
Journal of Artificial Intelligence Research 31 (2008) 259-272 Submitted 08/07; published 02/08

On the Expressiveness of Levesque’s Normal Form

Yongmei Liu ymliu@mail.sysu.edu.cn

Department of Computer Science
Sun Yat-sen University
Guangzhou 510275, China

Gerhard Lakemeyer gerhard@cs.rwth-aachen.de

Department of Computer Science

RWTH Aachen

52056 Aachen, Germany

Abstract

Levesque proposed a generalization of a database called a proper knowledge base (KB),
which is equivalent to a possibly infinite consistent set of ground literals. In contrast to
databases, proper KBs do not make the closed-world assumption and hence the entailment
problem becomes undecidable. Levesque then proposed a limited but efficient inference
method V for proper KBs, which is sound and, when the query is in a certain normal
form, also logically complete. He conjectured that for every first-order query there is an
equivalent one in normal form. In this note, we show that this conjecture is false. In fact,
we show that any class of formulas for which V is complete must be strictly less expressive
than full first-order logic. Moreover, in the propositional case it is very unlikely that a
formula always has a polynomial-size normal form.

1. Introduction

As argued by Levesque (1998), there is only one deductive technique efficient enough to be
feasible on knowledge bases (KBs) of the size seemingly required for common-sense reason-
ing: the deduction underlying classical database query evaluation. And yet, databases by
themselves are too restricted to serve as the representational scheme for common-sense rea-
soning, since they require, among other things, complete knowledge of the domain. Levesque
proposed a generalization of a database called a proper knowledge base, which is equivalent
to a possibly infinite consistent set of ground literals. To illustrate what is meant by a
proper KB consider the following example:

• Ann likes Bob, and Dan likes Fred.
Likes(ann, bob)
Likes(dan, fred)

• Ann does not like Dan.
¬Likes(ann, dan)

• Carol likes everyone.
∀x.Likes(carol, x)

• Eve does not like anyone other than Ann and herself.
∀x. x 6= ann ∧ x 6= eve ⊃ ¬Likes(eve, x)

c©2008 AI Access Foundation. All rights reserved.



Liu & Lakemeyer

In contrast to databases, proper KBs do not make the closed-world assumption. For
example, while ¬Likes(eve, fred) follows from the above KB (if we assume unique names),
neither Likes(ann, eve) nor ¬Likes(ann, eve) does. Sadly, even this very restricted form of
incompleteness renders the entailment problem undecidable, as entailment from an empty
KB reduces to validity in classical logic.

Nevertheless, given KBs like the above many queries seem easy to answer. For example,
consider the formula

Likes(eve, carol) ⊃ Likes(carol, eve),

which follows from the KB simply because Likes(carol, eve) does. In his work Levesque
devised a limited but efficient inference mechanism V which gets examples like these right
at the expense of being incomplete on others, that is, V sometimes answers “don’t know”
even though the query is logically entailed.

To give a flavor of how V works, consider a sentence α in conjunctive normal form
(CNF), that is α = c1 ∧ c2 ∧ . . . ∧ cn, where each ci is a disjunction of ground literals. In
order to see whether α follows from the KB, V simply checks whether each ci contains a
literal which is an instance of one of the sentences in the KB. Such an evaluation-based
scheme is clearly sound but also easily seen to be incomplete. For example, V would return
“don’t know” when given the query Likes(ann, eve) ∨ ¬Likes(ann, eve), as neither literal is
contained in the KB.

In his paper, Levesque introduced a certain normal form (NF) for sentences and proved
that V is logically complete for queries in NF . In the propositional case, examples of
sentences in NF are those in CNF which do not contain tautological clauses and which
are otherwise closed under resolution. Since every propositional sentence is equivalent to
a sentence in this form, it follows immediately that every propositional sentence can be
converted into an equivalent one in NF .

Levesque then conjectured that for every sentence in first-order logic there is also an
equivalent one in NF . In this note, we show that the above conjecture of Levesque is false.
In fact, we can show that any class of formulas for which V is complete must be strictly less
expressive than full first-order logic. Moreover, in the propositional case it is very unlikely
that a formula always has a polynomial-size normal form.

Note that Levesque’s conjecture is weaker than the statement that there exists an al-
gorithm which converts every first-order sentence into an equivalent one in NF . The latter
statement can be easily refuted since whether a first-order sentence is entailed by a proper
KB is undecidable, but whether a NF sentence is entailed by a proper KB is decidable (V
is such a decision procedure).

In the next section, we briefly review Levesque’s evaluation-based inference method for
proper KBs. Section 3 contains our main result, that is, we show that not every sentence has
an equivalent normal form. Section 4 considers the size of NF formulas in the propositional
case.

2. Levesque’s Evaluation-Based Reasoning Procedure V

The underlying language L is a standard first-order dialect with equality. There are count-
ably infinitely many first-order variables and predicate symbols of every arity (including
the binary equality predicate). In addition there is a countably infinite set C = {d1, d2, . . .}

260



On the Expressiveness of Levesque’s Normal Form

of constants (but no other function symbols). The logical connectives are ¬,∧, and ∀. The
atomic formulas of L are predicate symbols with variables or constants as arguments. The
set of formulas of L is the least set which contains the atomic formulas, and if α and β are
in the set and x is a variable, then ¬α, α ∧ β and ∀x.α are in the set.

We sometimes refer to the propositional subset of the language, which consists of the
ground atoms of L other than equality and is closed under negation and conjunction.

Some Notation: As usual, equality is written as = using infix notation. We will
freely use the connectives ∨, ⊃, ≡, and ∃, which are understood as the usual abbreviations.
Formulas without free variables are called sentences. Variables are written as x, y, z with
sub- and superscripts. By ewffs we mean quantifier-free formulas whose only predicate is
equality. For example, (x = y ∧ z 6= d1) is an ewff. We use ∀φ to denote the universal
closure of φ. For example, ∀(x = y ∧x 6= z ⊃ P (x, y, z)) stands for ∀x∀y∀z.x = y ∧x 6= z ⊃
P (x, y, z). We write φx

d to denote φ with all free occurrences of x replaced by constant d. A
clause is a disjunction of literals, which we identify with the set of literals contained in it.
We let the meta-variable c range over clauses and we write c to denote the set {l | l ∈ c},
where l is the complement of literal l. When Γ is a finite set of formulas, we write

∧

Γ
to denote the conjunction of its elements (and true, when Γ is empty). We use H(Γ) to
denote the set of constants appearing in the set of formulas Γ and H+(Γ) to denote the
set of constants appearing in Γ plus an extra one not occurring in Γ. The set returned by
H+(Γ) can be made unique by assuming that the constants are ordered and letting the new
constant be the least constant not appearing in Γ. When Γ is a singleton {φ} we simply
write H(φ) or H+(φ).

Levesque considered a special class of Tarskian interpretations called standard interpre-
tations, where equality is interpreted as identity and the set of constants is isomorphic with
the domain of discourse. As shown by the following definition and theorem, the restriction
to standard interpretations can be captured precisely by a set of axioms, provided we limit
ourselves to what is logically implied by finite sets of sentences.

Definition 1 Let the set E consist of the following axioms:

1. ∀x.x = x;

2. ∀(xi = y ⊃ (P (x1, . . . , xi, . . . , xn) ⊃ P (x1, . . . , y, . . . , xn)));

3. {(di 6= dj) | i 6= j}.

(1) – (2) are a version of the axioms of equality. Here P ranges over all predicate symbols
including equality. (3) asserts the unique names assumption for constants.

Theorem 2 (Levesque) Let Γ be a finite set of sentences. Then E ∪ Γ |= φ iff every
standard interpretation of Γ is also a model of φ.

From now on we write Γ |=E φ for E ∪ Γ |= φ.
A database can be viewed as a maximally consistent set of ground literals. Levesque

proposed a generalization of a database called a proper KB, which is equivalent to a (possibly
infinite) consistent set of ground literals.

In the following we use e to range over ewffs and ρ to range over atoms (excluding
equality) whose arguments are distinct variables.

261



Liu & Lakemeyer

Definition 3 (Levesque) A set of sentences Σ is proper if E ∪Σ is consistent, Σ is finite
and every sentence in Σ has the form ∀(e ⊃ ρ) or ∀(e ⊃ ¬ρ).

In the propositional case, the definition simplifies to Σ being a finite consistent set of
ground literals excluding equality. (As equality plays no role in this case, E can be ignored.)

In general, a proper KB Σ represents the set of ground literals lits(Σ) = {lθ | ∀(e ⊃
l) ∈ Σ and E |= eθ}, which is consistent, since E ∪ Σ is consistent. As a special case, a
database can be represented as a proper KB: each relation R = {~d1, . . . , ~dm} is represented
by ∀(e ⊃ R(~x)) and ∀(¬e ⊃ ¬R(~x)), where e is ~x = ~d1∨. . .∨~x = ~dm. But more importantly,
a proper KB can represent an incomplete set of literals, by specifying some positive instances
and some negative instances and leaving the status of the rest open.

Here is the example from the introduction formulated as a proper KB. The rephrasing
is needed as the predicates of the right hand sides of the implications may only mention
distinct variables.

• Ann likes Bob, and Dan likes Fred.
∀x∀y. x = ann ∧ y = bob ∨ x = dan ∧ y = fred ⊃ Likes(x, y)

• Ann does not like Dan.
∀x∀y. x = ann ∧ y = dan ⊃ ¬Likes(x, y)

• Carol likes everyone.
∀x∀y. x = carol ⊃ Likes(x, y)

• Eve does not like anyone other than Ann and herself.
∀x∀y. x = eve ∧ y 6= ann ∧ y 6= eve ⊃ ¬Likes(x, y)

Again, note that this information cannot be expressed in a traditional database where, for
example, we cannot leave open whether Ann likes Eve.

Levesque’s evaluation-based inference procedure V for proper KBs is defined as follows.

We use θ to range over substitutions of all variables by constants, and write φθ to mean
the result of applying θ to formula φ. We restrict our attention to Boolean queries, that
is, sentences from L. Given a proper KB Σ and a sentence from L, V returns one of three
values 0 (known to be false), 1 (known to be true), or 1

2 (unknown). More precisely,

1. V [Σ, ρθ] =











1 if there is a ∀(e ⊃ ρ) in Σ such that V [Σ, eθ] = 1
0 if there is a ∀(e ⊃ ¬ρ) in Σ such that V [Σ, eθ] = 1
1
2 otherwise

2. V [Σ, d = d′] = 1 if d is identical to d′, and 0 otherwise;

3. V [Σ,¬φ] = 1 − V [Σ, φ];

4. V [Σ, φ ∧ ψ] = min{V [Σ, φ], V [Σ, ψ]};

5. V [Σ,∀xφ] = mind∈H+(Σ∪{φ}) V [Σ, φx
d ].

262



On the Expressiveness of Levesque’s Normal Form

It is not hard to show that this procedure is logically sound, that is, whenever it returns
1 or 0, either the query or its negation follows from the knowledge base. V is also obviously
decidable as quantification is handled by a finite number of variable substitutions. As shown
by Liu and Levesque (2003), it is also efficient in the sense of database retrieval.

To see why V is incomplete, let Σ be the set of sentences in our example KB and
φ = (Likes(ann, eve)∨¬Likes(ann, eve)). Then φ obviously follows from Σ, yet V [Σ, φ] = 1

2
because V returns 1

2 for both Likes(ann, eve) and ¬Likes(ann, eve). The problem is, roughly,
that V requires one of the disjuncts to be derivable in order for the whole disjunction to be
derivable.

For a slightly more complex example, let φ = (p ⊃ q)∧(q ⊃ r), where p = Likes(ann, bob),
q = Likes(ann, eve), and r = Likes(ann, dan). Then again, V [Σ, φ] = 1

2 , but the correct
answer should be 0 since Σ |= ¬φ because Σ |= p and Σ |= ¬r. However, notice that the
clauses (p ⊃ q) and (q ⊃ r) entail the clause (p ⊃ r). If we were to conjoin (p ⊃ r) to φ,
logical equivalence would be preserved and V would now return the correct answer 0 since
V [Σ, p] = 1 and V [Σ, r] = 0.

Despite this limitation, Levesque showed that for queries in a certain normal form called
NF , V is actually complete. We first state the result, followed by the definition of NF .

Theorem 4 (Levesque) Let Σ be proper. Then
for every φ ∈ NF , V [Σ, φ] = 1 iff Σ |=E φ; and V [Σ, φ] = 0 iff Σ |=E ¬φ.

The definition of NF is based on that of logical separability:

Definition 5 (Levesque) A set Γ of sentences is logically separable iff for every consistent
set of ground literals L, if L∪Γ has no standard interpretation, then L∪{φ} is inconsistent
for some φ ∈ Γ.

The intuition behind logical separability is that if a consistent set of literals entails a dis-
junction, then one of the disjuncts must be entailed. To see this, consider the propositional
case with Γ = {¬p,¬q} and L a consistent set of propositional literals. Suppose L∪Γ has no
standard interpretation, which in the propositional case is the same as L∪Γ is inconsistent
or, equivalently, L |= (p ∨ q). Then L must contain either p or q. Hence either L ∪ {¬p} or
L ∪ {¬q} is inconsistent, that is, either L |= p or L |= q. In any cases, this proves that Γ is
logically separable.

The set {p,¬p}, on the other hand, is not logically separable. This is because {p,¬p} by
itself is already inconsistent and we can let L be the empty set. In this case, both L ∪ {p}
and L ∪ {¬p} are consistent.

Definition 6 (Levesque) NF is the least set such that

1. if φ is a ground atom or ewff, then φ ∈ NF ;

2. if φ ∈ NF , then ¬φ ∈ NF ;

3. if Γ ⊆ NF , Γ is logically separable, and Γ is finite, then
∧

Γ ∈ NF ;

4. if Γ ⊆ NF , Γ is logically separable, and for some φ, Γ = {φx
d | d ∈ C}, then ∀xφ ∈ NF .

263



Liu & Lakemeyer

(1) and (2) say, roughly, that NF contains all ground atoms and is closed under negation.
(3) and (4) say that closure under conjunction and universal generalization is restricted to
formulas which are logically separable.

The idea behind the definition is that a formula in NF , in a sense, does not contain
any logical puzzles. This is the case, for example, for any non-tautologous clause. To see
why, consider any consistent set of literals. Similar to the earlier example of {¬p,¬q}, it
can be shown that the set is logically separable. Hence the conjunction of the literals and
its negation, which is a clause, are in NF . On the other hand, a tautology like (p ∨ ¬p) is
not in NF . As shown above, the set {p,¬p} is not logically separable. Hence neither p∧¬p
nor its negation, that is, (p ∨ ¬p) is in NF .

Levesque (1998) showed that in the propositional case, a CNF formula is in NF if its
clauses are non-tautologous and closed under resolution, that is, the resolvent of any two
of the clauses also belongs to the clauses. Consider α = (p ⊃ q) ∧ (q ⊃ r) from our
earlier example. It is not in NF since its clauses are not closed under resolution. However,
(p ⊃ q) ∧ (q ⊃ r) ∧ (p ⊃ r) is in NF .

In the first-order case, two examples of formulas in NF are ∀x(P (x) ∧ Q(x)) and
∃x(P (x)∨Q(x)). To see why let d be any constant. Just as {p, q} is logically separable, so
is {P (d), Q(d)}. Thus (P (d) ∧Q(d)) is in NF . Now consider Γ = {(P (d) ∧Q(d)) | d ∈ C}.
Let L be any consistent set of literals. If L∪Γ has no standard model, then L must contain
¬P (d) or ¬Q(d) for some d, hence L ∪ {(P (d) ∧Q(d))} is inconsistent for some d. Thus Γ
is logically separable, and so ∀x(P (x) ∧ Q(x)) is in NF . Similarly, ∀x(¬P (x) ∧ ¬Q(x)) is
in NF . Therefore, ¬∀x(¬P (x) ∧ ¬Q(x)), that is, ∃x(P (x) ∨Q(x)), is in NF .

Note that the use of the expression normal form is somewhat non-standard. Unlike
traditional normal forms like CNF, it is not even clear whether membership in NF is
decidable. While Levesque pointed out a number of classes of first-order formulas where
membership in NF can be decided syntactically, this is unlikely in general. For example,
he showed that ∃x.¬R(a, x) ∧R(x, b) is not in NF .

It turns out that Levesque’s original definition of logical separability (Def. 5) is a little
too strong and rules out certain sentences from being in NF which we definitely would like
to be in. The problem with the definition is that it mixes the use of standard and regular
Tarskian interpretations. This has the peculiar effect that formulas like ∀x(x = a ⊃ P (x)),
which make up proper KBs, are themselves not in NF .1 To see why, by the definition of
NF , for ∀x(x = a ⊃ P (x)), that is, ∀x¬(x = a ∧ ¬P (x)), to be in NF , we must have
(d = a∧¬P (d)) ∈ NF for every constant d, which requires that {d = a,¬P (d)} be logically
separable. However, let b be a constant distinct from a, then {b = a,¬P (b)} is not logically
separable. The reason is that {b = a,¬P (b)} has no standard model because of the built-in
unique names assumption, but both {b = a} and {¬P (b)} are consistent in classical logic.

It turns out that the above anomaly is easy to fix by using the following, slightly weaker
definition of logical separability, which only talk about standard interpretations.

Definition 7 A set Γ of sentences is logically separable iff for every consistent set of ground
literals L, if L∪Γ has no standard interpretation, then L∪{φ} has no standard interpretation
for some φ ∈ Γ.

1. This anomaly was first observed by Thomas Eiter (personal communication).

264



On the Expressiveness of Levesque’s Normal Form

With the new definition, {b = a,¬P (b)} is now logically separable, since {b = a} has no
standard model. As a result, we can show that ∀x(x = a ⊃ P (x)) is now in NF . Note that
NF using the new definition of logical separability is strictly bigger than the original NF ,
and we will use the new version from now on. Our main result, which says that there are
sentences with no equivalent sentence in NF , then trivially extends to Levesque’s original
definition.

Before we turn to that, let us briefly recall what NF is good for and point to some related
work. When a user poses a query in NF to a proper KB, then all we need is V to obtain
a correct (sound and complete) answer with respect to logical entailment. Moreover, as we
mentioned earlier, V has been proven to be as efficient as database retrieval (Liu & Levesque,
2003), and standard database technology can be brought to bear for its implementation.

In this regard, there is also an interesting connection to recent work on evaluating cer-
tain queries in description logics (Baader, Calvanese, McGuiness, Nardi, & Patel-Schneider,
2003). A description-logic KB consists of two parts, a TBOX with terminological definitions
like “a mother is a female person with at least one child” and an ABOX, which is a set
of atomic formulas. An ABOX is just a special case of a proper KB. Most importantly,
an ABOX does not make the closed world assumption, just as proper KBs. Calvanese, de
Giacomo, Lembo, Lenzerini, and Rosati (2006) showed that for conjunctive queries, which
consist of conjunctions of atoms with existentially quantified variables, query answering can
be reduced to database retrieval as well. It is interesting to note that the queries they con-
sider are in NF . While they only consider a small fragment of NF , they go beyond proper
KBs as they also perform terminological reasoning (using the TBOX). We remark that there
have been other extensions of proper KBs by explicitly allowing disjunctions (Lakemeyer
& Levesque, 2002; Liu, Lakemeyer, & Levesque, 2004), but reasoning there goes beyond
database retrieval.

3. First-Order NF Is Not Expressive

Levesque showed that in the propositional case, every formula φ can be transformed into
an equivalent one in NF . His transformation is this. Convert the formula to CNF, and run
resolution repeatedly on this set of clauses, deleting any tautologous or subsumed ones until
no new clauses are generated. The resulting set of clauses is the set of prime implicates
of φ. The conjunction of these clauses is in NF and it is equivalent to φ. However,
this transformation cannot be extended to the first-order case. To see why, consider φ =
∀xyz[R(x, y) ∧ R(y, z) ⊃ R(x, z)], which says that R is transitive. If we run the first-order
version of Levesque’s transformation on φ, we would end up with an infinite set of clauses,
each of the format R(x1, x2) ∧ . . . ∧R(xn, xn+1) ⊃ R(x1, xn+1), where n ≥ 2.

In this section, we will prove that in the first-order case, not every formula is equivalent
to one in NF . For this purpose, we will need a first-order version of prime implicates. In
the propositional case, prime implicates are defined as follows:

Definition 8 Let Γ be a theory. An implicate of Γ is a non-tautologous clause c such that
Γ |= c. A prime implicate of Γ is an implicate c of Γ such that for no proper subset c′ of c
does Γ |= c′.

265



Liu & Lakemeyer

Since we only consider standard interpretations, we can easily generalize prime impli-
cates to the first-order case:

Definition 9 Let φ ∈ L. An implicate of φ is a non-tautologous ground clause c such that
φ |=E c. A prime implicate of φ is an implicate c of φ such that for no proper subset c′ of c
does φ |=E c

′. We use PI(φ) to denote the set of prime implicates of φ.

If |=E φ ≡ ψ, that is, E |= φ ≡ ψ, then both E ∪ {φ} and E ∪ {ψ} entail the same
sentences and, in particular, PI(φ) = PI(ψ).

The following is a basic property of prime implicates:

Proposition 10 Let c be a non-tautologous ground clause. Then φ |=E c iff there exists a
c′ ∈ PI(φ) such that c′ ⊆ c.

In this note, by the length of a formula, we mean the number of predicate symbols,
variables, constants and logical connectives contained in the formula. By the length of a
clause, we mean the length of the corresponding disjunctive formula. The key property in
this note is defined as follows:

Definition 11 We say that PI(φ) is bounded if there exists a number n such that the length
of every member in PI(φ) is at most n. If PI(φ) is bounded, we use B(φ) to denote the
maximum length of a member in PI(φ).

We will show that for every φ ∈ NF , PI(φ) is bounded. Then for any φ which has an
equivalent φ′ in NF , PI(φ) is bounded too. However, there exist formulas φ such that PI(φ)
is not bounded. Thus not every formula can be transformed into an equivalent one in NF .

The proof that the prime implicates of formulas in NF are bounded will proceed by
induction. The following lemma is useful to establish the induction for conjunctions and
their negations.

Lemma 12 Let Γ = {φ1, . . . , φn}.

1. If
∧

Γ ∈ NF , then PI(
∧

Γ) ⊆
⋃

i PI(φi).

2. PI(¬
∧

Γ) ⊆ {
⋃

i ci | ci ∈ PI(¬φi), i = 1, . . . , n}.

Proof:

1. Let c ∈ PI(
∧

Γ). Then
∧

Γ |=E c. By Theorem 2, Γ∪ c has no standard interpretation.
Since

∧

Γ ∈ NF , Γ is logically separable. Since c is non-tautologous, c is consistent.
Thus {φi} ∪ c has no standard interpretation for some i, and so φi |=E c. Let c′ ⊆ c
such that φi |=E c

′. Then
∧

Γ |=E c
′. Since c ∈ PI(

∧

Γ), c′ = c. Thus c ∈ PI(φi).

2. Let c ∈ PI(¬
∧

Γ). Then ¬
∧

Γ |=E c. Thus ¬φi |=E c for all i. By Proposition 10,
for each i, there exists ci ∈ PI(¬φi) (and hence ¬φi |=E ci) such that ci ⊆ c. Then
¬

∧

Γ |=E
⋃

i ci and
⋃

i ci ⊆ c. Since c ∈ PI(¬
∧

Γ), c =
⋃

i ci. 2

266



On the Expressiveness of Levesque’s Normal Form

Note that, if the prime implicates of the φi are bounded, it follows easily from the lemma
that the prime implicates of

∧

Γ and ¬
∧

Γ are bounded as well. To obtain a similar result
for quantified formulas is more complicated. The obvious generalization of Lemma 12,
replacing Γ by {φx

d1
, φx

d2
, . . .} and

∧

Γ by ∀xφ does not work, as this would lead to an
infinite union of sets in the first part and an infinite union of clauses in the second part.
We can get around this by observing the similarity between PI(φx

b ) and PI(φx
d), where b and

d are constants not appearing in φ, as shown by Proposition 14 below.

We begin with a property that will be useful in the proof. Let ∗ be a mapping from C
to C. We use φ∗ to denote φ with every constant d replaced by d∗. We use Γ∗ to denote
{φ∗ | φ ∈ Γ}.

Proposition 13 (Levesque) Let ∗ be a bijection from C to C. If Γ |=E φ, then Γ∗ |=E φ
∗.

Proposition 14 Let φ be a formula with a single free variable x. Let b, d be constants in C
not appearing in φ. Let ∗ be the bijection that swaps b and d and leaves all other constants
unchanged. Then PI(φx

d) = {c∗ | c ∈ PI(φx
b )}.

Proof: Let c ∈ PI(φx
b ). Then φx

b |=E c. By Proposition 13, (φx
b )∗ |=E c

∗, that is, φx
d |=E c

∗.
Let c′ ⊆ c∗ such that φx

d |=E c′. Then φx
b |=E c′∗. Since c ∈ PI(φx

b ) and c′∗ ⊆ c, c′∗ = c,
and hence c′ = c∗. Thus c∗ ∈ PI(φx

d). Similarly, if c ∈ PI(φx
d), then c∗ ∈ PI(φx

b ). Therefore,
PI(φx

d) = {c∗ | c ∈ PI(φx
b )}. 2

Basically, the above proposition says that the prime implicates of φx
b and φx

d are the same
modulo constant renaming.

Lemma 15 Let φ be a formula with a single free variable x.

1. If ∀xφ ∈ NF , and for all constants d ∈ C, PI(φx
d) is bounded, then PI(∀xφ) is also

bounded.

2. If for all constants d ∈ C, PI(¬φx
d) is bounded, then PI(¬∀xφ) is also bounded.

Proof:

1. Since for all d ∈ C, PI(φx
d) is bounded, we let n = max{B(φx

d) | d ∈ H+(φ)}. By
Proposition 14, for any d ∈ C, PI(φx

d) is a relabeling of PI(φx
b ) for some b in H+(φ).

Thus for any d ∈ C, PI(φx
d) is bounded by n. We will show that PI(∀xφ) is also bounded

by this n, by showing that every element of PI(∀xφ) is also an element of PI(φx
d), for

some d ∈ C.

So suppose that c ∈ PI(∀xφ). Then ∀xφ |=E c. Thus {∀xφ} ∪ c has no standard
interpretation. So {φx

d | d ∈ C} ∪ c has no standard interpretation. Since ∀xφ ∈ NF ,
{φx

d | d ∈ C} is logically separable. Thus there exists d ∈ C such that {φx
d} ∪ c has no

standard interpretation. So φx
d |=E c. Let c′ ⊆ c such that φx

d |=E c
′. Then ∀xφ |=E c

′.
Since c ∈ PI(∀xφ), c′ = c. Thus c ∈ PI(φx

d).

267



Liu & Lakemeyer

2. As in Part 1, we let n = max{B(¬φx
d) | d ∈ H+(φ)}. Then for any d∈C, PI(¬φx

d) is
bounded by n. We will show that PI(¬∀xφ) is bounded by (m+ n + 1) · n, where m
is the length of φ. This is done by showing that for any c ∈ PI(¬∀xφ), there exists
a set D of no more than (m + n + 1) constants such that for all d ∈ D, there exists
cd ∈ PI(¬φx

d) such that c =
⋃

d∈D cd.

So suppose that c ∈ PI(¬∀xφ). Then ¬∀xφ |=E c, i.e., ∃x¬φ |=E c. Let d be an
arbitrary constant in C. Then ¬φx

d |=E c because ¬φx
d |=E ∃x¬φ. By Proposition 10,

there exists cd ∈ PI(¬φx
d) such that cd ⊆ c. Now let b be a constant that appears

in neither φ nor c with cb ∈ PI(¬φx
b ) and cb ⊆ c. Then b does not appear in cb,

and the length of cb is at most n. Let D = H(φ) ∪ H(cb) ∪ {b}. Then D has no
more than (m + n + 1) elements. We will show that c =

⋃

d∈D cd. To do so, let
a be an arbitrary constant not in D. Let ∗ be the bijection that swaps b and a
and leaves all other constants unchanged. Since cb ∈ PI(¬φx

b ) we have ¬φx
b |=E cb,

and, by Proposition 13, (¬φx
b )∗ |=E (cb)

∗. Since neither b nor a appears in φ or cb,
(¬φx

b )∗ = ¬φx
a and (cb)

∗ = cb. Hence ¬φx
a |=E cb. So we have that for all d ∈ D,

¬φx
d |=E cd; and for all a 6∈ D, ¬φx

a |=E cb. Thus ∃x¬φ |=E
⋃

d∈D cd, which is a subset
of c. Since c ∈ PI(∃x¬φ), c =

⋃

d∈D cd. 2

We now have all the pieces in hand to prove the main theorem:

Theorem 16 Let ψ ∈ NF . Then PI(ψ) is bounded.

Proof: For technical reasons, it is easier to prove a slightly more general statement, namely
that both PI(ψ) and PI(¬ψ) are bounded provided that ψ ∈ NF . The proof is by induction
on ψ.

1. ψ is a ground atom or ewff. If ψ is a ground atom, then PI(ψ) = {ψ} and PI(¬ψ) =
{¬ψ}, hence they are bounded. If ψ is a ground ewff that is true, then ψ does not
entail any ground clause, and hence PI(ψ) is the empty set; if ψ is a ground ewff that
is false, then ψ entails the empty clause, and hence PI(ψ) is the set consisting of the
empty clause. Therefore, if ψ is a ground ewff, both PI(ψ) and PI(¬ψ) are bounded.

2. ψ is ¬φ. By induction, PI(φ) and PI(¬φ) are bounded. Since PI(φ) = PI(¬¬φ), both
PI(¬φ) and PI(¬¬φ) are bounded.

3. ψ is
∧

Γ. By induction, for all φ ∈ Γ, PI(φ) and PI(¬φ) are bounded. By Lemma 12,
PI(

∧

Γ) is bounded by max{B(φ) | φ ∈ Γ}, and PI(¬
∧

Γ) by the sum of B(¬φ) for
φ ∈ Γ.

4. ψ is ∀xφ. By induction, for any constant d, PI(φx
d) and PI(¬φx

d) are bounded. By
Lemma 15, both PI(∀xφ) and PI(¬∀xφ) are bounded. 2

As an easy corollary, we have:

Corollary 17 Not every sentence has an equivalent one in NF .

268



On the Expressiveness of Levesque’s Normal Form

Proof: Let φ=∀xyz[R(x, y) ∧R(y, z)⊃R(x, z)], which says that R is transitive. Then for
all n, the following is in PI(φ):

R(d1, d2) ∧ . . . ∧R(dn, dn+1) ⊃ R(d1, dn+1).

Thus PI(φ) is not bounded. Suppose that there exists φ′ ∈ NF such that φ and φ′ are
equivalent. Then PI(φ) = PI(φ′). By Theorem 16, PI(φ′) is bounded, a contradiction. 2

Moreover, it is easy to generalize our inexpressiveness result:

Theorem 18 There does not exist a class F of sentences with these properties:

1. every formula has an equivalent one in F ;

2. V is logically complete for F (i.e., for every proper KB Σ and every φ ∈ F , if Σ |=E φ
then V [Σ, φ] = 1, and if Σ |=E ¬φ then V [Σ, φ] = 0);

3. if ¬φ ∈ F then φ ∈ F ; if
∧

Γ ∈ F , then Γ ⊆ F ; and if ∀xφ ∈ F , then φx
d ∈ F for all

constants d.

Note that the theorem does not require logical separability, only that V be complete
for F . We call any set of formulas that satisfies the third requirement downward saturated,
which, besides being a desirable property of a normal form, is needed for technical reasons.

Proof: Suppose, to the contrary, that there exists a class F of sentences which satisfies
the three properties stated above. As in the case of NF , we can show that PI(φ) is bounded
for every φ ∈ F and use the same sentence as in the proof of Corollary 17 to obtain a
contradiction.

The boundedness proof is almost identical to the argument before for NF , and we
will not repeat it here. Instead we just note the necessary changes. In fact, the only
changes needed are in the proofs of Item 1 in Lemma 12 and 15, where we appeal to logical
separability to show that φi |=E c for some i respectively φx

d |=E c for some d. Here we show
that the same conclusions can be drawn using the assumption that V is complete for F .

First, note the following: Let φ ∈ F , and let c be a non-tautologous ground clause.
Then c is essentially a proper KB. Thus if φ |=E c, then c |=E ¬φ, and hence V [c, φ] = 0, by
completeness of V for F .

• Change in Lemma 12, Item 1:
Let c ∈ PI(

∧

Γ). Then
∧

Γ |=E c. Since
∧

Γ ∈ F , V [c,
∧

Γ] = 0. By the definition of
V , V [c, φi] = 0 for some φi ∈ Γ. By soundness of V , c |=E ¬φi. Thus φi |=E c.

• Change in Lemma 15, Item 1:
Let c ∈ PI(∀xφ). Then ∀xφ |=E c. Since ∀xφ ∈ F , V [c,∀xφ] = 0. By the definition of
V , V [c, φx

d ] = 0 for some constant d. By soundness of V , c |=E ¬φx
d. Thus φx

d |=E c.

With these small changes the proofs of the two lemmas go through for F instead of NF .
Finally, the proof of Theorem 16 carries over without any change, since the induction works
for any downward-saturated set. 2

269



Liu & Lakemeyer

4. Propositional NF Is Not Succinct

In the propositional case, Levesque’s transformation to NF , that is, taking the conjunction
of the prime implicates of the formula, may cause an exponential blowup in the size of the
formula. This is because the number of prime implicates of a formula with n propositions is
exponential in n in the worst case (Chandra & Markowsky, 1978). In this section, we show
that in the propositional case, under a certain complexity assumption, not every formula
has a polynomial-size equivalent one in NF . This is done by relating NF to an existing
result in knowledge compilation.

Knowledge compilation (Selman & Kautz, 1996; Darwiche & Marquis, 2002) has been
proposed as one of the main techniques to deal with the computational intractability of
general propositional reasoning. In this approach, a tractable language, which usually
means a language such that whether a clause is entailed by a formula from the language
can be decided in polynomial time, is identified as the target compilation language. A
propositional theory is first compiled off-line into the target language, and the result is then
used on-line to answer multiple queries. The main motivation here is to shift most of the
computational cost into the off-line phase, which is amortized over all on-line queries. As
shown in the following, NF can serve as a knowledge compilation language. The reason
is that in the propositional case, answering an arbitrary query against a proper KB is
equivalent to answering a clausal query against an arbitrary KB. As mentioned in Section 2,
in the propositional case, a proper KB is simply a consistent set of literals.

Proposition 19 Clausal entailment on NF can be decided in polynomial time.

Proof: Let φ ∈ NF , and let c be a non-tautologous clause. Then c is a proper KB. Thus
φ |= c iff c |= ¬φ iff V [c, φ] = 0, by soundness and completeness of V for NF . Clearly, in
the propositional case, V runs in polynomial time. 2

The following is a well-known result in knowledge compilation:

Theorem 20 (Selman & Kautz, 1996) Unless NP ⊆ P/poly, there does not exist a class
F of formulas such that every propositional formula has a polynomial-size equivalent one in
F , and clausal entailment on F can be decided in polynomial time.

The complexity class P/poly, also known as non-uniform P , originated in circuit com-
plexity (Boppana & Sipser, 1990). Roughly, a problem is in P/poly if for every integer n
there exists a circuit of size polynomial in n that solves instances of size n. Without going
into further details, NP ⊆ P/poly implies the collapse of the polynomial hierarchy at the
second level, which is considered very unlikely.

As an easy corollary of the above proposition and theorem, we have:

Corollary 21 Unless NP ⊆ P/poly, not every propositional formula has a polynomial-size
equivalent one in NF .

In other words, it is very unlikely that we can obtain compact NF representations for
arbitrary propositional formulas.

270



On the Expressiveness of Levesque’s Normal Form

5. Conclusion

Levesque remarked in his paper that he did not envision the use of NF in the sense of query
optimization by taking an arbitrary query and converting it into NF before handing it to
V . His main argument was the high computational cost, which usually cannot be afforded
on-line. Besides, except for special cases it is not even clear how to convert a formula into
NF , if one exists. Instead he suggested that NF could be a guideline for users to formulate
“good” queries which can be evaluated efficiently.

The contribution of this technical note is to point out some of the limits even of this
use of NF . In the propositional case our result says that most likely there will be queries
which cannot be both in NF and compactly representable. In some sense, this is not all
bad news, since in practice queries tend to be very small compared to the knowledge base.
In the first-order case our result is more serious as we showed that there are queries which
do not have a normal form at all. In other words, no matter how ingenious a user might be,
there will always be queries which have no easy-to-answer form, at least if we insist on a
form which is independent of the knowledge base as in NF . Indeed, it may still be possible
to find another notion of normal form which depends in some way on the knowledge base,
for example, the constants it contains. But that is future work.

Acknowledgments

We thank Hector Levesque for many helpful discussions on the topic of this paper and
reading an earlier version of the paper. We also thank the anonymous reviewers for their
detailed comments on improving the presentation of this paper.

References

Baader, F., Calvanese, D., McGuiness, D., Nardi, D., & Patel-Schneider, P. (2003). The
Description Logic Handbook: Theory, Implementation and Applications. Cambridge
University Press.

Boppana, R. B., & Sipser, M. (1990). The complexity of finite functions. In van Leeuwen,
J. (Ed.), Handbook of Theoretical Computer Science, Vol. A, pp. 757–804. Elsevier.

Calvanese, D., de Giacomo, G., Lembo, D., Lenzerini, M., & Rosati, R. (2006). Data
complexity of query answering in description logics. In Proc. of the Tenth International
Conference on Principles of Knowledge Representation and Reasoning (KR-06), pp.
260–270.

Chandra, A. K., & Markowsky, G. (1978). On the number of prime implicants. Discrete
Mathematics, 24, 7–11.

Darwiche, A., & Marquis, P. (2002). A knowledge compilation map. Journal of Artificial
Intelligence Research, 17, 229–264.

Lakemeyer, G., & Levesque, H. J. (2002). Evaluation-based reasoning with disjunctive infor-
mation in first-order knowledge bases. In Proc. of the Eighth International Conference
on Principles of Knowledge Representation and Reasoning (KR-02), pp. 73–81.

271



Liu & Lakemeyer

Levesque, H. J. (1998). A completeness result for reasoning with incomplete first-order
knowledge bases. In Proc. of the Sixth International Conference on Principles of
Knowledge Representation and Reasoning (KR-98), pp. 14–23.

Liu, Y., Lakemeyer, G., & Levesque, H. J. (2004). A logic of limited belief for reasoning with
disjunctive information. In Proc. of the Ninth International Conference on Principles
of Knowledge Representation and Reasoning (KR-04), pp. 587–597.

Liu, Y., & Levesque, H. J. (2003). A tractability result for reasoning with incomplete first-
order knowledge bases. In Proc. of the Eighteenth International Joint Conference on
Artificial Intelligence (IJCAI-03), pp. 83–88.

Selman, B., & Kautz, H. (1996). Knowledge compilation and theory approximation. Journal
of the ACM, 43 (2), 193–224.

272


