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1 Introduction

In the history of artificial intelligence, Blocks World (BW) has been one of

the most popular model domains. This domain consists of a set of blocks of

various shapes, sizes and colors sitting on a table. A robot can pick up a

block and move it to another position, either onto the table or on top of some

other block. A simple and well-known version of BW, called Elementary BW,

consists of cubic blocks of equal size. The use of BW dates back to 1970s when

Winograd first used BW for his natural language understanding program [12],

and then Waltz, Winston, etc. used BW for studies of computer vision [13].

BW is most extensively used in studies of planning. Roughly, the planning

task is to find a sequence of actions which transforms a given initial state into

a given goal state. Gupta and Nau [5] showed that optimal BW planning

is NP-hard. Slaney and Thiébaux [10] presented linear time algorithms for

near-optimal BW planning within a ratio of 2. Up to late 1990s, BW has

been used as a benchmark for domain-independent planning techniques and

systems. In a recent paper [11], Slaney and Thiébaux [10] further investigated

BW planning. In particular, they presented methods for generating random

problems for systematic experimentation.

BW is also used in studies of action theories, a subarea of AI concerned

with representing and reasoning about actions and their effects. In recent

years, founded on action theories, high-level programming languages for

robots have been developed. An example is situation calculus-based GOLOG

[9], which provides a way of defining complex actions in terms of primitive

actions, by using programming constructs such as sequences, conditionals,

loops and recursive procedures. In [7], Liu used BW in studies of verification
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of robot programs written in GOLOG. This research suggested the need for

a formal theory of BW.

Such a theory would address two issues relevant to program verification

in [7]. First, it would be useful to have a complete axiomatization of the state

constraints of BW. By state constraints of BW, we mean those properties

which hold in every state of BW. For example, “no block can be above itself”

is such a property. Without such an axiomatization, it is even impossible

to prove some simple properties of BW programs. Despite the popularity of

BW, to the best of our knowledge, there has not been serious work on axiom-

atizing the state constraints of BW and giving justification for its soundness

and completeness.

The second issue is the expressiveness of the BW language: What predi-

cates are definable in this language? This resolves the question of what pre-

and post-conditions of BW programs can be expressed by the BW language.

For example, we can write a BW program which makes two towers of the

same height, provided there is a single tower in the beginning and its height

is even. Our intuition is that the pre- and post-conditions of this program

can’t be expressed in the BW language. (We justify this intuition below by

Corollary 4.6.) Besides, this issue is related to the completeness issue of proof

systems for verification of BW programs. In [2], Cook proved relative com-

pleteness of Hoare Logic for sufficiently expressive languages, that is, those

languages L such that for any L-formula φ and any program P , there is an

L-formula ψ expressing the postcondition corresponding to φ and P .

In this paper, we address these two issues. We model a state of Elemen-

tary BW by a finite collection of finite chains, and call the theory of all these
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structures BW theory. We present a finite axiomatization of BW theory,

analyze the computational complexity of the theory, and characterize the

definable predicates in the theory.

In Section 2, we introduce the syntax and semantics of BW theory. In

Section 3, we give a set of axioms and prove by a game-theoretic argument

that their consequences are precisely BW theory. We give a simple decision

procedure for BW theory requiring exponential space, and prove that every

decision procedure for BW theory requires at least exponential time, even

if it is nondeterministic. We also give a characterization of all nonstandard

models for the theory. In Section 4, we present an expansion of BW theory

and show that it admits elimination of quantifiers. As a result, we are able to

characterize all definable predicates in BW theory, and give simple examples

of undefinable predicates.

2 Blocks World Theory

The notion of linear order (or chain) will play an important role in this paper.

Since there is variation in the usage of this term, we first clarify the usage

in this paper. By linear order (or chain), we mean a structure (A,<) where

A is a nonempty set and < is a binary relation on A which is irreflexive,

transitive and connected, i.e., for any a, b ∈ A, exactly one of a < b, a = b

and a > b is true.

Definition 2.1 Blocks World is a theory of the first-order predicate calculus

with equality. The language of Blocks World is Lbw = {above,=}, where

above is a binary predicate symbol. We say that a structure A for Lbw is
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a Blocks World model (BW model) if it is a finite disjoint union of finite

chains, where above(x, y) is intended to mean y < x.

We define “on”, “ontable” and “clear” as abbreviations as follows:

on(x, y)
def
= above(x, y) ∧ ¬(∃z)(above(x, z) ∧ above(z, y));

ontable(x)
def
= ¬(∃y)above(x, y);

clear(x)
def
= ¬(∃y)above(y, x).

Intuitively, x is on y if x is the least element above y.

Definition 2.2 We use Th(bw) to denote the theory of all BW models, that

is, the set of all Lbw-sentences true in every BW model. We call Th(bw)

Blocks World theory.

Of course, Blocks World theory is incomplete in the technical sense. Let

φ = (∀x, y)[ontable(x)∧ontable(y) → x = y]. Then neither φ nor ¬φ belongs

to it.

3 An Axiomatization for Blocks World

Theory

In this section, we give a set of axioms and prove by a game-theoretic ar-

gument that their consequences are precisely BW theory. We give a simple

decision procedure for BW theory requiring exponential space, and prove

that any decision procedure (even if nondeterministic) requires at least ex-

ponential time. Finally, we give a characterization of all nonstandard models

for the theory.
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Let Abw be the set of the following axioms. In each axiom, any free

variables are implicitly universally quantified. To reduce parentheses, we

assume that → and ↔ bind with lowest precedence.

(1). ¬above(x, x),

(2). above(x, y) ∧ above(y, z) → above(x, z),

(3). above(x, y) ∧ above(x, z) → y = z ∨ above(y, z) ∨ above(z, y),

(4). above(y, x) ∧ above(z, x) → y = z ∨ above(y, z) ∨ above(z, y),

(5). ontable(x) ∨ (∃y)(above(x, y) ∧ ontable(y)),

(6). clear(x) ∨ (∃y)(above(y, x) ∧ clear(y)),

(7). above(x, y) → (∃z)on(x, z) ∧ (∃w)on(w, y).

The axioms Abw ensure that every model of it has the following properties.

The elements of the universe are partitioned into disjoint sets, which we shall

call “towers”, by the comparability relation. The elements in each tower are

linearly ordered by the “above” relation, but elements in different towers are

incomparable. Every tower has a top element and a bottom element. Every

element that is not a top element has something on it, and every element

that is not a bottom element is on something.

Clearly, every BW model is a model of Abw. Thus CnAbw ⊆ Th(bw),

where CnAbw denotes the set of consequences of Abw. It is not obvious that

equality holds. We will prove this by a game-theoretic argument. So we

begin with an introduction of Ehrenfeucht-Fräıssé games.
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3.1 Ehrenfeucht-Fräıssé Games

The following material is adapted from Immerman [6].

Definition 3.1 Let A and B be structures of the same vocabulary, and let

k ∈ N. The k-round first-order Ehrenfeucht-Fräıssé game Gk(A,B) is played

by two players called the spoiler and the duplicator. There are k rounds of

moves. In the ith round, the spoiler first selects an element in one of the two

structures, then the duplicator selects an element in the other structure. If the

vocabulary contains constant symbols c1, . . . , cm, then let pi (qi respectively)

denote the interpretation of ci in A (B respectively), for 1 ≤ i ≤ m. For

1 ≤ i ≤ k, let pm+i (qm+i respectively) denote the element selected in A (B
respectively) in the ith round. The duplicator wins if the substructure of A
induced by p1, . . . , pm+k is isomorphic to the substructure of B induced by

q1, . . . , qm+k under the function that maps pi onto qi for 1 ≤ i ≤ m + k.

Otherwise, the spoiler wins. We say that the spoiler or the duplicator has a

winning strategy if he can guarantee that he will win, no matter how the other

player plays. We write A ∼k B if the duplicator has a winning strategy.

The quantifier rank qr(ϕ) of a formula ϕ is the depth of nesting of quanti-

fiers in ϕ. Let A and B be structures of the same vocabulary, and let k ∈ N.

We say that A and B are k-equivalent, written A ≡k B, if they agree on all

first-order sentences of quantifier rank up to k.

The following is the fundamental result of Ehrenfeucht-Fräıssé games. It

holds for both finite and infinite structures.

Proposition 3.2 Let A and B be structures of the same finite vocabulary

without function symbols, and let k ∈ N. Then A ∼k B iff A ≡k B.
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The following result is proved in [6]. For n ∈ N, let Ln denote a linear

order on n elements.

Proposition 3.3 Let k ∈ N, and let n = 2k+1 + 1. Then Ln ∼k Ln+1.

Here we extend the above result as follows.

Definition 3.4 We say that a chain L is a tower if

(1). L has least and greatest elements;

(2). every element that is not a greatest element has a successor;

(3). every element that is not a least element has a predecessor.

Obviously, every finite chain is a tower. Note that an infinite discrete

chain with least and greatest elements is not necessarily a tower, since it

may not satisfy (3) in the above definition. Let n ∈ N ∪ {∞}, where ∞
denotes infinity (of any cardinality). We use Pn to denote a tower on n

elements.

Proposition 3.5 Let k ∈ N. Then for any n > 2k, including n = ∞,

Pn ∼k P2k+1.

Proof: The proof is essentially the same as that of Proposition 3.3.

Let i, j, d ∈ N. We use i =d j to mean that i = j ∨ i ≥ d ∧ j ≥ d. We

expand the vocabulary to contain constant symbols 0 and max, and their

interpretations in Pn (n ∈ N ∪ {∞}) are the least and greatest elements of

Pn, respectively. We use < to denote the ordering on Pn. Let a, b ∈ Pn. We
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use dist(a, b) to denote the distance between a and b, which could be ∞. We

say that a is to the left of b if a < b.

The duplicator’s winning strategy in Gk(Pn, P2k+1) is to maintain the

following invariant: After the mth move, and for all 1 ≤ i, j ≤ m+ 2,

dist(pi, pj) =2k−m dist(qi, qj) and pi < pj iff qi < qj . (1)

Note that when m = k, (1) implies that the duplicator wins the game.

We prove that (1) holds by induction on m. Basis: m = 0. (1) holds

since dist(0Pn, maxPn) ≥ 2k, for n > 2k. Induction step: Assume that

(1) holds for m. Suppose that the spoiler selects pm+3. Let pi and pj

be the closest to the left and right of pm+3 among p1, . . . , pm+2. By in-

duction hypothesis, dist(pi, pj) =2k−m dist(qi, qj). Assume without loss of

generality that pi is the closer of pi and pj to pm+3 or that they are equi-

distant. The duplicator selects qm+3 to the right of qi so that dist(qi, qm+3) =

min{dist(pi, pm+3), bdist(qi, qj)/2c}. It follows that dist(pi, pm+3) =2k−m−1

dist(qi, qm+3) and dist(pm+3, pj) =2k−m−1 dist(qm+3, qj). So (1) holds for

m+ 1. The case that the spoiler selects qm+3 is similar.

Therefore the duplicator wins the game, and hence Pn ∼k P2k+1.

3.2 Adequacy of Abw

We will use Abw-models to mean models of Abw. We first analyze properties

of Abw-models. Let M be an Abw-model. We use DM to denote the domain

of M , and we use aboveM to denote the interpretation of above in M .

Proposition 3.6 Each Abw-model is a disjoint union of towers.
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Proof: Let M be an Abw-model. Define a relation ≈M on DM as follows:

for any a, b ∈ DM , a ≈M b iff a = b or 〈a, b〉 ∈ aboveM or 〈b, a〉 ∈ aboveM . By

Axioms (2), (3) and (4), ≈M is an equivalence relation. Also by definition of

≈M , no two equivalence classes of ≈M are connected by aboveM . By Axioms

(1) and (2), each equivalence class of ≈M is a chain; besides, it is a tower by

Axioms (5), (6) and (7).

Thus an Abw-model is a BW model iff it is finite.

Let M be an Abw-model. The height of a tower is the number of elements

in the tower. Let e1 and e2 be elements of the same tower. We use dist(e1, e2)

to denote the distance between e1 and e2. Let e be an element. The height of

e, written height(e), is one plus the number of elements below e. The depth

of e, written depth(e), is one plus the number of elements above e. Note that

both height of towers and distance between elements could be ∞.

Lemma 3.7 For any k ∈ N
+ and Abw-model M , there exists a BW model

M ′ consisting of at most k · (2k + 1) towers, each of height at most 2k + 1,

such that M ≡k M
′.

Proof: We prove this in two steps.

Step 1. Let M∗ be obtained from M by replacing each tower of height

> 2k + 1 by a tower of height 2k + 1. The duplicator’s winning strategy in

Gk(M,M∗) is as follows. Copy the moves on all towers of height ≤ 2k+1, and

on other towers use the winning strategy in Gk(Pn, P2k+1) (see Proposition

3.5), where n > 2k + 1. Thus M ∼k M
∗.

Step 2. LetM ′ be obtained fromM∗ as follows: for 1 ≤ h ≤ 2k+1, if there

are more than k towers of height h, keep only k of them. The duplicator’s
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winning strategy in Gk(M
∗,M ′) is as follows. If the spoiler selects a new

tower, then the duplicator selects a new tower of the same height, otherwise

the duplicator uses the winning strategy in Gk(Pn, Pn), where n ∈ N. Thus

M∗ ∼k M
′.

Clearly, the height of each tower of M ′ is at most 2k + 1 and the number

of towers of M ′ with the same height is at most k. By transitivity of ∼k,

M ∼k M
′, and hence M ≡k M

′.

Theorem 3.8 CnAbw = Th(bw).

Proof: Now we prove that Th(bw) ⊆ CnAbw, that is, for any φ ∈ Th(bw)

and any Abw-model M , M |= φ. Let k = qr(φ). Then k > 0. By Lemma 3.7,

there exists a BW model M ′ such that M ≡k M
′. Since M ′ |= φ, M |= φ.

3.3 Decidability of Blocks World Theory

A by-product of the completeness proof of Abw is that Th(bw) is decidable.

Theorem 3.9 Th(bw) is decidable by a decision procedure requiring at most

space 2O(n) and time 22O(n)
.

Proof: The following is a decision procedure for Th(bw). Given an arbitrary

Lbw-sentence φ, we check whether φ ∈ Th(bw) by (using lemma 3.7) checking

whether φ is true in every BW model with at most 2O(k) elements, where

k = qr(φ). The space required to specify and check each model is 2O(n). The

run time of any deterministic Turing machine is at most exponential in its

space.
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Theorem 3.10 If M is a Turing machine with runtime bounded by T (n)

which accepts precisely the set Th(bw), then there exists ε > 0 such that

T (n) > 2εn for infinitely many n. The same holds if M is a nondeterministic

Turing machine.

The proof uses methods [3, 4] established in the 1970’s for proving lower

bounds on the complexity of decidable theories. We begin by reviewing

some definitions of complexity classes and reducibilities. To simplify this

discussion, we fix a finite alphabet Σ ⊇ {0, 1}, and assume that all sentences

over Lbw are coded as strings over Σ.

Definition 3.11 NE (nondeterministic exponential time) is the set of all

languages L ⊆ Σ∗ accepted in time 2O(n) by some nondeterministic Turing

machine. coNE = {L̄ | L ∈ NE}, where L̄ = Σ∗ − L.

Definition 3.12 Let L1, L2 ⊆ Σ∗. Then L1 ≤p` L2 (L1 is polynomial time

linear expansion reducible to L2) if there is a polynomial time computable

function f : Σ∗ → Σ∗ such that for all w ∈ Σ∗

w ∈ L1 ⇐⇒ f(w) ∈ L2, and

|f(w)| = O(|w|)

We say that a language L0 is ≤p`-hard for a complexity class C iff L ≤p` L0

for all L ∈ C.

Theorem 3.13 Th(bw) is ≤p`-hard for coNE.

Proof of Theorem 3.10 from 3.13: Choose M0 to be a nondeterministic

universal Turing machine which behaves as follows. We use 〈M〉 to denote an
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appropriate string ending in 1 encoding a nondeterministic Turing machine

M . Then we design M0 so that on an input 〈M〉0k of length n, M0 runs for

at most 2n steps while simulating M for 2n/3 steps on the same input. Then

for every nondeterministic Turing machine M and for all sufficiently large k,

machine M0 accepts input 〈M〉0k within time 2n iff M accepts 〈M〉0k within

time 2n/3, where n = |〈M〉0k|.
Let L0 = L(M0) be the language accepted by M0. Then L0 ∈ NE, so

L̄0 ∈ coNE, so by the preceding theorem there is a polynomial time function

f : Σ∗ → Σ∗ such that for all nonempty w ∈ Σ∗

M0 accepts w ⇐⇒ f(w) 6∈ Th(bw), and (2)

|f(w)| ≤ c0|w| (3)

for some constant c0 > 0.

Now suppose M1 is a nondeterministic Turing machine which accepts

precisely Th(bw) and suppose contrary to Theorem 3.10 that M1 runs in time

T (n) ≤ 2n/(6c0) for all sufficiently large input lengths n. Design a machine

M2 which on input 〈M〉0k applies the transformation f from (2) to obtain a

formula φ = f(〈M〉0k). Now M2 runs M1 on input φ, and M2 accepts 〈M〉0k

iff M1 accepts φ. Note that |φ| ≤ c0n by (3), so the runtime of M1 on input

φ is at most 2c0n/(6c0) = 2n/6.

Thus for sufficiently large k, if n = |〈M〉0k| then M2 accepts 〈M〉0k

within time 2n/3 iff M1 accepts f(〈M〉0k) iff f(〈M〉0k) ∈ Th(bw) iff (by (2))

M0 does not accept 〈M〉0k iff M does not accept 〈M〉0k within time 2n/3 (by
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the property of M0). By taking M = M2 we obtain a contradiction.

Proof of Theorem 3.13: Let L ∈ coNE. Then L̄ is accepted by some

nondeterministic Turing machine M with run time at most 2c1n, for some

integer c1 > 0. For each input string w ∈ Σ∗ we will design a sentence f(w)

such that |f(w)| = O(|w|) and

M accepts w ⇐⇒ f(w) 6∈ Th(bw)

We let f(w) = ¬g(w), where the sentence g(w) satisfies

M accepts w ⇐⇒ g(w) is satisfied by some BW model

Thus it suffices to design the sentence g(w) such that it is satisfied by some

BW model iff M accepts w in a computation C with at most 2c1n steps,

where n = |w|. Each configuration I of the computation represents the

current sequence of tape symbols, along with the current state and scanned

square. We code I by a binary string of length 2m, where m = cn, and c is an

integer constant depending on M and c1. The entire computation C is coded

by a binary string X of length L = 2m(2c1n + 1) which is the concatenation

of 2c1n + 1 codes for the successive configurations in the computation. Let

Xi ∈ {0, 1} be the i-th bit of X, 1 ≤ i ≤ L. We say that a BW model B

represents X iff for each i, 1 ≤ i ≤ L, B has a tower of height i iff Xi = 1.

Our goal is to design g(w) so that a BW model B satisfies g(w) iff B

represents a string X coding an accepting computation of M on input w of

at most 2c1n steps. We write g(w) = F1 ∧ F2 ∧ F3, where sentence F1 asserts

that the first 2m bits ofX correctly represent the initial configuration ofM on

input w, F2 asserts that for 0 ≤ i < 2c1n, bits number 2m(i+1)+1, ..., 2m(i+2)
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code a possible successor configuration to the configuration coded by bits

number 2m·i+1, ..., 2m(i+1). Finally F3 asserts that one of the configurations

coded by X contains an accepting state.

Here are the basic formulas needed to construct F1, F2, F3. We use x < y

for above(y, x), min(x) for ontable(x), and max(x) for clear(x). Recall that

if a and b are elements in the same tower of a BW model, then dist(a, b) is

the distance between a and b. Our first task is to design, for each k ≥ 0, a

formula Distk(x, y) of length O(k) asserting x < y and dist(x, y) = 2k. Thus

Dist0(x, y) = on(y, x), and in general we want

Distk+1(x, y) ↔ ∃z(Distk(x, z) ∧Distk(z, y))

However we cannot use the RHS for Distk+1 since it has two occurrences of

Distk and hence the formula would have length exponential in k. Instead we

use a standard quantifier trick and define

Distk+1(x, y) = ∃z∀u∀v[((u = x ∧ v = z) ∨ (u = z ∧ v = y)) → Distk(u, v)]

Now the RHS has only one occurrence of Distk and hence the number of

symbols in Distk grows linearly in k. Further the bound variable z on the

RHS can also occur bound inDistk, and u, v can also occur bound in Distk−1,

so five distinct bound variables u, v, x, y, z suffice in total for each Distk,

although each is quantified many times. Thus the number of bits required

to code Distk is linear in k.

Next for each k we define a formula EQk(x1, y1, x2, y2) with the intention

EQk(x1, y1, x2, y2) ↔ x1 ≤ y1 ∧ x2 ≤ y2 ∧ dist(x1, y1) = dist(x2, y2) ≤ 2k

Thus

EQ0(x1, y1, x2, y2) = [(x1 = y1 ∧ x2 = y2) ∨ (on(y1, x1) ∧ on(y2, x2)]
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and in general

EQk+1(x1, y1, x2, y2) ↔ ∃z1∃z2[EQk(x1, z1, x2, z2) ∧ EQk(z1, y1, z2, y2)]

Again we use the quantifier trick so that EQk has bit size O(k).

Now we define a formula EQHk(x, y) to assert that elements x and y have

the same height and that height is at most 2k + 1. Thus

EQHk(x, y) = ∃x′∃y′[min(x′) ∧min(y′) ∧EQk(x
′, x, y′, y)]

Recall that a string X encoding an accepting computation has length

L = 2m+c1n + 2m. We define a formula HL(x) to assert x has height L+ 1 as

follows:

HL(x) = ∃y∃z(min(y) ∧Distm+c1n(y, z) ∧Distm(z, x))

Now we sketch the method for building the sentence F2, which asserts

that each successive step in the computation is correct. F2 begins with the

prefix ∃xHL(x) asserting that some element x has height L+ 1, and now for

each y < x, y can be used as an index for the y-th bit of X. For example, to

assert that Xy = 1 → Xy+2m = 1 we assert that if there is a tower of height

y, then there is a tower of height y + 2m; thus

∃z(max(z)∧EQHm+c1n(z, y)) →
∃z1∃z2(max(z2) ∧EQHm+c1n(z1, y) ∧Distm(z1, z2))

With proper coding of states and symbols, the sentence F3 simply asserts

that some constant length bit pattern (representing the accepting state) oc-

curs in X, and this is easily done using the above tools.
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It remains to design F1, which asserts that the first 2m bits of X are

correct. The initial r bits b1...br code the initial state and the input string

w, where r = O(n) (recall n = |w|). The remaining 2m − r bits for the first

configuration code blanks, and we can assume these bits are all 0.

We explain how to design a sentence of size linear in r which asserts that

bits X1...Xr coincide with b1...br. For k ≤ r, let Ak be the assertion that for

1 ≤ i ≤ k, bi = 1 iff there is a tower of height i. For 1 ≤ k ≤ r we define a

formula Gk(x, y) with the intention Gk(x, y) ↔ height(x) = k ∧ height(y) 6=
k ∧ Ak−1. The recurrence is

G1(x, y) = min(x) ∧ ¬min(y); Gk+1(x, y) ↔ C1 ∧ C2

where C1 asserts height(x) = k+1∧height(y) 6= k+1∧Ak−1, and C2 asserts

Xk = bk. Thus

C1 ↔ ∃x′∃y′[on(x, x′) ∧Gk(x
′, y′) ∧ (min(y) ∨ on(y, y′))]

There are two cases for C2, depending on whether bk is 0 or 1. We give

the case bk = 0, since this illustrates the use of the negative clause in the

intended meaning of Gk. In this case, C2 asserts that there is no tower of

height k.

C2 ↔ ∃x′∀z[on(x, x′) ∧ (max(z) → Gk(x
′, z))]

Notice that Gk occurs only positively on the right hand side of the recurrence,

so the quantifier trick can be applied to obtain a sentence ∃x∃yGr(x, y) of

size O(n) which asserts that the first r bits of X are correct.
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3.4 Nonstandard Models of Blocks World Theory

A nonstandard model of Th(bw) is any model of Th(bw) which is not a BW

model. Here we give a complete characterization of all these nonstandard

models.

Since CnAbw = Th(bw), models of Th(bw) are exactly the same as Abw-

models. The set of towers of an Abw-model can have any cardinality.

A chain is a Z-chain if it is isomorphic to the chain . . . ,−2,−1, 0, 1, 2, . . . .

A chain is a Z+-chain (Z−-chain respectively) if it is isomorphic to the chain

1, 2, . . . (. . . ,−2,−1 respectively).

Definition 3.14 We say that a chain is a “Z+Z−-chain”, if it is isomorphic

to the concatenation of a Z+-chain and a Z−-chain. We say that a chain is

a “Z+ZλZ−-chain”, if it is isomorphic to the concatenation of a Z+-chain,

any ordered set (countable or uncountable) of Z-chains, and a Z−-chain.

Proposition 3.15 Let L be a Z+ZλZ−-chain. Then L is a Z+Z−-chain iff

there is no element in L which separates L into two infinite parts.

Proposition 3.16 Any infinite tower of an Abw-model is a Z+ZλZ−-chain.

Proof: Let T be an infinite tower of an Abw-model. We define a partition

of T using the equivalence relation: two elements are equivalent iff there

are finitely many elements between them. By Axiom (7), the equivalence

class containing the least (greatest respectively) element of T is a Z+-chain

(Z−-chain respectively), and any other equivalence class is a Z-chain.
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4 Definability in Blocks World Theory

In this section, we give a complete characterization of all the predicates de-

finable in BW theory. We achieve this by the method of elimination of quan-

tifiers. The theory Th(bw) itself does not admit elimination of quantifiers.

We overcome this by expanding BW models with additional relations.

Definition 4.1 The expanded language of Blocks World is

L+
bw = Lbw ∪ {Hk | k ≥ 2} ∪ {Dk | k ≥ 2} ∪ {abovek | k ≥ 2}

∪ {Rh
k | h, k ≥ 1} ∪ {T h

k | h, k ≥ 1},

where the new symbols are predicate symbols with the following arities: Hk : 1,

Dk : 1, abovek : 2, Rh
k : 0, and T h

k : 0.

Let M be a model of Abw. The intended expansion of M to L+
bw is as

follows:

(1). Hk(x): the height of x is at least k;

(2). Dk(x): the depth of x is at least k;

(3). abovek(x, y): x is above y and their distance is at least k;

(4). Rh
k : there are at least k towers with height h;

(5). T h
k : there are at least k towers with height at least h.

The intended expansion can be easily axiomatized using an explicit defi-

nition of each new predicate as follows. For each h, k ≥ 1,

(1). abovek+1(x, y) ↔ (∃x1 . . . xk)[on(x, x1) ∧
∧

1≤i<k

on(xi, xi+1) ∧ above(xk, y)],
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(2). Hk+1(x) ↔ (∃y)(ontable(y) ∧ abovek(x, y)), where above1 is above,

(3). Dk+1(x) ↔ (∃y)(clear(y) ∧ abovek(y, x)),

(4). Rh
k ↔ (∃x1 . . . xk)[

∧

1≤i<j≤k

xi 6= xj ∧
∧

1≤i≤k

(ontable(xi) ∧Dh(xi) ∧ ¬Dh+1(xi))],

(5). T h
k ↔ (∃x1 . . . xk)[

∧

1≤i<j≤k

xi 6= xj ∧
∧

1≤i≤k

(ontable(xi) ∧Dh(xi))].

We use A+
bw to denote Abw extended by the above axioms. It is easy to

see that A+
bw is a conservative extension of Abw, since each model of Abw can

be expanded to a model of A+
bw by defining the new predicates using the new

axioms above. We will prove that CnA+
bw admits elimination of quantifiers

by using the following theorem from Marker et al [8].

Proposition 4.2 Let L be a language containing at least one constant sym-

bol. Let T be an L theory, and let φ(~x) be an L formula with free variables

~x. Then the following are equivalent:

(1). There is a quantifier-free formula ψ(~x) such that

T |= (∀~x)(φ(~x) ↔ ψ(~x));

(2). If M1 and M2 are models of T , and M is a common substructure of

M1 and M2, then for any ~a ∈ DM , M1 |= φ[~a ] iff M2 |= φ[~a ].

It can be shown that the above theorem still holds when L does not

contain any constant symbol, assuming that we introduce a propositional

connective 1 for “true”.

Theorem 4.3 The theory CnA+
bw admits quantifier elimination.
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Proof: It suffices to show that Condition (2) of Proposition 4.2 holds for

every formula of the form (∃y)φ(~x, y) where φ(~x, y) is a conjunction of literals.

(To see this, place the φ of Proposition 4.2 in prenex form, and eliminate the

quantifiers one at a time, starting with the innermost quantifier. We may

assume that this is ∃y by considering the negation, if necessary. Place the

quantifier-free part in disjunctive normal form, and distribute ∃y over the

∨’s.) We may suppose that the variable y occurs in each literal. Let M1 and

M2 be models of A+
bw, and let M be a common substructure of M1 and M2

such that ~a ∈ DM . Then the predicates Rh
k and T h

k guarantee thatM1 andM2

each have the same number of towers of each height (where ∞ is a possible

number), and the other predicates guarantee that any tower containing any

of the constants in ~a is the same in both models, with respect to finite and

infinite distances between constants and the top and bottom of the tower.

Suppose M1 |= φ[~a, b] for some b ∈ DM1 . We must show that there exists

e ∈ DM2 such that M2 |= φ[~a, e]. To prove M2 |= φ[~a, e], it suffices to prove

that for each atom α occurring in φ, M1 |= α[~a, b] iff M2 |= α[~a, e]. Let

m = max{k | Hk, Dk or abovek occurs in φ}. We use [b] to denote the tower

of M1 containing b. There are two cases.

Case 1: The tower [b] contains no ai. If [b] is finite, let T be a tower of

M2 containing no ai and with the same height as [b], and let e ∈ T such

that height(e) = height(b). Otherwise, let T be a tower of M2 containing

no ai and with height at least 2m + 2. If height(b) is finite, let e ∈ T

such that height(e) = min{height(b), m + 1}, otherwise let e ∈ T such

that depth(e) = min{depth(b), m + 1}. Now if α is an atom from a binary

predicate occurring in φ, then M1 6|= α[~a, b] and M2 6|= α[~a, e]; if α is a unary
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atom occurring in φ, it is easy to check that M1 |= α[~a, b] iff M2 |= α[~a, e].

Case 2: The tower [b] contains some ai. Let T be the tower of M2 which

contains that ai. Let A1 = {ai | b is above ai}, and let A2 = {ai | ai = b or ai

is above b}. If A1 is not empty, let b1 and e1 be the greatest element of A1,

otherwise let b1 be the least element of [b], and let e1 be the least element

of T. Similarly, if A2 is not empty, let b2 and e2 be the least element of A2,

otherwise let b2 be the greatest element of [b], and let e2 be the greatest

element of T . We use [e1, e2] to denote the set of elements between e1 and

e2, including e1 and e2. Now if dist(b1, b) is finite, let e ∈ [e1, e2] such that

dist(e1, e) = dist(b1, b); otherwise if dist(b, b2) is finite, let e ∈ [e1, e2] such

that dist(e, e2) = dist(b, b2), otherwise let e ∈ [e1, e2] such that dist(e, e2) =

m + 1. It is straightforward to check that for each atom α occurring in φ,

M1 |= α[~a, b] iff M2 |= α[~a, e].

We now start to discuss definability of predicates in BW theory. Intu-

itively, we feel that the predicate “the height of x is 11” is definable, but the

predicate “x is in the center of its tower” is not definable. In what follows,

we shall formalize this intuitive idea. We will use the following definition of

definability from Chang and Keisler [1].

Definition 4.4 Let L be a language, and let P be a new n-ary predicate

symbol not in L. Let Σ(P ) be a set of L ∪ {P} sentences. We say that P

is (explicitly) definable in Σ(P ) if there exists an L-formula φ(~x) such that

Σ(P ) |= (∀~x)[P (~x) ↔ φ(~x)].

Now let P be a new n-ary predicate symbol not in Lbw. For every BW

model M , we assume that there is an intended interpretation PM of P in
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M . We use Thbw(P ) to denote the theory of all expanded BW models, that

is, the set of all Lbw ∪ {P} sentences true in every expanded BW model

〈M,PM〉. We are concerned about whether P is definable in Thbw(P ). By

definition of Thbw(P ), it follows that Thbw(P ) |= (∀~x)[P (~x) ↔ φ(~x)] iff for

every BW model M , PM is equal to the relation that φ defines in M .

For example, let H be a new unary predicate symbol, and let HM =

{e ∈ DM | height(e) = 11} for any BW model M . Then H is definable in

Thbw(H) by the formula H11(x) ∧ ¬H12(x).

The following is a direct corollary of Theorem 4.3.

Corollary 4.5 A new predicate symbol P is definable in Thbw(P ) iff it is

definable in Thbw(P ) ∪A+
bw by a quantifier-free L+

bw-formula.

Now we can use this corollary to prove the non-definability of some new

predicate symbols.

Corollary 4.6 Let P be a new 0-ary predicate symbol with intended inter-

pretation PM for each BW model M . If P is definable in Thbw(P ), then there

exists B ∈ N such that the following holds: for any M such that PM = true

and for any tower of height > B in M , let M ′ be obtained from M by in-

creasing the height of that tower by some finite amount. Then PM ′
= true.

Proof: By Corollary 4.5, P is definable by a quantifier-free L+
bw-formula φ in

negation normal form (i.e. ¬’s govern only atoms), where φ has no variables.

We show by structural induction on φ that each such φ defines a predicate P

satisfying the condition stated in the corollary. For the base case, φ has one

of the four forms Rh
k ,¬Rh

k , T
h
k ,¬T h

k , and in each case the condition is satisfied
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by taking B = h. For the induction step, φ is either (φ1 ∧ φ2) or (φ1 ∨ φ2),

where φi satisfies the condition for Bi, i = 1, 2. In either case φ satisfies the

condition for B = max{B1, B2}.

Example 4.1 By the above corollary, it is easy to see that the predicates

“there are two towers with the same height” and “there is a tower of even

height” are not definable in BW theory.

Corollary 4.7 Let P be a new unary predicate symbol with an intended in-

terpretation PM for each BW model M . If P is definable in Thbw(P ), then

there exists B ∈ N such that for any BW model M , either the following holds

when Q is PM or it holds when Q is (¬P )M :

for any e ∈ Q, height(e) < B or depth(e) < B (4)

Proof: By Corollary 4.5, P (x) is definable by a quantifier-free L+
bw-formula

φ(x). We prove the corollary by structural induction on φ(x). For the

base case φ(x) is atomic, and must have one of the forms Hk(x), Dk(x),

above(x, x), abovek(x, x), R
h
k , or T h

k . For the first two cases, (4) holds with

B = k and Q = ¬PM . For the other cases B is irrelevant, since either PM

or ¬PM is identically false, so (4) is vacuously true.

For the induction step, it suffices to consider the two cases φ(x) is ¬φ1(x)

and φ(x) is (φ1(x) ∧ φ2(x)), where φi(x) defines Pi(x) and the induction

hypothesis applies with bound Bi, i = 1, 2. The case ¬φ1(x) is immediate.

For the case (φ1(x) ∧ φ2(x)) either for some i (4) holds with Q = PM
i and

B = Bi (so (4) also holds when Q = PM and B = Bi), or (4) holds for
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both i = 1 and i = 2 when Q = ¬PM
i and B = Bi, so (4) also holds when

Q = ¬PM and B = max{B1, B2}.

Example 4.2 Let P be a new unary predicate symbol, and let PM = {e ∈
DM | height(e) = depth(e)} for any BW model M . We will show that P

is not definable in Thbw(P ). Suppose to the contrary. Let B be the natural

number in Corollary 4.7. Now let M0 be a BW model with only one tower

with height 2B + 3. Then there exists e1 ∈ PM0 such that height(e1) =

depth(e1) = B + 2, and there exists e2 ∈ ¬PM0 such that height(e2) = B + 3

and depth(e2) = B + 1. Thus we get a contradiction.

Corollary 4.8 Let P be a new 0-ary predicate symbol with intended inter-

pretation PM for each BW model M . If P is definable in Thbw(P ), then

there exists B ∈ N such that either the following holds for Q = PM or it

holds for Q = ¬PM : For any M such that QM = true, there exists h such

that 1 ≤ h ≤ B and the number of towers of M with height h is less than B.

Proof: The proof is similar to that of Corollary 4.7. The only atoms that

we need consider are Rh
k and T h

k , for which we can take B = max(h, k) + 1.

Example 4.3 The predicate “the number of towers is even” is not definable

in BW theory, since for each height h there are BW models consisting of an

arbitrarily large even number of towers of height h, and also models consisting

of an arbitrarily large odd number of towers of height h.
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5 Conclusions

Blocks World has been extensively studied in the planning literature [5, 10,

11]. Motivated by the use of BW in program verification [7], this paper

presents a formal study of BW. We model a state of BW by a finite collection

of finite chains, and call the theory of all these structures BW theory. We

present a finite axiomatization of BW theory. We give a simple decision

procedure for BW theory which can be implemented in exponential space,

and prove that every decision procedure for the theory must take at least

exponential time. Also, we give a complete characterization of all predicates

definable in BW theory. It remains to be seen whether the proof techniques

used in this paper can be applied to other similar problems in AI.
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