of Boolean
atoms, V' is a set of non-negative numerical variables, [€ £
is the initial state, G € L is the goal condition, and O is
a set of actions. Every o € O has a set of preconditions
pre(o) € L, and effects eff(0). Boolean effects of ¢ff{(o) con-
tain literals of the form p and —p for p € At. Numerical
effects of eff(0) contain special atoms of the form X 1 or X |
for X € V which increase or decrease X by an arbitrary
amount. The literal X > 0 is a precondition of all actions
with X | effects.

A sound and complete two-step method for solving QNPs
was formulated by Srivastava et al. [2011]: the QNP problem
@ is converted into a standard FOND problem P = T»(Q)
and its (strong-cyclic) solution is checked for termination. To
get Tp(Q), a Boolean atom px is introduced for each nu-
merical variable X. Then literals X > 0 and X = 0 are
replaced by literals px and —px, respectively. Effect X 1 is
replaced by effect px, and effect X | is replaced by a non-
deterministic choice of px and —px.

To check the termination of a policy 7 for P = Tp(Q),
Srivastava et al. [2011] proposed a sound and complete al-
gorithm called SIEVE by repeatedly removing edges from
the transition graph of 7 until the graph becomes acyclic or
no additional edges can be removed. SIEVE identifies first
the strongly connected components (SCCs) of the graph, then
tries to remove an edge from an SCC. An edge can be re-
moved from an SCC if there is a variable X s.t. the edge
decrements X and no edge in the SCC increments X .

2.3 FOND*

Definition 5. A FOND™ problem P, = (P,C) is a FOND
problem P extended with a set C' of (conditional) fairness
assumptions of the form A;/B;, i = 1,...,n, where each A;
is a set of non-deterministic actions in P, and each B; is a set
of actions in P disjoint from A;.

Definition 6. A 7-trajectory 7 for a FOND™ problem P, is
fair if the following holds: for any fairness assumption A;/B;
in P, and for any action a € A;, if a occurs infinitely often
on 7 and actions from B; occurs finitely often, then any of a’s
possible effects occurs infinitely often on 7.

Besides, we say an action a is adversarial if it is not in any
A; of any fairness assumption (A;/B;), and is fair if there is
a fairness assumption (A; /@) where a € A;. Here we use &
to represent the empty set.

Definition 7. A policy 7 solves a FOND™ problem if all
maximal 7-trajectories that are fair reach the goal.

Rodriguez et al. [2022] showed that strong, strong cyclic
and QNP planning can all be reduced to FOND™ planning:

1. The strong solutions of a FOND problem P are the so-
lutions of the FOND™ problem P, = (P, &).

2. The strong-cyclic solutions of a FOND problem P are
the solutions of the FOND™ problem P, = (P, {A/@}),
where A is the set of all non-deterministic actions in P.

3. The solutions of a QNP problem () are the solutions of
the FOND™ problem P. = (P,C) where P = Tp(Q)
and C'is the set of fairness assumptions A;/B;, one for
each numerical variable x; in (), such that A; contains
all the actions in () that decrement x;, and B; contains
all the actions in () that increment ;.

3 SIEVE* Testing for FOND*

We propose a testing algorithm for FOND™, called SIEVE*,
which generalizes the QNP-specific SIEVE, and show that
FOND™ solutions are precisely the strong cyclic solutions of
the underlying FOND problem that pass the SIEVE* test.

The main idea of SIEVE* is as follows: Like SIEVE, given
a policy, SIEVE* repeatedly removes edges from the transi-
tion graph of the policy until the graph becomes acyclic or no
more edges can be removed, and the condition for removing
an edge is a generalization of that for SIEVE. As shown in
Alg. 1, SIEVE* takes as input a graph g and a set C' of con-
ditional fairness assumptions. SIEVE* first checks for the
strong connectivity of g, and if it is not strongly connected,
we compute the SCCs of g following Tarjan’s algorithm [Tar-
jan, 1972] (line 2), and run SIEVE* on these sub-graphs re-
cursively; if g is strongly connected, then we repeatedly re-
move edges from g when conditions 1) and 2) are satisfied
(line 7). If g is acyclic, it is considered to pass the test (line
10). If no edge is removed, the graph g is said to fail the test
(line 12). Otherwise, SIEVE* is recursively applied to the
graph after edge removals (line 13).

We now illustrate the algorithm with an example.

Example 1. Consider a FOND™ problem with a single fair-
ness assumption A/, where A = {a;, ay }. Fig. 1 illustrates
two state transition graphs g, and gyign for different scenar-
ios of a policy 7, with only three states s;, s;, and s, and the
associated transitions displayed. Let [r = le ft or right.
SIEVE*(g,.) identifies the SCC (line 2), denoted as gllﬂk,
containing nodes s;, s;, and s. It then removes the edge
(sj,si), as m(s;) is in A and F(7(s;),s;) contains nodes
outside gﬂk (line 7). Despite this removal, glurk remains cyclic,
leading the algorithm to call SIEVE* again (line 13). At this
point, the SCC obtained by SCCs-of(¢™) in SIEVE*(g'¥)

Ir Ir
only contains nodes s; and s, denoted as gi*. However,

in the left case, no edge satisfies both conditions 1) and 2),

Algorithm 1: SIEVE*

Input: Graph g, fairness assumptions C'
Qutput: “True” for passing, “False” otherwise

1 if g is not strongly connected then

2 foreach ¢’ € SCCs-of (g) do

3 if SIEVE*(q',C) = “False” then
4 L | return “False”;

5 return “True”;

¢ repeat

7 remove an edge (s, ') in g if 1) there exists
A;/B; € C such that 7(s) € A; and no action in
B; appears in g and 2) at least one state in
F(n(s),s)isnotin g.

s until no edge can be removed,

9 if g is acyclic then

0 | return “True”;

n if no edge was removed then
12 | return “False”;

13 return SIEVE*(g,C);

SO SIEVE*(g}é‘ﬂ) returns False, causing SIEVE*(gg;) then
SIEVE*(gieft) to return False (line 4). In contrast, in the right
case, F(m(sy),s)) contains s; not in gy, allowing edge
(sk,si) to be removed, thus converting gify,, into acyclic,

and SIEVE*(gif,) returns True. So SIEVE*(gEl;m) returns
True (line 5) and we need to check other SCCs in SCCs-
0f(right)- Actually, in the left graph, there is a fair 7-trajectory
(805 - - -, iy Sky Sk, Si, - - -) that loops infinitely in giX;, indicat-
ing 7 is not a FOND™ solution according to Def. 7.

a;
Sj [

aj
/ Sj —> .-
aj
/
ak ag
o)

Figure 1: Two state transition graphs gier and grign, Where s;, s;,
and sy are non-goal states, and a;, a;, and ax are non-deterministic
actions. The initial states s are in the “...” leading to s;.

We have the following nice characterization of FOND™ so-
lutions. We use G() to denote the transition graph of 7.

Theorem 1. A policy 7 is a solution to a FOND™ prob-
lem P. = (P,C) iff m is a strong cyclic solution of P and
SIEVE*(G(r), C) returns “True”.

Sketch. =-: Assume 7 is not a strong cyclic solution of P. We
use m-deadend to refer to a state s that is reachable by 7 but
cannot reach the goal. Then there must exist an SCC where
all states are m-deadends. We can use this SCC to construct a
fair maximal m-trajectory that is not goal-reaching. So 7 is a
strong cyclic solution of P. Assume 7 fails to pass SIEVE*.

Then there must exist an SCC g, of G(7) s.t. SIEVE*(gs.)
returns “False”. Again, we can use this SCC to construct a
fair maximal 7-trajectory that is not goal-reaching.

<: Assume 7 is not a solution of P,. Then there exists a
fair maximal 7-trajectory 7 that cannot reach the goal. From
7, we can get an SCC of G () where no edge can be removed
by SIEVE*. Thus 7 fails to pass the SIEVE* test. O

Note when a sub-graph of G () fails the SIEVE* test, G()
will also fail the test (as the left case in Fig. 1 shows). This
makes it possible for early detection of failure of a partial
policy and serves as a pruning mechanism during the search
for a solution, which will be introduced in Section 5.1.

Also note that SIEVE is a special case of SIEVE*. By the
reduction of QNP to FOND™ at the end of Section 2.3, the
edge removal condition used in the SIEVE algorithm corre-
sponds to condition 1) in SIEVE*. Condition 2) always holds
in the QNP setting, which can be shown by contradiction,
though we will not prove it here.

4 The Generate-Test-and-Forbid Framework

To solve FOND™ problems, we aim to generate an SC so-
Iution that passes SIEVE*. In this section, we propose the
PRP-based generate-test-and-forbid (GTF) framework as the
basic framework for solving FOND™, and prove its sound-
ness and completeness.

To solve FOND problems, PRP builds an SC solution by
repeatedly repairing a weak solution generated by a classi-
cal planner. A key technique used by PRP is the recording
of deadends as forbidden partial state-action pairs (fsaps) to
avoid them in all subsequent searches.

In this work, we adapt PRP as the underlying strong cyclic
generator and further use fsaps for two purposes: (1) to pre-
vent the generation of SC solutions that use vital fsaps (which
will be identified in Section 5.2), and (2) to generate all SC
solutions by incrementally forbidding complete state-action
pairs, which we refer to as steps.

Definition 8. A state-action pair (s, a) is a step if s |= Pre,.
Given a policy T, its step set W() is the set of state-action
pairs (s, m(s)) where s is reachable by 7 and 7(s) # L.

Given a policy 7, for any 7/, if there exists (s,a) € ¥(n)
such that (s,a) ¢ U(x’), then 7’ is different from 7. Thus,
by searching without using the steps in ¥(7), we can obtain
solutions distinct from 7. We refer to the steps that are not
allowed to be used as Forbidden Steps (FSteps). A strong
cyclic solution 7 forbids step set fsteps if ¥(w) does not
include any step from fsteps.

Definition 9. Given a FOND problem P and a step set
fsteps, we use F'SCp(fsteps) to denote the set of all strong
cyclic solutions of P that forbid fsteps: F'SCp(fsteps) =
{m | = is an SC solution of P, U(w) N fsteps = &}.

Clearly, F'SCp(2) is the set of strong cyclic solutions of
P. The following proposition states that to enumerate all SC
solutions forbidding a step set fsteps, it suffices to find one
such solution 7, and then recursively enumerate all SC solu-
tions obtained by additionally forbidding each step in ¥ (7):

Algorithm 2: FOND™ Solver. Entry Program

Input: FOND™ problem P, = (P, C)
Output: A FOND™ solution 7 or “None”

1 '+ @

2 xK +— &;

3 xPreComputeVFsaps(F’);
4 return GTF(P,, F, *K);

Algorithm 3: FOND™ Solver. GTF

Input: FOND™ problem P, = (P, C),
fsaps F',
*key steps K
Output: A FOND™ solution forbidding F or “None”
1 7 < FindSC(P,F);
2 if there is no SC solution then
3 L return “None”;

if SIEVE*(G(r),C) = “True” then
L return 7;

wm &

¢ xRearrange(¥());

7 foreach step € U(rw) do
8 *if step € K then

9 | continue

10 if 7' + GTF(P,, F U {step}, xK) then
1 L return 7’;

12 * K .add(step);
13 *if SIEVE*(G(K),C) = “False” then
14 L return “None”;

5| +F.AddBlockingFSteps(step);

16 return “None”;

Proposition 1. For a FOND problem P, if 7 €
FSCp(fsteps), then we have FSCp(fsteps) = {n} U
Uis.ayew(m) FSCp(fsteps U{(s,a)}).

The solving framework consists of two parts: the entry pro-
gram for initializing the solving process (Alg. 2) and the
generate-test-and-forbid process GTF (Alg. 3). In this sec-
tion, we do not consider the lines and variables marked with
*, which concern optimization techniques and will be dis-
cussed in the next section. Given a set of FSteps F’, the pro-
cess GTF(P,, F) returns a FOND* solution in F.SCp(F).
Thus, by initializing F' to an empty set, the entire framework
computes a FOND™ solution within the entire space of strong
cyclic solutions.

Algorithm 3 illustrates how GTF works. Given P, and F/,
we first generate an SC solution in F'SC'p(F) (line 1) and test
with SIEVE* (line 4). For generating, we amend the sound
and complete FOND solver PRP to generate an SC solution
forbidding F', which is actually searching for the “7” in Prop.
1 with fsteps = F. When 7 fails SIEVE*, we forbid each
step in ¥(m) and search in FSCp(F U {step}) (line 10).
When all steps have been forbidden and no solution is found,
GTF returns “None” in line 16.

We now present the soundness and completeness results.

Theorem 2. For a given FOND™ problem P. = (P,C) and a
set of steps F, if GTF(P., F') returns , then w is a solution of
P. forbidding F; and if GTF(P,, F') returns “None”, there
is no solution of P, forbidding F.

Proof. This follows from Theorem 1, Proposition 1, and the
soundness and completeness of PRP. O

Corollary 1. For a given FOND™ problem P, = (P,C), if
GTF(P,, @) returns w, then 7 solves P,; and if GTF(P,, @)
returns “None”, then P, is unsolvable.

Note this framework is not limited to generating a single
FOND™ solution. By replacing “return 7~ in line 5 with
“store 7, we can collect all valid solutions.

5 Optimization Techniques

In this section, we focus on the x-marked lines in the algo-
rithm which are all designed for accelerating the FOND™
solving process. The soundness remains as these techniques
don’t modify the conditions of the algorithm to return a pol-
icy, i.e., a strong cyclic solution that passes SIEVE*; and we
are going to show the completeness is also not affected.

5.1 Prune with Key Steps

In the basic version of GTF, we do nothing when forbidding
a step leads to no solution in line 10. Indeed, we have the
following observation, which can be proved by contradiction:

Proposition 2. If GTF(P.,F U {step}) = “None”, then for
any F' O F, m = GTF(P., F') implies step € V().

We refer to such a step as a key step (w.r.t. F'), which
means that this step is required for any potential FOND™ so-
lution within FF'SCp(F). We use a set K to store these key
steps (line 12), and pass them to subsequent calls of GTF
(line 10). The third input K of the GTF procedure means that
K is a set of key steps that must be included in any solution
returned by GTF.

We develop two pruning techniques. The first is called
“Skip Key” (line 8-9). When we find that the step to be for-
bidden has been identified as a key step, we skip the current
iteration and proceed to the next iteration of the loop. The
second is called “Test Keys” (line 13-14). As K C ¥(n) for
any potential solution 7, if G(K) fails SIEVE*, 7 also fails
SIEVE* (according to Theorem 1).

Additionally, we add some extra steps that we call Block-
ingFSteps to F' to prevent other applicable actions to be
picked in the state of a key step (line 15) . Specifically, for a
key step (s, a), welet F' < FU{(s,a’) | s = PregAa’ # a}.

Completeness reserves with the above techniques due to
Proposition 2.

5.2 Precompute Vital Fsaps

To enhance FOND™ solving, we further identify certain par-
tial state—action pairs that lead to invalid solutions, referred
to as Vital Fsaps (VFsaps), and forbid them during the search
process. Specifically, a pair (s, a) is considered a vital fsap
if, for any state s’ entailing s, executing action a causes the
SIEVE* test to fail.

In this work, we precompute a subset of VFsaps that induce
one-node SCCs where no edge can be removed: {(s,a) | a is
adversarial, there is e € Eff,, s.t. Prog(s,a,e) = s}. These
steps are precomputed and incorporated into the global fsaps
F' (line 3 in the entry program) to exclude invalid policies
while ensuring completeness is preserved.

5.3 Rearrange the Order for Forbidding Steps

Note that the soundness and completeness are not affected by
the order of forbidding steps. In this part, we propose dif-
ferent strategies to rearrange (line 6) the order of forbidding
steps to improve performance.

Breadth-First Forbidding (BFF) means to rearrange the
steps W (7) according to the order in which the states are vis-
ited in a breadth-first search of G(). It can be proved that
with the technique “AddBlockingFSteps” proposed in Sec-
tion 5.1, we guarantee when an SC solution is generated by
FindSC in line 1, it is different from all other SC solutions
generated before. However, it can still be inefficient to find
a solution with this strategy due to the large search space of
SC solutions. The following forbidding strategy enables the
integration of heuristics:

Futile-First Forbidding (3F): We refer to the steps that
might be harmful (e.g., by leading to a fair trajectory not
reaching the goal) or useless (e.g., redundant for achieving
the goal) as “futile steps”. Futile-First Forbidding sorts steps
in a specific order based on certain heuristics, guiding GTF to
forbid futile steps first, aiming to find a solution as quickly as
possible.

In this work, we introduce two kinds of heuristics for
Futile-First Forbidding. The first, 3FF, is obtained from the
Failure result of SIEVE* testing for a policy, i.e., we forbid
the steps in an SCC whose edges cannot be removed. The
second, 3FN, involves translating the QNP problem into a
Numerical planning problem. Actions unused in the resulting
solution are considered redundant and are prioritized for for-
bidding. Specifically, in this work, we transform the problem
by fixing all amounts of numerical changes to 1 and replacing
any initial non-zero numerical values with 1, then use Metric-
FF [Hoffmann, 2003] to compute such a solution.

6 Implementation and Experiments

We implemented three solvers in C++ using the above three
rearrangement strategies: GTF-BFF (FOND™ solver), GTF-
3FF (FOND™ solver) and GTF-3FN (QNP solver).!

Note that in this section, when we mention FOND* do-
mains or problems, we specifically refer to those that can-
not be represented as QNPs. We evaluate the performance
of our three solvers on QNPs in comparison with DSET
[Zeng et al., 2022], FOND-ASP [Rodriguez er al., 2022], and
three solvers using gqnp2fond translator [Bonet and Geffner,
2020], each paired with different underlying FOND solvers
for SC planning: PRP [Muise et al., 2012], (FOND-)SAT
[Geffner and Geffner, 2018], and PR2 [Muise et al., 2024].
For FOND™ planning, we compare GTF-BFF and GTF-3FF
against FOND-ASP. All experiments were run on an Ubuntu
20.04 Linux machine with an Intel Core 19-10980XE CPU

'Codes and data — https://github.com/sysulic/GTF4FONDX.

move move
carl car2
columnl column2 column3 column4 column5 columné
Figure 2: An example of the FOND™ versions of the

BlocksColumns domain. Moving car 2 may resulting it moving to
column 3 or column 5, while moving car 1 will move it to column 3.

(3.00 GHz). Each instance was allocated a maximum of 8
GB of memory and a runtime limit of 30 minutes.

6.1 Domains

The QNP instances with small numbers of actions, fea-
tures, and reachable states are categorized as Tiny-domains,
including: blocks_clear, blocks_on, gripper, delivery,
delivery2, q1, q2 (unsolvable), ¢3, gripper2 and rewards
from Bonet and Geffner [2020]; Gripperlu (unsolvable)
and Nest3u (unsolvable) from Zeng et al. [2022]; and 9
instances in gnpl from Rodriguez et al. [2022]. Other
existing QNP domains (each including one or more in-
stances) include: Nests and Nests_u (all instances are un-
solvable) from Zeng et al. [2022]; gnp2 from Rodriguez
et al. [2022]; GripperAbs, FerryAbs, LogisticsAbs,
Zenotravel Abs, NomysteryAbs, and Floortile Abs from
Dong et al. [2025]. Note that domains from [Dong et al.,
2025] are actually bounded QNP problems, where the change
in any numerical variable caused by an action is exactly one.
However, we found that some of them can still be solved by
certain QNP solvers. Existing FOND™ domains are all from
Rodriguez et al. [2022]: gnp2-f11, gnp2-f01 (unsolvable),
football and football_u (unsolvable).

We propose two new QNP domains and further extend
them to FOND™ versions.

BlocksColumns This domain consists of several columns,
each containing some blocks, with robot cars initially posi-
tioned in the columns except for the rightmost one. The ob-
jective is to move these cars to the rightmost column. Addi-
tionally, there are grippers that can move between columns
and are capable of picking up and dropping blocks in a col-
umn, provided no car is present in that column. The cars
can also move to an adjacent column if that column con-
tains no blocks. A column that contains no blocks is con-
sidered to have sufficient space to hold multiple cars simul-

taneously. In this domain, numerical variables are used to
represent the number of blocks in each column, which in-
crease when blocks are dropped and decrease when blocks
are picked up. One solution is to move the blocks from the
columns to the right of the cars into the columns to their left,
thereby clearing a path for the cars. Once the path is clear,
the cars can be moved to the rightmost column.

By making the effect of car-moving non-determinisitic, we
construct two FONDT domains: BlocksColumns-Fair (BC-
Fair) and BlocksColumns-Adv (BC-Adv), as shown in Fig.
2. In both domains, the objective and the possible actions
of grippers are the same as the domain BlocksColumns. The
only difference is that car movements are non-deterministic:
when a car is moved, it may go left or right. However, if the
adjacent column in one direction contains blocks, that direc-
tion is blocked, and the car will move to the other direction
instead. The difference between the two domains is that in
BC-Fair, the move action is assumed to be fair, while in BC-
Adpv there is no such fairness assumption.

HallsFloors This domain is adapted from the Halls domain
[Bonet et al., 2009; Lin et al., 2022]. The environment con-
sists of multiple floors and a single agent. Each floor con-
tains an uncertain number of interconnected halls arranged in
a rectangular ring. Some floors are connected via staircases,
which are located at the four corners of the rectangle. Four
numeric variables represent the agent’s distance to the four
sides of the rectangular floor layout. The agent can move be-
tween halls and is considered to have reached a corner when
two of these distance variables are simultaneously zero. A
floor is considered visited once the agent has visited all four
of its corners. The goal is to visit all floors. In the QNP ver-
sion, the positions of the staircases are fixed initially, and the
agent can use a staircase if it is located at the same corner. In
contrast, in the FONDT version, called HF-ND, the staircases
are hidden and must be revealed by executing the “discover-
stair” action after the agent has visited the floor. This action
is non-deterministic and causes a staircase to appear at one of
the four corners.

6.2 Results

The information about the size of these domains and overall
solving results are shown in Tables 1 (QNP) and 2 (FOND™).
A bold line separates the existing domains from the new ones.
For each domain and solver, we report the coverage of the
solver, that is, the ratio of instances solved by the solver.
For tiny domains, we also report the average solving time
in the parentheses when the solver can solve all instances.
Figure 3 illustrates the overall coverage performance (the ra-
tio of all instances solved) of various solvers over time for
QNP/FOND™.

As shown in Fig. 3, GTF-3FN achieves the best perfor-
mance in QNP planning, consistently solving the highest pro-
portion of instances across all time limits, with GTF-3FF fol-
lowing closely. GTF-BFF and DSET also perform well but
fall behind the top two methods. In contrast, FOND-ASP and
solvers using qnp2fond fail to solve even half of the QNP
instances. For FOND™ planning, where GTF-3FN is not ap-
plicable, GTF-3FF outperforms all other methods, achieving

Size (Average) GTF (ours) FOND qnp2fond
Domains |F| |O| #RStates| BFF 3FF 3FN ASP | DSET PRP PR2 SAT
Tiny-domains(21) 5.0 55 9.8 1(0.09s) 1(0.09s) 1(0.10s) | 1(0.43s) | 1(0.09s) | 1(35.93s) 0.86 0.86
Nests(7) 7.0 7.0 290.3 1.00 1.00 1.00 0.00 1.00 0.00 0.00 0.00
Nests_u(7) 7.0 7.0 146.1 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00
qnp2(9) 7.0 7.0 228.1 1.00 1.00 1.00 0.89 1.00 0.89 0.67 044
GripperAbs(8) 100 114 3102.6 0.50 0.88 1.00 0.50 0.88 0.88 0.88 0.25
FerryAbs(2) 10.0 240 577.0 0.50 1.00 1.00 0.50 0.50 1.00 0.50 0.50
LogisticsAbs(1) 220 360 Te+04 1.00 1.00 1.00 0.00 0.00 1.00 1.00 0.00
ZenotravelAbs(20) | 160.2 6164.1 >1e+07 | 1.00 1.00 1.00 0.00 0.05 035 035 0.10
NomysteryAbs(20) | 192.4 35729 >5e+06 | 0.70 0.70 0.70 0.00 0.60 0.05 0.05 0.00
BlocksColumns(30) | 35.0 60.0 >4e+05| 0.23 0.83 0.93 0.03 0.27 0.03 0.00 0.03
HallsFloors(12) 26.9 32.8 >2e+07 | 1.00 1.00 1.00 0.08 0.58 0.08 0.08 0.08
Overall(137) | 643 14408 >4e+06 [0.75 0.91 094 [031 | 058 [036 031 02I

Table 1: Performance comparison of various solvers across QNP domains. For each domain, the number of instances, average sizes (features

|F|, actions |O|, and reachable states #RStates), and the coverage performance of different solvers are presented.

Size (Average) GTF (ours) | FOND 1 : o -1 FoND?
Domains |[F| |O| #RStates| BFF 3FF | ASP
qnp2-f11(9) | 9.0 9.0 9104 |1.00 1.00 | 0.67 08r 1%
qnp2-f01(9) | 7.0 7.0 228.1 [1.00 1.00 | 0.89 2 06| 1 o6l
football_u(10) |61.0 196.5 2860.0 |0.10 0.00 | 0.30 é
football(10) |61.0 1965 2860.0 |1.00 1.00 | 0.30 S 04f e A
BC-Fair(30) |45.0 51.3 1le+06 [0.23 1.00 | 0.03 0.2 , ==l 1 02|
BC-Adv(30) [45.0 51.3 1e+06 [0.00 0.17 | 0.03 I i | |
HF-ND(12) [49.7 555 >7e+06 |1.00 1.00 | 0.17 ‘o 0 a0 500 "o 0 600 1800
Overall(110) [424 711 >2¢+06 044 0.68 | 0.22 e e
- - —— GTF-3FN FOND-ASP
DSET qnp2fond/PRP —&— gnp2fond/PR2 qnp2fond/SAT

Table 2: Coverage Performance across FOND™ domains.

a coverage of 68% (as shown in Table 2). Meanwhile, GTF-
BFF solves fewer than half of the instances, and FOND-ASP
lags further behind with a final coverage of only 22%.

The superior performance of our method stems from sev-
eral factors: (1) building on top of an advanced FOND solver,
which enables the use of existing heuristics from SC and clas-
sical planning; (2) the low memory cost of the generate-and-
test method compared to FOND-ASP; and (3) the effective-
ness of the proposed heuristics, derived from failure analysis
in SIEVE* and solutions provided by a numerical planner in
the QNP setting.

We also found that our method struggles with certain
problems, as shown in Tables 1 and 2, highlighting poten-
tial areas for future improvement. For the QNP domain
NomysteryAbs, our underlying solver encounters difficulty
finding a strong-cyclic (SC) solution when the problem size
becomes too large. Additionally, in solvable FOND™ do-
mains, GTF-3FF still requires excessive SC search efforts for
BC-Adv, suggesting the need for more effective strategies
to reorder or prioritize search. Furthermore, the failure in
the unsolvable problem football_u demonstrates cases where
our method performs poorly: there are exponentially many
SC solutions, yet none of them solves the FOND™ problem.

Figure 3: Overall Coverage over time for QNP/FOND ™.

7 Conclusion

In this paper, based on the advanced FOND solver PRP,
we propose a generate-test-and-forbid framework for solving
QNP and FOND™ problems. Moreover, we propose several
optimization techniques such as pruning with key steps, pre-
computing vital fsaps, and heuristics for ordering forbidden
steps. Based on our proposed approach, we implemented
three variants of QNP and FOND™ solvers. Experimental
results on existing and newly constructed domains demon-
strate that our method shows superior scalability over existing
solvers. In the future, we are interested in exploring further
heuristics to improve the performance of our solvers, and ef-
ficient solving techniques for QNP or FOND™ problems with
large space of strong cyclic policies but few solutions.

Acknowledgments

We thank the annonymous reviewers for helpful comments.
We acknowledge support from the Natural Science Founda-
tion of China under Grant No. 62076261.

References

[Bonet and Geffner, 2020] Blai Bonet and Hector Geffner.
Qualitative numeric planning: Reductions and complexity.
J. Artif. Intell. Res., 69:923-961, 2020.

[Bonet et al., 2009] Blai Bonet, Héctor Palacios, and Hector
Geffner. Automatic derivation of memoryless policies and
finite-state controllers using classical planners. In Pro-
ceedings of the 19th International Conference on Auto-
mated Planning and Scheduling, ICAPS-09, 2009.

[Cimatti et al., 2003] Alessandro Cimatti, Marco Pistore,
Marco Roveri, and Paolo Traverso. Weak, strong, and
strong cyclic planning via symbolic model checking. Artif.
Intell., 147(1-2):35-84, 2003.

[Dong et al., 2025] Hao Dong, Zheyuan Shi, Hemeng Zeng,
and Yongmei Liu. An automatic sound and complete ab-
straction method for generalized planning with baggable
types. In Proceedings of the 39th AAAI Conference on Ar-
tificial Intelligence, AAAI-25, 2025.

[Geffner and Geffner, 2018] Tomas Geffner and Hector
Geffner. Compact policies for fully observable non-
deterministic planning as SAT. In Proceedings of the 28th
International Conference on Automated Planning and
Scheduling, ICAPS-18, 2018.

[Hoffmann, 2003] Jérg Hoffmann. The Metric-FF planning
system: Translating “ignoring delete lists” to numeric state
variables. J. Artif. Intell. Res., 20:291-341, 2003.

[Lifschitz, 2008] Vladimir Lifschitz. What is answer set pro-
gramming? In Proceedings of the 23rd AAAI Conference
on Artificial Intelligence, AAAI-08, 2008.

[Lin et al., 2022] Xiaoyou Lin, Qingliang Chen, Liangda
Fang, Quanlong Guan, Weiqi Luo, and Kaile Su. Gen-
eralized linear integer numeric planning. In Proceedings
of the 32nd International Conference on Automated Plan-
ning and Scheduling, ICAPS-22, 2022.

[Muise et al., 2012] Christian J. Muise, Sheila A. Mcllraith,
and J. Christopher Beck. Improved non-deterministic
planning by exploiting state relevance. In Proceedings of

the 22nd International Conference on Automated Planning
and Scheduling, ICAPS-12,2012.

[Muise et al., 2024] Christian Muise, Sheila A. Mcllraith,
and J. Christopher Beck. PRP rebooted: Advancing the
state of the art in FOND planning. In Proceedings of the
38th Annual AAAI Conference on Artificial Intelligence,
AAAI-24, 2024.

[Rodriguez et al., 2022] Ivan D. Rodriguez, Blai Bonet, Se-
bastian Sardifia, and Hector Geffner. FOND planning
with explicit fairness assumptions. J. Artif. Intell. Res.,
74:887-916, 2022.

[Srivastava et al., 2011] Siddharth Srivastava, Shlomo Zil-
berstein, Neil Immerman, and Hector Geffner. Qualitative
numeric planning. In Proceedings of the 25th AAAI Con-
ference on Artificial Intelligence, AAAI-11,2011.

[Tarjan, 1972] Robert Endre Tarjan. Depth-first search and
linear graph algorithms. SIAM J. Comput., 1(2):146-160,
1972.

[Zeng et al., 2022] Hemeng Zeng, Yikun Liang, and Yong-
mei Liu. A native qualitative numeric planning solver
based on AND/OR graph search. In Proceedings of the
31st International Joint Conference on Artificial Intelli-
gence, IJCAI-22, 2022.

	Introduction
	Preliminaries
	FOND Planning
	QNP
	FOND+

	SIEVE* Testing for FOND+
	The Generate-Test-and-Forbid Framework
	Optimization Techniques
	Prune with Key Steps
	Precompute Vital Fsaps
	Rearrange the Order for Forbidding Steps

	Implementation and Experiments
	Domains
	Results

	Conclusion

