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Abstract

The goal of producing a general purpose, semantically moti-
vated, and computationally tractable deductive reasoning ser-
vice remains surprisingly elusive. By and large, approaches
that come equipped with a perspicuous model theory either
result in reasoners that are too limited from a practical point
of view or fall off the computational cliff.
In this paper, we propose a new logic of belief calledSL
which lies between the two extremes. We show that query
evaluation based onSL for a certain form of knowledge bases
with disjunctive information is tractable in the propositional
case and decidable in the first-order case. Also, we present a
sound and complete axiomatization for propositionalSL.

Introduction
One of the most important yet elusive goals in the whole
area of Knowledge Representation is to devise a semanti-
cally coherent yet computationally well-behaved reasoning
service that could be used as a black box by a wide vari-
ety of systems in a wide variety of applications. There are
two obvious limit points we might consider: at one extreme,
we imagine a service based on classical logical entailment,
perhaps augmented nonmonotonically; at the other extreme,
we imagine a service based only on retrieval, perhaps aug-
mented by some syntactic normalization. In between these
two limits, however, there is controversy: for some, any di-
vergence from classical logical entailment is semantically
problematic, and all talk about computational tractability is
taken as obsession with worst cases; for others, any attempt
to go beyond retrieval in a domain-independent way is mis-
guided, as it fails to use whatever structure is provided by
the application domain. Be that as it may, in this paper we
will propose a new reasoning service that does lie between
the extremes mentioned.

There are many ways of specifying what a reasoning ser-
vice should do. One idea that has proved quite fruitful in the
last twenty years or so has been to think of the desired ser-
vice in terms of alogic of belief1 (Levesque 1984; Konolige
1986; Vardi 1986; Fagin & Halpern 1988; Fagin, Halpern,
& Vardi 1990; Lakemeyer 1990; Cadoli & Schaerf 1992;
Delgrande 1995). The idea is this: instead of considering

1As is the custom, in this paper we do not distinguish between
knowledge and belief.

what the service must be like in terms of the inferences it can
or must draw (given sentencesφ1, . . . ,φn, must it infer the
sentenceψ?), we consider thebeliefsof the system overall,
and what properties the set of beliefs must satisfy. The logic
of belief serves to provide a precise theoretical framework
for analyzing these properties. There are sentences in this
language of the formBφ, saying that sentenceφ is believed,
and the semantic interpretations of the logic tell us under
what conditions such a sentence will be true, and therefore
what follows. Questions about the reasoning process now
become questions about theclosureproperties of belief: if
Bφ1, . . . , Bφn are all true, does it follow in the logic that
Bψ is also true? We can think of theφi as the stipulated
or explicitbeliefs of the system, and the question is whether
or notψ is a derived orimplicit belief. In a logic of belief
we can also ask other sorts of questions that are difficult or
impossible to formulate otherwise. For example, we can ask
if the system has various forms of introspection (if¬Bψ is
true, does it follow thatB¬Bψ is true?) orde rebeliefs (if
theBφi are all true, does it follow that∃xBψ is also true?).

Of course using a logic of belief in this way would be
a lot less interesting if the reasoning service coincided ex-
actly with classical logical entailment, that is, if for everyφ
andψ in our representation language,Bφ logically entailed
Bψ in the logic of belief iffφ classically entailedψ. This
is the case, for example, with the standard possible-world
logics of belief, originated by Hintikka (Hintikka 1962;
Halpern & Moses 1992), and which suffer from what Hin-
tikka calledlogical omniscience. It would also be less inter-
esting if the reasoning service coincided with retrieval, that
is, if Bφ were true iffφ were an element of some given list
of sentences.

In between these two extremes, two broad approaches
have emerged in the specification of a logic of tractable
belief.2 First, there are thesyntacticapproaches exempli-
fied in (Konolige 1986; Vardi 1986; Fagin & Halpern 1988),
where the logical interpretations either include sets of sen-
tences (beyond the atomic ones) or mark them in some way
(e.g. the sentences that the reasoner is aware of). In this
case, a reasoner can believeφ and(φ ⊃ ψ) but fail to be-
lieve ψ becauseψ is not syntactically blessed in the inter-
pretation. Second, there are thesemanticapproaches ex-

2This oversimplifies the situation considerably.



emplified in (Levesque 1984; Lakemeyer 1990; Cadoli &
Schaerf 1992), and deriving originally from work on tauto-
logical entailment (Anderson & Belnap 1975; Dunn 1976;
Patel-Schneider 1985), where the logical interpretations as-
sign truth values to atoms, but allow them to receive fewer
or more than one. In this case, a reasoner can believeφ and
(φ ⊃ ψ) but fail to believeψ because bothφ and¬φ are
somehow taken as true.

In this paper, we follow the tradition of the semantic ap-
proach to logics of tractable belief, but diverging from the
multiple truth values and tautological entailment. Most of
the criticism to date about that approach has had to do with
its semantics: what is the intuitive understanding of a sen-
tence receiving two truth values (Fagin & Halpern 1988)?
Here our criticism in the next section is different: we ar-
gue that despite its apparent tractability in certain cases
(Levesque 1984), a reasoning service based on tautological
entailment is required to handle disjunctions in a way that
does too much in some contexts and not enough in others.

In the sequel, we first revisit disjunctions, and motivate
why we need to consider two possible forms of disjunctions
separately within the logic. Then we present a new logic of
belief, which we call the subjective logicSL, and discuss the
resulting properties of beliefs. Next, we consider the com-
putational property of a reasoning service based onSL for
a form of knowledge bases (KBs) with disjunctive informa-
tion, the so-called proper+ KBs proposed in (Lakemeyer &
Levesque 2002): we show that it is tractable in the propo-
sitional case and decidable in the first-order case. Also, we
give a sound and complete axiomatization for propositional
SL. Finally, we discuss related work and conclude with fu-
ture work.

Disjunctions Reconsidered
As observed in (Lakemeyer & Levesque 2002), although
disjunctions can be used in many ways in a commonsense
KB, it has two major applications: (1) to representrulessuch
as in Horn clauses, where we may need to perform chaining
in the reasoning; and (2) to representincomplete knowledge
about some individual(s), where we may need to split cases.
We believe that (2) is the computational problem. To see
why, consider the two example KBs in Figure 1. The reader

KB1 KB2

(P (a) ∨ P (e) ∨ P (f)) (P (a) ∨Q(e) ∨Q(c))
(P (a) ∨ P (e) ∨Q(f)) (Q(d) ∨ P (b) ∨Q(a))
(P (a) ∨Q(e) ∨ P (c)) (P (a) ∨ P (e) ∨ P (f))
(P (a) ∨Q(e) ∨Q(c)) (P (c) ∨Q(e) ∨ P (a))
(Q(a) ∨ P (b) ∨ P (d)) (Q(a) ∨Q(b) ∨Q(g))
(Q(a) ∨ P (b) ∨Q(c)) (P (a) ∨ P (e) ∨Q(f))
(Q(a) ∨Q(b) ∨ P (g)) (Q(b) ∨Q(a) ∨ P (g))
(Q(a) ∨Q(b) ∨Q(g)) (Q(a) ∨ P (d) ∨ P (b))

Figure 1: Two puzzles

is invited to confirm that one and only one of these logically
entails∃x.(P (x)∧Q(x)). So being required to handle (2) is
also being required to solve combinatorial puzzles like this

automatically as part of the basic operation of the system. If
we accept that this is perhaps asking too much of a reason-
ing service, then we need to rule out a service based sim-
ply on logical entailment, since KB2 does logically entail
∃x.(P (x) ∧ Q(x)). In fact, we also need to rule outtauto-
logical entailment, since KB2 also tautologically entails the
sentence. Indeed, tautological entailment agrees with logi-
cal entailment in the absence of negation. So restricting a
reasoning service to tautological entailment would still re-
quire it to be able to determine that∃x.(P (x) ∧ Q(x)) is
true for KB2 but not KB1.

It is significant that previous work proposing a lim-
ited form of reasoning based on tautological entailment
(Levesque 1984; Frisch 1987) only worked in the proposi-
tional case and when the query was in CNF or the KB was
in DNF (Cadoli & Schaerf 1996). The first-order case later
studied in (Patel-Schneider 1985) and (Lakemeyer 1990) re-
quired considerable machinery beyond tautological entail-
ment. Moreover, this additional effort only resulted in fewer
inferences compared to tautological entailment and thus per-
haps even less general applicability.

Our approach here will be to follow (Lakemeyer &
Levesque 2002) and preserve (1), but to deal with (2) in
a more controlled way. To handle (1) without also rea-
soning by cases, we will propose a logic of belief where
clauses that are explicitly believed are closed underunit
propagation. This means that disjunctions that express sim-
ple rules as material conditionals will be fully utilized. Be-
cause unit propagation does not result in an explosion of
clauses, we believe that this very common form of rea-
soning can also be kept tractable. Other approaches based
on unit propagation include (McAllester 1990; Dalal 1996;
Crawford & Etherington 1998), but they are all restricted to
the propositional case.

As for (2), wedo want systems that can split cases and
deal with incomplete knowledge that is disjunctive, but we
need to do so in a controlled way. In fact what we will pro-
pose is a logic with a family of belief operatorsB0, B1, B2,
. . . , where the difference concerns how much case splitting
is tolerated in deriving implicit beliefs. For the above puzzle
with KB2, it will turn out thatB8∃x.(P (x) ∧Q(x)) will be
true butB7∃x.(P (x) ∧ Q(x)) will be false. Of course, the
higher the levelk, the more resources are required to deter-
mine what is an implicit belief at that level. Each of these
belief operators will be closed under various forms of obvi-
ous reasoning. For example, if we believeφ at some level,
we also believe(φ ∨ ψ) at the same level,i.e. weakening.
In addition, the beliefs at level 0 will be closed under unit
propagation.

Some bad news: One tried-and-true and well-loved form
of reasoning that we will need to give up on is the distribu-
tion of ∧ over∨, that is, that believing(p ∧ (q ∨ r)) should
always imply believing(p ∧ q) ∨ (p ∧ r). We can get this
behavior by going up to higher levels (e.g.splitting the sec-
ond clause here), but to require it at every level would force
us to do too much reasoning. For example, after repeatedly
distributing∧ over∨ in KB2 above, it then becomes obvious
that∃x.(P (x) ∧Q(x)) must be true.



The Subjective LogicSL
The syntax
The languageL is a standard first-order logic with equality.
The languageSL is a first-order logic with equality whose
atomic formulas are belief atoms of the formBkφ whereφ
is a formula of the languageL andBk is a modal operator
for anyk ≥ 0. Bkφ is read as “φ is a belief at levelk”. We
call SL a subjectivelogic because all predicates other than
equality appear in the scope of a belief operator.

More precisely, we have the following inductive defini-
tions. We have countably infinite sets of variables and con-
stant symbols, which make up thetermsof the language.
Theatomsare expressions of the formP (t1, . . . , tm) where
P is a predicate symbol (excluding equality) and theti are
terms. Theliterals are atoms or their negations. We useρ to
range over literals, and we useρ to denote the complement
of ρ.

The languageL is the least set of expressions such that

1. if ρ is an atom, thenρ ∈ L;

2. if t andt′ are terms, then(t = t′) ∈ L;

3. if φ, ψ ∈ L andx is a variable, then¬φ, (φ ∨ ψ), and
∃x.φ ∈ L.

Clauses, which play an important role in our semantic defi-
nition, are inductively defined as follows:

1. a literal is a clause, and is called a unit clause;

2. if c andc′ are clauses, then(c ∨ c′) is a clause.

We identify a clause with the set of literals it contains. Only
non-empty clauses appear inL. The empty clause, however,
which we denote by2, can appear inSL and is needed in
the definition ofUP to follow.

The languageSL is the least set of expressions such that

1. if φ ∈ L or φ is 2, andk ≥ 0, thenBkφ ∈ SL, and is
called abelief atomof levelk;

2. if t andt′ are terms, then(t = t′) ∈ SL;

3. if α, β ∈ SL andx is a variable, then¬α, (α ∨ β), and
∃x.α ∈ SL.

So, in short, the formulas ofSL are such that all predicates
other than equality must occur within a modal operator and
the modalities are non-nested. As usual, we use(α ∧ β),
(α ⊃ β), and∀x.α as abbreviations. We writeαx

d to denote
α with all free occurrences ofx replaced by constantd.

The semantics
Sentences ofSL are interpreted via asetup, which is a set of
non-emptyground clauses, and which specifies which sen-
tences ofL are believed, and consequently which sentences
of SL are true. Intuitively, one may think of a setup as in-
dicating what isexplicitly believed as a possibly infinite set
of ground clauses. The semantics below then tells us theim-
plicit beliefs that follow. We begin with some preparatory
concepts.

Let s be a set of ground clauses. The closure ofs under
unit propagation, denoted byUP(s), is the least sets′ satis-
fying: 1. s ⊆ s′; and 2. ifρ ∈ s′ and{ρ} ∪ c ∈ s′, then

c ∈ s′. We defineVP(s) as the set{c | c is a ground clause
and there existsc′ ∈ UP(s) such thatc′ ⊆ c}.

Next, observe that in classical logic we have the following
patterns of obvious inference:

1. fromφ, infer¬¬φ;

2. fromφ orψ, infer (φ ∨ ψ);
3. fromφ andψ, infer (φ ∧ ψ).
These patterns relate the inference of a formula to that of
its subformulas. As a characterization of these patterns of
obvious inference, we define the concept of belief reduction.
Roughly, (Bkφ) ↓ denotes theSL formula resulting from
pushing the belief operator intoφ. Intuitively, we take the
conclusion from(Bkφ)↓ to Bkφ to be an obvious one. For
anyφ ∈ L, theSL formula(Bkφ)↓ is defined as follows:

1. (Bkc)↓ = Bkc, wherec is a clause;

2. (Bk(t = t′))↓ = (t = t′);
3. (Bk¬(t = t′))↓ = ¬(t = t′);
4. (Bk¬¬φ)↓ = Bkφ;

5. (Bk(φ ∨ ψ))↓ = (Bkφ ∨ Bkψ),
whereφ orψ is not a clause;

6. (Bk¬(φ ∨ ψ))↓ = (Bk¬φ ∧ Bk¬ψ);
7. (Bk∃x.φ)↓ = ∃x.Bkφ;

8. (Bk¬∃x.φ)↓ = ∀x.Bk¬φ.

In logic, we usually define concepts and prove properties
about formulas by induction on the structure of formulas.
The principle can be stated as follows. We first define a
complexity measure‖ · ‖ which maps formulas into natural
numbers. Usually, the complexity measure is the length of
the formula or the number of logical operators in the for-
mula. Now letα be an arbitrary formula. Assuming that
we have defined a conceptC or proved a propertyP for all
formulasβ such that‖ β ‖<‖ α ‖, we proceed to defineC
or proveP for α. In SL, the complexity measure is more
complicated, because we need to take into account both the
length and the level of belief atoms. For example, we would
like ‖B2φ ‖<‖B3φ ‖. For anyα ∈ SL, ‖α ‖ is defined as
follows:

1. ‖(t = t′)‖ = 1;

2. ‖¬α‖ = 1+ ‖α‖;

3. ‖∃x.α‖ = 3+ ‖α‖;

4. ‖(α ∨ β)‖ = 3+ ‖α‖ + ‖β ‖;

5. ‖Bkφ‖ = 2k+m, wherem is the length ofφ, but where
all atoms and equalities are considered to have length 1.

It is easy to prove the following property about‖·‖:

Proposition 1 1. For anyφ, ‖Bkφ‖< ‖Bk+1φ‖;
2. For anyφ that is not a clause,‖(Bkφ)↓‖< ‖Bkφ‖.

Now we are ready to define truth inSL. Let s be a setup.
Then for any sentenceα ∈ SL, s |= α (read “s satisfiesα”)
is defined inductively on‖α‖ as follows:

1. s |= (d = d′) iff d andd′ are the same constant;

2. s |= ¬α iff s |6=α;



3. s |= α ∨ β iff s |= α or s |= β;

4. s |= ∃x.α iff for some constantd, s |= αx
d ;

5. s |= Bkφ iff one of the following holds:

(a) subsume: k = 0, φ is a clausec, andc ∈ VP(s);
(b) reduce: φ is not a clause ands |= (Bkφ)↓;
(c) split: k > 0 and there is somec ∈ s such that for all

ρ ∈ c, s ∪ {ρ} |= Bk−1φ.

By the above proposition, this semantics is well-defined. As
usual, we say that a sentenceα ∈ SL is valid (|= α) if for
every setups, we have thats |= α.

Before discussing properties of the logic as a whole, we
observe that the semantics above proposes three different
justifications for believing a sentenceφ (at levelk):

1. φ is a clause,k = 0, and after doing unit propagation on
the ground clauses that are explicitly believed, we end up
with a subclause ofφ;

2. we already have appropriate beliefs about the subformulas
of φ, for example, believing both conjuncts of a conjunc-
tion, or some instance of an existential;

3. there is a clause in our explicit beliefs that if we were to
split, that is, if we were to augment our beliefs by a literal
in that clause, then in all cases we would end up believing
φ at levelk − 1.

Note that all three of these rules deal with disjunction but in
quite different ways.

The reader should note the assumptions made with respect
to the universe of discourse and, as a result, the treatment of
equality. For one, all setups use the same universe of dis-
course, which is identical to the infinite set of constants in
the language. Moreover, distinct constants stand for distinct
individuals, which fixes the meaning of the equality predi-
cate. All this allows giving quantifiers a substitutional inter-
pretation and, previous criticism of substitutional interpreta-
tions notwithstanding (Kripke 1976), greatly simplifies the
technical treatment.

Monotonicity of beliefs
We now prove the monotonicity of beliefs, that is, that new
clauses can be added to any setup without revoking pre-
viously supported beliefs. This is a basic property used
throughout the paper.

Let s ands′ be two setups. We writes � s′ iff for any
Bkφ, if s |= Bkφ, thens′ |= Bkφ.

Proposition 2 For anyc ∈ UP(s), there existsc′ ∈ s such
thatc ⊆ c′ and for allρ ∈ c′ − c, ρ ∈ UP(s).

Proposition 3 If s ⊆ VP(s′), thenVP(s) ⊆ VP(s′).

Proposition 4 [Monotonicity]
If VP(s) ⊆ VP(s′), thens � s′.

Proof: We prove by induction on‖Bkφ‖.

1. s |=B0c by subsumption. SinceVP(s)⊆VP(s′), s′ |=B0c.

2. s |= Bkφ by reduction. For each case ofφ, it is easy to
prove by induction thats′ |= Bkφ too.

3. s |= Bkφ by splitting onc ∈ s. Then for allρ ∈ c,
s ∪ {ρ} |= Bk−1φ. Sincec ∈ VP(s′), by Proposition 2,
there existc′ ⊆ c andc′′ ∈ s′ such thatc′ ⊆ c′′ and for
all ρ ∈ c′′ − c′, ρ ∈ UP(s′). We prove that for allρ ∈ c′′,
s′ ∪ {ρ} |= Bk−1φ, and hences′ |= Bkφ.

(a) ρ ∈ c′′−c′. Thenρ ∈ UP(s′), and so2 ∈ UP(s′∪{ρ}).
Pick anyρ′ ∈ c, thenVP(s∪{ρ′}) ⊆ VP(s′∪{ρ}) and
s ∪ {ρ′} |= Bk−1φ. By induction,s′ ∪ {ρ} |= Bk−1φ.

(b) ρ ∈ c′. Thenρ ∈ c. Thuss ∪ {ρ} |= Bk−1φ. Since
VP(s∪ {ρ}) ⊆ VP(s′ ∪ {ρ}), by induction, we get that
s′ ∪ {ρ} |= Bk−1φ.

As an easy corollary, ifs ⊆ s′, thens � s′.

Properties of beliefs
We now consider the properties of beliefs, both at the same
and across different levels. What interests us most are ques-
tions like when does a belief at a certain level entail another
belief and when is this not the case. We will see that many
properties agree with those which one finds in classical ap-
proaches to modeling belief such as possible-world seman-
tics (Kripke 1959; Hintikka 1962). But there will also be
a number of differences, which sets our model apart from
existing approaches. We only include a few proofs.

Equality: Due to our treatment of equality, we have that at
all levels, exactly the true equality sentences are believed:

|= Bke ≡ e, (1)

wheree contains no predicate symbols.

Belief Reductions:Obviously, we have

|= (Bkφ)↓⊃ Bkφ (2)

|= B0φ ≡ (B0φ)↓ (3)

Also, we have

|= Bk¬¬φ ≡ Bkφ (4)

|= Bk(φ ∧ ψ) ≡ Bkφ ∧ Bkψ (5)

|= Bk∀x.φ ≡ ∀x.Bkφ (6)

Proof: Since the proofs are all very similar, we only prove
(4) here. It suffices to prove that|= Bk¬¬φ ⊃ Bkφ,
since the other direction follows from (2). We prove this
by induction onk. Basis: k = 0. Trivial. Induction
step: Lets |= Bk+1¬¬φ. If this holds by reduction, then
s |= Bk+1φ. Otherwise, there is somec ∈ s such that for all
ρ ∈ c, s ∪ {ρ} |= Bk¬¬φ. By induction,s ∪ {ρ} |= Bkφ.
Thuss |= Bk+1φ.

However, we have

|6= Bk(φ ∨ ψ) ⊃ Bkφ ∨ Bkψ (7)

|6= Bk∃x.φ ⊃ ∃x.Bkφ, for k > 0 (8)

We give two counter-examples for (7). Lets1 = {(p ∨ q)}.
Thens1 |= B0(p ∨ q), but s1 |6=B0p ands1 |6= B0q. Let
s2 = {(x∨ y), (x ∨ p), (y ∨ q)}. Thens2 |= B1(p ∨ q), but
s2 |6= B1p ands2 |6= B1q.

Distribution: Unfortunately, only one direction of each of
the normal distribution laws goes through, as shown in the



following:

|= Bk[(φ ∧ ψ) ∨ (φ ∧ η)] ⊃ Bk[φ ∧ (ψ ∨ η)] (9)

|6=B1[p ∧ (q ∨ r)] ⊃ B1[(p ∧ q) ∨ (p ∧ r)] (10)

|= Bk[φ ∨ (ψ ∧ η)] ⊃ Bk[(φ ∨ ψ) ∧ (φ ∨ η)] (11)

|6= B1[(p ∨ q) ∧ (p ∨ r)] ⊃ B1[p ∨ (q ∧ r)] (12)

(10) and (12) hold for the same reason as the failure of
Modus Ponens in (15) discussed below.

Thus normal form conversions generally do not preserve
equivalence for beliefs at a fixed levelk. Those who may
find this troubling should recall our previous discussion
where we pointed out that it is the distribution of∧ over∨
(and not, say, closure under resolution) which would force
us into solving puzzles like those in Figure 1, since no nega-
tions are involved.

Level Change:As expected, we have the following:

|= Bkφ ⊃ Bk+1φ (13)
Proof: Let s0 be the empty setup. It is easy to see that
s0 |6= Bkc for anyk and clausec. Also,s0 |= Bke iff s0 |= e
for anyk and equality or inequalitye. Thuss0 |= Bkφ iff
s0 |= Bk+1φ for anyφ.

Now let s |= Bkφ. If s is empty, thens |= Bk+1φ.
Otherwise, pick anyc ∈ s. By monotonicity, for allρ ∈ c,
s ∪ {ρ} |= Bkφ. Thuss |= Bk+1φ.

Modus Ponens:Finally, we consider the closure of beliefs
under Modus Ponens. As expected,B0-beliefs are closed
under unit propagation, whileBk-beliefs are not fork > 0.
However, we do have a generalized form of closure under
unit propagation. Letρ be a literal andc a clause. Then

|= B0ρ ∧ B0(ρ ∨ c) ⊃ B0c (14)

|6= B1p ∧ B1(p ∨ q)] ⊃ B1q (15)

|= Biρ ∧ Bj(ρ ∨ c) ⊃ Bi+jc (16)

Proof: (15): Intuitively, this is because you may need one
split for p and another for(p ⊃ q), but one split may not get
youq. To see why, lets = {(x ∨ p), (x ∨ p), (y ∨ p ∨ q),
(y ∨ p ∨ q)}. Thens |= B1p by splitting on the first clause,
ands |= B1(p ⊃ q) by splitting on the third clause. But
s |6=B1q.

(16): The proof is by induction oni+ j. Basis:i+ j = 0.
This is simply (14). Induction step:i+ j > 0. Suppose that
i > 0. By induction,|= Bi−1ρ ∧ Bj(ρ ∨ c) ⊃ Bi+j−1c.
Now let s |= Biρ ∧ Bj(ρ ∨ c). Then there is somec ∈ s
such that for alll ∈ c, s ∪ {l} |= Bi−1ρ. By monotonicity,
s∪ {l} |= Bj(ρ∨ c). Hences∪ {l} |= Bi+j−1c. Therefore
s |= Bi+jc. The case whenj > 0 is similar.

(15) shows that Modus Ponens is not a valid form of in-
ference at a fixed levelk. However, we do get a generalized
form of Modus Ponens under a certain condition. In what
follows, let i, j ≥ 0, and letφ, ψ ∈ L such thatψ does not
contain equalities. Then we have

|= Biφ ∧ Bj(φ ⊃ ψ) ⊃ Bkψ, for somek (17)
The proof needs the following:

|= Bk2 ⊃ Bkψ (18)

|= Biφ ∧ Bj¬φ ⊃ Bk2, for somek (19)

Proof: (18): The proof is by induction onk. The base case
is proved by induction onψ. Note thatψ does not contain
equalities.

(19): The proof is by induction on‖Biφ ‖ + ‖Bj¬φ ‖.
Since|= Bj¬¬φ ≡ Bjφ, we only need to consider the cases
whenφ is a clause, an equality, a double negation, a disjunc-
tion, or an existential. Here we only prove the cases whenφ
is a clause or a disjunction. Other cases are either trivial or
can be similarly proved. Case 1:φ is a clausec. Letn be the
number of literals inc. Since|= Bj¬c ≡

∧
ρ∈c Bjρ, by re-

peatedly applying (16), we have|= Bic∧Bj¬c ⊃ Bi+nj2.
Case 2:φ isφ1 ∨φ2 such thatφ1 orφ2 is not a clause. By

induction, there existk1, k2, k3, andk4 such that

|= Biφh ∧ Bj¬φh ⊃ Bkh
2, h = 1, 2

|= Bi−1φ ∧ Bj¬φ ⊃ Bk32, if i > 0
|= Biφ ∧ Bj−1¬φ ⊃ Bk42, if j > 0

If i = 0, let k3 = −1; if j = 0, let k4 = −1. We let
k = max{k1, k2, k3+1, k4+1}. Now lets |= Biφ∧Bj¬φ.
If s |= Biφ by splitting, thens |= Bk3+12. If s |= Bj¬φ
by splitting, thens |= Bk4+12. Otherwise, we have that
s |= Biφh ∧ Bj¬φh for someh = 1, 2. Sos |= Bkh

2.

Now we can prove (17).

Proof: The proof is by induction onj. There are two cases.
Case 1:¬φ∨ψ is a clause. Thenφ is an atom, sayρ; andψ is
a clause, sayc. By (16),|=Biρ∧Bj(ρ∨c) ⊃ Bi+jc. Case 2:
¬φ ∨ ψ is not a clause. By (19), there exists ak1 such that
|= Biφ∧Bj¬φ ⊃ Bk12. By (18),|= Biφ∧Bj¬φ ⊃ Bk1ψ.
If j = 0, let k2 = −1; otherwise, by induction, there exists
a k2 such that|= Biφ ∧ Bj−1(φ ⊃ ψ) ⊃ Bk2ψ. Then
k=max{j, k1, k2+1} is the value we want.

A Reasoning Service Based onSL
As we mentioned in the introduction,SL is intended to serve
as a foundation for limited but decidable (and even tractable)
reasoning services. The idea is to model the reasoning ser-
vice as belief implication,i.e. validity of formulas of the
form (B0KB ⊃ Bkφ), whereKB is a knowledge base, and
φ is a query. More precisely, we have

Definition 1 Thequery evaluation problembased onSL for
a fixed valuek (the QESL problem in short) is as follows:
Given a knowledge base KB inL and a formulaφ in L,
decide whether theSL formula(B0KB ⊃ Bkφ) is valid.

Intuitively, if a KB is thought as providing the explicit
beliefs of the system, formulated not as a possibly infinite
set of ground clauses, but as a finite set of sentences ofL
using quantification, then the implicit beliefs at levelk are
those sentencesφ such that(B0KB ⊃ Bkφ) is valid.

Example 1 Consider KB1 and KB2 in Figure 1, and the
queryφ = ∃x.(P (x) ∧Q(x)). Then we have:

1. |6= (B0KB1 ⊃ Bkφ), for anyk;
2. |6= (B0KB2 ⊃ Bkφ), for anyk < 8;
3. |= (B0KB2 ⊃ Bkφ), for everyk ≥ 8.

Example 2 Consider the following KB with only one pred-
icateC(p1, p2) saying that the two persons are compatible.



1. ∀x∀y.C(x, y) ⊃ C(y, x);
2. ∀x.C(x, ann) ∨ C(x, bob);
3. ¬C(bob, fred);
4. C(carol, eve) ∨ C(carol, fred);
5. ∀x.x 6= bob ∧ x 6= carol ⊃ C(dan, x);
6. ¬C(eve, ann) ∨ ¬C(eve, fred).

We have the following queries:

1. φ1 = C(fred, ann);
2. φ2 = ∀x∃yC(x, y);
3. φ3 = ∃x∃y∃z[C(x, y) ∧C(x, z) ∧ ¬C(y, z)];
4. φ4 = ∃x∃y[x 6= y ∧ C(x, carol) ∧ C(y, carol)].

Then we have:

1. |= B0KB ⊃ B0φ1,
sinceC(fred, ann) can be obtained by unit propagation
from¬C(bob, fred), ¬C(fred, bob)∨C(bob, fred), and
C(fred, ann) ∨ C(fred, bob).

2. |= B0KB ⊃ B1φ2,
since for each constantd, we obtain∃yC(d, y)
by case analysis overC(d, ann) ∨ C(d, bob).

3. |= B0KB ⊃ B1φ3,
since we haveC(dan, fred), C(dan, ann), and
C(dan, eve), hence we obtainφ3 by case analysis
over¬C(eve, ann) ∨ ¬C(eve, fred).

4. |= B0KB ⊃ B2φ4, but |6= B0KB ⊃ B1φ4,
since we obtainφ4 by case analysis over
C(carol, ann) ∨ C(carol, bob) and
C(carol, eve) ∨ C(carol, fred);
but we cannot getφ4 by one case analysis only.

We have given informal explanations here. Formal proofs
can be obtained by resorting to Theorem 5 below.

Logical correctness
A basic concern of a reasoning service is its logical correct-
ness, that is, just how closely it aligns with classical logical
entailment. We now show that query evaluation based on
SL is classically sound, that is, if(B0KB ⊃ Bkφ) is valid,
thenE ∪ KB classically entailsφ, whereE consists of the
axioms of equality and the infinite set{(d 6= d′) | d andd′
are distinct constants}.

As we have noted earlier, it is part of the semantics of
SL that the domain of discourse is essentially the set of
constants and equality is identity. Levesque (1998) calls
first-order interpretationsstandardif they make the same as-
sumption. As the following theorem shows, the restriction
to standard interpretations can be captured byE .

Theorem [from (Levesque 1998)]
SupposeS is any set of closed wffs, and that there is an
infinite set of constants that do not appear inS. ThenE ∪ S
is satisfiable iff it has a standard model.

Obviously, a standard interpretation can be represented as
an (infinite) sets of ground literals such that for each ground
atoma, exactly one ofa and¬a is in s. We use|=FOL to
denote the support and entailment relations in classical first-
order logic.

Lemma 1 Lets be a standard interpretation.
Thens |=FOLφ iff s |= Bkφ.

Proof: It is easy to prove by induction thats |=FOL φ iff
s |= B0φ. It is also easy to prove by induction that whens
is a set of literals,s |= Bk+1φ iff s |= Bkφ.

Theorem 1 If |= B0KB ⊃ Bkφ, thenE ∪ KB |=FOLφ.

Proof: By the above theorem, it suffices to prove that every
standard models of KB is also a model ofφ. Since we have
that s |=FOL KB, by lemma 1,s |= B0KB, and therefore
s |= Bkφ. Again, by lemma 1,s |=FOLφ.

We now consider the issue of classical completeness of
query evaluation based onSL. Of course, in general, this
reasoning is classically incomplete, which is necessary for
the sake of tractability. But there do exist a few simple cases
where it is classically complete.

In previous work, Levesque (1998) proposed a generaliza-
tion of databases calledproper KBs, which allow a limited
form of incomplete knowledge, equivalent to a consistent
set of ground literals. The classical entailment problem for
proper KBs is not decidable. So Levesque proposed a sound
but incomplete reasoning procedureV for proper KBs which
was classically complete for queries in a normal form called
NF . On the other hand, the expressiveness of proper KBs
is still quite limited. So Lakemeyer and Levesque (2002)
proposed an extension to proper KBs called proper+ KBs,
which allow simple forms of disjunctive information. We
now define these precisely.

In what follows, we useθ to range over substitutions of all
variables by constants, and writeαθ as the result of apply-
ing the substitution toα. We use∀α to mean the universal
closure ofα. We lete range over ewffs,i.e. quantifier-free
formulas containing no predicate symbols.

Definition 2 Let e be an ewff andc a clause. Then a for-
mula of the form∀(e ⊃ c) is called a∀-clause. AKB is
calledproper+ if it is a finite non-empty set of∀-clauses.
Given a proper+ KB, we define gnd(KB) as the infinite setup
{cθ | ∀(e ⊃ c)∈KB and|= eθ}. A KB is calledproperif it is
proper+ and gnd(KB) is a consistent set of ground literals.

Our first result is that reasoning based onSL is classically
complete for proper KBs when the query is inNF :

Theorem 2 Let KB be proper, and letφ ∈ NF .
If E ∪ KB |=FOLφ, then|= B0KB ⊃ B0φ.

Proof: By Levesque’s result thatV is complete for queries
in NF , if E ∪ KB |=FOL φ, thenV [φ] = 1. By Corollary 1
below, we have thatV [φ] = 1 iff |= B0KB ⊃ B0φ.

In the propositional case, when the KB is proper+ and the
query is again inNF , we get a form of “eventual complete-
ness”, which is to say that for each query that is a logical
entailment, there is ak for which the query is an implicit
belief at levelk:

Theorem 3 In the propositional case, if KB is proper+,
φ ∈ NF , and KB |=FOL φ, then there exists ak such that
|= B0KB ⊃ Bkφ.



Proof: Let k be the number of non-unit clauses inKB. We
prove that|= B0KB ⊃ Bkφ. By Theorem 5 below, it
is equivalent to proving that gnd(KB) |= Bkφ. Note that
gnd(KB) is KB itself. We prove by induction onk. Basis:
k = 0. ThenKB is proper. By Theorem 2,|= B0KB ⊃ B0φ.
Induction step:k > 0. Then there exists a non-unit clausec
in KB. SinceKB |=FOLφ, we have thatKB−{c}∪{ρ} |=FOLφ
for all ρ ∈ c. By induction, gnd(KB−{c}∪{ρ}) |= Bk−1φ.
Thus gnd(KB) |= Bkφ.

Computing implicit beliefs
The other important concern of a reasoning service is its
computational property. In this section, we show that for
proper+ KBs, query evaluation based onSL is tractable in
the propositional case and decidable in the first-order case.

We begin by considering the simple case of proper KBs.
We show that Levesque’s reasoning procedureV is actu-
ally a decision procedure for the QESL problem over proper
KBs. This results from an observation that relatesSL to tau-
tological entailment. Here is the definition of tautological
entailment for standard interpretations from (Lakemeyer &
Levesque 2002).

A literal setup is a set of ground literals. The support
relation |=t between literal setups and sentences is defined
as follows:

1. s |=t l iff l ∈ s, wherel is a literal;

2. s |=t (t = t′) iff t is identical tot′;
3. s |=t ¬(t = t′) iff t is not identical tot′;
4. s |=t ¬¬φ iff s |=t φ;

5. s |=t (φ ∨ ψ) iff s |=t φ or s |=t ψ;

6. s |=t ¬(φ ∨ ψ) iff s |=t ¬φ ands |=t ¬ψ;

7. s |=t ∃x.φ iff s |=t φx
d for some constantd;

8. s |=t ¬∃x.φ iff s |=t ¬φx
d for all constantd.

A set of sentencesΣ tautologically entails a sentenceφ
(Σ −→ φ) iff for all literal setups, if s |=t ψ for all ψ ∈ Σ,
thens |=t φ.

Lemma 2 Lets be a consistent literal setup.
Thens |=t φ iff s |= B0φ.

Proof: Easy by induction. Note thatUP(s) is s itself.

Theorem 4 Let KB be proper, and letφ ∈ L.
Then|= B0KB ⊃ B0φ iff KB −→ φ.

Proof: SinceKB is proper, gnd(KB) gnd(KB) does not con-
tain complementary literals. We have|= B0KB ⊃ B0φ iff
(by Theorem 5 below) gnd(KB) |= B0φ iff (by Lemma 2)
gnd(KB) |=t φ iff KB −→ φ, by Lemma 4 in (Lakemeyer &
Levesque 2002).

Note that this theorem does not conflict with our goal of
avoiding the difficulties with tautological entailment, be-
cause it only holds for proper KBs. In the presence of dis-
junctive information,SL and tautological entailment will be-
have differently.

In (Lakemeyer & Levesque 2002), it was shown that
KB −→ φ iff V [φ] = 1. Thus we have

Corollary 1 V is a decision procedure for the QESL prob-
lem for proper KBs.

Levesque (1998) claimed without proof thatV can be im-
plemented efficiently using database techniques. Liu and
Levesque (2003) substantiated this claim by obtaining a
tractability result forV .

Now let us consider the general case of proper+ KBs. In
the rest of this section, we assume that KB is proper+ and
φ ∈ L. We first present a theorem which reduces the QESL
problem for proper+ KBs to a model checking problem (for
an infinite model).

Lemma 3
(1) gnd(KB) |= B0KB.
(2) If s |= B0KB, thenVP(gnd(KB)) ⊆ VP(s).

Proof: It is easy to see thats |= B0KB iff for any c ∈
gnd(KB), s |= B0c. Thus (1) gnd(KB) |= B0KB; and (2)
if s |= B0KB, then gnd(KB) ⊆ VP(s), by Proposition 3,
VP(gnd(KB)) ⊆ VP(s).

So in a sense, gnd(KB) is the minimal model ofKB.

Theorem 5 |= B0KB ⊃ Bkφ iff gnd(KB) |= Bkφ.

Proof: The only-if direction follows from gnd(KB) |=
B0KB. Suppose that gnd(KB) |= Bkφ. Let s |= B0KB.
ThenVP(gnd(KB))⊆VP(s). By monotonicity,s |= Bkφ.

We then get the following result about propositional rea-
soning usingSL:

Theorem 6 In the propositional case, determining whether
|= (B0KB ⊃ Bkφ) can be done in timeO((ln)k+1), where
l is the size ofφ, andn is the size of KB.

Proof: We resort to Theorem 5. Note that in the proposi-
tional case,KB is simply a set of clauses, and gnd(KB) is
KB itself. Letf(k) denote the time complexity of deciding
if gnd(KB) |= Bkφ. Then we have: (1)f(0) = O(ln),
since unit propagation can be done in linear time; and (2)
f(k) = O(ln ·f(k − 1)), wherek > 0, since each split-
ting operation is associated with a logical operator or clause.
Solving the recurrence, we get thatf(k) isO((ln)k+1).

Corollary 2 The QESL problem for proper+ KBs is
tractable (for small, fixedk) in the propositional case.

Next, we will show that in the first-order case, the QESL
problem for proper+ KBs is decidable by presenting a pro-
cedure calledW for deciding whether gnd(KB) |= Bkφ. W
is a slight variant of the reasoning procedureX proposed
for proper+ KBs by Lakemeyer and Levesque (2002). The
main idea behindW is that to decide gnd(KB) |= Bkφ, it
suffices to consider (1) a finite set of constants when evaluat-
ing quantifications, and (2) a finite subset of gnd(KB) when
performing unit propagation or splitting. The argument for
this is essentially the same as forX . The intuition is that
constants not mentioned inKB or φ behave the same, so we
only need to pick a certain number of representatives.

Letm ≥ 0. We useH+
m to denote the union of the con-

stants inKB, those mentioned in the queryφ, andm new
constants appearing nowhere inKB andφ. Let n be the
maximum number of variables in a∀-clause ofKB. We use



gnd(KB)|H+
n to denote the set{cθ | ∀(e ⊃ c)∈KB, θ∈H+

n ,
and |= eθ}, where byθ ∈ H+

n we mean thatθ only takes
constants fromH+

n .

W [KB, k, φ] =

{ 1 if one of the following
conditions (1)–(9) holds

0 otherwise

1. k = 0, φ is a clausec, and there exists
c′ ∈ UP(gnd(KB)|H+

n ) such thatc′ ⊆ c.

2. φ = (d = d′), andd is identical tod′.

3. φ = ¬(d = d′), andd is distinct fromd′.

4. φ = ¬¬ψ, andW [KB, k, ψ] = 1.

5. φ = (ψ ∨ η), ψ or η is not a clause, andW [KB, k, ψ] = 1
orW [KB, k, η] = 1.

6. φ = ¬(ψ ∨ η),W [KB, k,¬ψ]=1, andW [KB, k,¬η]=1.

7. φ = ∃x.ψ, andW [KB, k, ψx
d ] = 1 for somed ∈ H+

1 .

8. φ = ¬∃x.ψ, andW [KB, k,¬ψx
d ] = 1 for all d ∈ H+

1 .

9. k > 0, φ is a clause, a disjunction, or an existential, and
there is a∀(e⊃ c) ∈ KB and aθ ∈ H+

n such that|= eθ
and for allρ ∈ cθ, W [KB∪ {ρ}, k − 1, φ] = 1.

Let ∗ be any bijection from constants to constants. We
useα∗ to denoteα with every constantd replaced byd∗.
We let Σ∗ denote{α∗ | α ∈ Σ}. We useθ∗ to denote
the substitution which assigns variablex the valued∗ if θ
assignsx the valued. It is easy to prove the following:

Proposition 51. |= e iff |= e∗, wheree is an ewff.
2. c ∈ UP(s) iff c∗ ∈ UP(s∗).
3. s |= Bkφ iff s∗ |= Bkφ

∗.
4. gnd(KB)∗ = gnd(KB∗).

Let ec1, . . . , ecn be the list of constants appearing inH+
n

but not KB or the queryφ. Let L be a list of constants
d1, . . . , dk (k ≤ n) not appearing inH+

n . We let id(L)
represent the bijection that swapsdi andeci, i = 1, . . . , k,
and leaves the rest constants unchanged. Note that for any
c ∈ UP(gnd(KB)), c mentions at mostn constants not ap-
pearing inH+

n .

Lemma 4 Let c ∈ UP(gnd(KB)). Let ∗ be id(L) whereL
is the list of constants appearing inc but notH+

n . Then
c∗ ∈ UP(gnd(KB)|H+

n ).

Proof: We prove by induction on the length of a derivation.
Basis: c ∈ gnd(KB). Then there exist∀(e ⊃ d) ∈ KB
andθ s.t. |= eθ andc = dθ. Since|= eθ iff |= e∗θ∗, i.e.
eθ∗, we have thatdθ∗, i.e. c∗, is in gnd(KB) too. Thus
c∗ ∈ UP(gnd(KB)|H+

n ). Induction step:c is obtained from
ρ andc∨ ρ. Let ? beid(L′) whereL′ is the list of constants
appearing inc ∨ ρ but notH+

n . By induction, bothρ? and
(c ∨ ρ)? are inUP(gnd(KB)|H+

n ). Thusc?, i.e. c∗, is in
UP(gnd(KB)|H+

n ) too.

Lemma 5 Let φ be a formula inL with a single free vari-
ablex. Let b andd be two constants that do not appear in
KB or φ. Then gnd(KB) |= Bkφ

x
b iff gnd(KB) |= Bkφ

x
d .

Proof: Let ∗ be the bijection that swapsb andd and leaves
the rest constants unchanged. Then gnd(KB) |= Bkφ

x
b iff

(by Proposition 5 (3)) gnd(KB)∗ |= Bk(φx
b )∗ iff (by Propo-

sition 5 (4)) gnd(KB∗) |= Bk(φx
b )∗ iff gnd(KB) |= Bkφ

x
d ,

since∗ leaves constants inKB or φ unchanged.

Lemma 6 Suppose that gnd(KB) |= Bkφ by splitting on
c ∈ gnd(KB). Then gnd(KB) |= Bkφ by splitting on some
c′ ∈ gnd(KB)|H+

n .

Proof: Let ∗ be id(L) whereL is the list of constants ap-
pearing inc but notH+

n . Thenc∗∈gnd(KB)|H+
n . Let ρ∈c.

Then gnd(KB)∪ {ρ} |= Bk−1φ, that is, gnd(KB∪ {ρ})
|= Bk−1φ. Thus gnd(KB ∪ {ρ})∗ |= Bk−1φ

∗, that is,
gnd(KB ∪ {ρ∗}) |= Bk−1φ. Therefore gnd(KB) |= Bkφ
by splitting onc∗.

Theorem 7 gnd(KB) |= Bkφ iff W [KB, k, φ] = 1.

Proof: We prove by induction on‖ Bkφ ‖. Here we only
prove the cases of clauses, disjunctions, and quantifications.
The other cases follow easily from properties of beliefs.

1. By Lemma 4, whenH+
n contains constants appearing

in c, c ∈ UP(gnd(KB)) iff c ∈ UP(gnd(KB)|H+
n ).

Thus gnd(KB) |= Bkc iff k = 0 and there exists
c′ ∈ UP(gnd(KB)|H+

n ) such thatc′ ⊆ c, or k > 0 and
gnd(KB) |= Bkc by splitting.

2. gnd(KB) |= Bk(ψ ∨ η), whereψ or η is not a clause,
iff gnd(KB) |= Bkψ or gnd(KB) |= Bkη or gnd(KB) |=
Bk(ψ ∨ η) by splitting.

3. By Lemma 5, gnd(KB) |= Bk¬∃x.ψ iff gnd(KB) |=
Bk¬ψx

d for all d ∈ H+
1 .

4. gnd(KB) |= Bk∃x.ψ iff gnd(KB) |= Bkψ
x
d for some

d ∈ H+
1 or gnd(KB) |= Bk∃x.ψ by splitting.

5. By Lemma 6, gnd(KB) |= Bkφ by splitting iff this holds
by splitting on somec ∈ gnd(KB)|H+

n .

Corollary 3 The QESL problem for proper+ KBs is decid-
able in the first-order case.

A Complete Axiomatization
for Propositional SL

In this section, we present a sound and complete axioma-
tization for propositionalSL, i.e. a set of axioms and in-
ference rules that generate all and only the valid sentences.
Although it is not intended as a step towards “automating”
the logic, it does provide another useful perspective on the
valid sentences. As far as we can tell, due to the peculiarity
of the semantics ofSL, the general techniques for obtaining
complete axiomatizations for classical logics of knowledge
and belief (Halpern & Moses 1992) do not apply toSL. The
key to our complete axiomatization lies in the construction
of sets of representative models, called RM-sets, for belief
atomsBkφ. Since the definition of RM-sets is non-trivial,
we leave it to the end of this section. For now, it is sufficient
to know that a RM-set ofBkφ is a finite set∆ of finite se-
tups, and atoms appearing in∆ but notφ are called helping
atoms. In what follows, we identify a finite setupt with the
conjunction of the clauses int.



Our proof system is as follows:
Axioms:

A1 All instances of propositional tautologies

A2 Unit Resolution:B0ρ ∧B0(ρ ∨ c) ⊃ B0c, whereρ is a
literal andc is a clause

A3 Subsumption:B0c ⊃ B0c
′, wherec andc′ are clauses,

andc ⊆ c′

A4 Belief Reduction forB0: B0φ ⊃ (B0φ)↓
A5 Belief Reduction forBk: (Bkφ)↓⊃ Bkφ

Inference rules:

R1 Modus Ponens: fromα andα ⊃ β infer β

R2 Case Analysis: from(
∨

ρ∈c B0ρ) ∧ Bjψ ⊃ Bkφ, infer
B0c ∧ Bjψ ⊃ Bk+1φ, wherec is a clause

R3 Representative Model: from(
∨

t∈∆ B0t) ⊃ α, infer
Bkφ ⊃ α, where∆ is a RM-set ofBkφ such that its
helping atoms do not appear inα.

Theorem 8 The axiom system is sound and complete.

The proof is presented in (Liu 2004). The soundness part
is a typical proof by induction on the length of a derivation,
where the main complication is the soundness of R2 and R3.

The completeness part is more involved but here are the
main ideas: A belief literal is a belief atom or its negation; a
belief clause is a finite set of belief literals; aSL formula is
in CNF if it is a conjunction of belief clauses. Clearly, any
SL formulaα can be put into an equivalent formula in CNF.
To prove a validSL formulaα, we first prove its CNF form
and then proveα from it by using A1 and R1. Now consider
a valid belief clause

β = Bj1φ1 ∧ . . . ∧ Bjmφm ⊃ Bk1ψ1 ∨ . . . ∨ Bknψn.

Let ∆i be a RM-set ofBjiφi, i = 1, . . . ,m such that help-
ing atoms of∆1, . . . ,∆m are pairwise disjoint. To proveβ,
we first prove(

∨
t1∈∆1

B0t1) ∧ . . . ∧ (
∨

tm∈∆m
B0tm) ⊃

Bk1ψ1∨ . . .∨Bknψn and then proveβ from this formula by
repeatedly applying R3. Now consider a valid belief clause

γ = B0t ⊃ Bk1ψ1 ∨ . . . ∨ Bknψn,

wheret is a finite setup. We claim thatB0t ⊃ Bkiψi is valid
for somei = 1, . . . , n. Sincet |= B0t, t |= Bkiψi for some
i. Now let s |= B0t. Thent ⊆ VP(s). By monotonicity,
s |= Bkiψi. Thus to proveγ, we proveB0t ⊃ Bkiψi for
somei. Finally, valid formulas of the formB0t ⊃ Bkφ can
be proved by using axioms and proof rules other than R3.

We now present the definition of RM-sets, beginning with
the definition of splitting models. Intuitively, a RM-set∆ of
a belief atomBkφ is a finite set of finite models ofBkφ such
that each model ofBkφ has a representative in∆, in a sense
we will explain soon. Moreover, ifs |= Bkφ by splitting,
then its representative in∆ is a splitting model.

Let c be a clause ands a setup. We usec∨̃s to denote the
setup{(c ∨ d) | d ∈ s}.

Definition 3 Let ∆ = {t1, . . . , tn} be a finite set of finite
setups. Letxi, yi, zi, i = 1, . . . , n, be distinct atoms not

appearing in∆. We call them helping atoms.
The following is a type-1 splitting model wrt∆:

{
∨
i

xi ∨ yi} ∪
⋃
i

¬xi∨̃ti ∪
⋃
i

¬yi∨̃ti.

The following is a type-2 splitting model wrt∆:

{
∨
i

xi ∨ yi} ∪
⋃
i

{¬xi ∨ zi,¬yi ∨ zi}∪
⋃
i

(¬xi ∨ ¬zi)∨̃ti ∪
⋃
i

(¬yi ∨ ¬zi)∨̃ti.

Definition 4 The RM-sets ofBkφ are inductively defined
on‖Bkφ‖ as follows:

1. The only RM-set ofB0c is {{c}}.
2. If ∆ is a RM-set ofBkc, andt is a type-i splitting model

wrt ∆ (if k > 0 then i = 1 elsei = 2), then{t} is a
RM-set ofBk+1c.

3. A RM-set ofBkψ is a RM-set ofBk¬¬ψ.
4. If ∆i is a RM-set ofBk¬ψi, i = 1, 2, and the helping

atoms of∆1 and∆2 are disjoint, then{t1 ∪ t2 | ti ∈ ∆i,
i = 1, 2} is a RM-set ofBk¬(ψ1 ∨ ψ2).

5. If ∆i is a RM-set ofB0ψi, i = 1, 2, then∆1 ∪ ∆2 is a
RM-set ofB0(ψ1 ∨ ψ2).

6. If ∆i is a RM-set ofBk+1ψi, i = 1, 2, ∆ is a RM-set of
Bk(ψ1 ∨ ψ2), andt is a type-i splitting model wrt∆ (if
k > 0 theni = 1 elsei = 2), then∆1 ∪ ∆2 ∪ {t} is a
RM-set ofBk+1(ψ1 ∨ ψ2).

The following theorem characterizes RM-sets:

Theorem 9 Let ∆ be a RM-set ofBkφ, and letH be its
helping atoms. Then

1. ∆ is a finite set of finite setups.
2. For all t ∈ ∆, t |= Bkφ.
3. For any setups such thats |= Bkφ ands does not men-

tion atoms inH , there existst ∈ ∆ such that for anyα
not mentioning atoms inH , s ∪ t |= α iff s |= α.

The proof is presented in (Liu 2004).
The above Property 3 says that each models of Bkφ such

thats does not mention atoms inH has a representativet in
∆ in the sense thats ∪ t ands agree on allSL formulas not
mentioning atoms inH . Now we are in a good position to
explain the motivation behind defining two types of splitting
models. Consider the belief atomB1p. Assume that our
definition was: ift is a type-1 splitting model wrt{p}, then
{t} is a RM-set ofB1p. Now let t = {x ∨ y, x ∨ p, y ∨ p},
and lets = {u ∨ v, u ∨ w, v ∨ w, u ∨ w ∨ p, v ∨ w ∨ p, p}.
Thens |= B1p, s ∪ t |= B0p ∧ B0p, but s 6|= B0p ∧ B0p.
Thus Property 3 would not hold.

Example 3

1. ∆={{p, q}, {r}} is a RM-set ofB0[p ∧ q ∨ r];
2. t1 is a type-2 splitting model wrt∆, wheret1 =

{u ∨ v ∨ x ∨ y, u ∨w, v ∨w, x ∨ z, y ∨ z, u ∨ w ∨ p,
v ∨ w ∨ p, u ∨w ∨ q, v ∨ w ∨ q, x ∨ z ∨ r, y ∨ z ∨ r};

3. {t2} is RM-set ofB1r, wheret2 =
{u ∨ v, u ∨ w, v ∨ w, u ∨ w ∨ r, v ∨ w ∨ r};



4. {t3} is RM-set ofB1(p∧q), wheret3 ={u∨v, u∨w, v∨w,
u∨w∨p, v∨w∨p, x∨y, x∨z, y∨z, x∨z∨q, y∨z∨q};

5. {t1, t2, t3} is a RM-set ofB1[p ∧ q ∨ r].

Related Work
Our work on SL grew out of our attempts to semanti-
cally characterize the reasoning procedureX proposed for
proper+ KBs in (Lakemeyer & Levesque 2002). The main
difference betweenX and the procedureW presented in this
paper is: inX , the depth of case splitting allowed depends
on the form of the query, while inW , this number is supplied
explicitly as an extra parameterk.

Existing semantic approaches to limited reasoning can
be put into two categories. Early work (Levesque 1984;
Frisch 1987; Schaerf & Cadoli 1995; Patel-Schneider 1985;
Lakemeyer 1990) was based on tautological entailment.
Later work (Dalal 1996; Crawford & Etherington 1998) was
based on unit propagation, but restricted to the proposi-
tional case. The last two grew out of attempts to seman-
tically characterize the concept of Socratic completeness,
which was first introduced in (Crawford & Kuipers 1989)
and later generalized to the notion of Socratic proof system
(McAllester & Givan 1993). Dalal’s work is limited to a
propositional clausal language. Crawford and Etherington
(1998) attempted to extend this work to the full proposi-
tional language. They proposed a non-deterministic seman-
tics. However, their notion of models is so loosely defined
that almost none of the normal Boolean laws holds in their
logic. In the following, we first compareSL with tautologi-
cal entailment, and then with Dalal’s logic.

In some cases,SL is stronger than tautological entailment.
For example, we have that|= B0[p ∧ (p ∨ r)] ⊃ B0r and
|= B0[(p∨q)∧(p∨r)∧(q∨r)] ⊃ B1r, butp∧(p∨r) 6−→ r
and(p∨q)∧(p∨r)∧(q∨r) 6−→ r. However, in some other
cases,SL is weaker than tautological entailment. Consider
KB2 in Figure 1. We have thatKB2 −→ ∃x.(P (x)∧Q(x)),
but |6= B0KB2 ⊃ Bk∃x.(P (x) ∧ Q(x)) for k < 8. Also,
there are cases whereSL coincides with tautological entail-
ment. For example, as shown by Theorem 4, the two co-
incide on proper KBs. As to the computational property,
consider proper+ KBs. We know that deciding whether
KB −→ φ is co-NP-hard in the propositional case and un-
decidable in the first-order case, while deciding whether
|= B0KB ⊃ Bkφ is tractable in the propositional case and
decidable in the first-order case.

Dalal (1996) considers a propositional clausal language,
and provides a model-theoretic semantics for Boolean Con-
straint Propagation (BCP), a variant of unit propagation.
More precisely, he defines an entailment relation|≈ be-
tween clausal theories and clauses, and shows that a refu-
tation variant of BCP is sound and complete for|≈ , that
is, for any clausal theoryΣ and any clausec, Σ |≈ c iff the
empty clause can be obtained by BCP fromΣ ∪ c, where
c = {ρ | ρ ∈ c}. Moreover, Dalal extends the inference re-
lation`BCP to a family of inference relations̀BCP

k , k ≥ 0, by
allowing Modus Ponens on clauses of restricted size. This
family of inference relations is eventually complete.

Now we restrict ourselves to the propositional clausal

language, and compareSL with Dalal’s logic. LetΣ be
a clausal theory andc a clause. We writeΣ |=SL

k c if
|= (B0Σ ⊃ Bkc). First, note that tautologous clauses are
handled differently in the two approaches. We have that
p `BCP (q ∨ q) but |6= B0p ⊃ Bk(q∨ q) for anyk. Secondly,
`BCP is strictly stronger than|=SL

0 . For example, we have that
(p∨ q)∧ (p∨ q) `BCP q but |6= B0[(p∨ q)∧ (p∨ q)] ⊃ B0q.
However, in general,̀ BCP

k and |=SL
k are incomparable. For

example, letΣ1 = {(u∨v), (u∨v), (v∨p∨q), (v∨p∨q)},
thenΣ1 `BCP

1 q but |6=B0Σ1 ⊃ B1q; let Σ2 = {(u∨v),
(x ∨ y), (u ∨ x ∨ p), (u ∨ y ∨ q), (v ∨ x ∨ q), (v ∨ y ∨ p)},
then|= B0Σ2 ⊃ B2(p ∨ q) but Σ2 0

BCP
2 (p ∨ q). Finally,

similar to`BCP
k , |=SL

k is eventually complete for nontautolo-
gous clauses, which are examples of queries in the normal
formNF .

Conclusions

In this paper, we have proposed a new logic of limited be-
lief calledSL, with the goal of providing a semantically co-
herent and computationally attractive reasoning service for
knowledge bases with disjunctive information. Reasoning
based onSL is always classically sound, and in some simple
cases, is also classically complete. Given disjunctive facts,
it performs unit propagation, but only does case analysis in
a limited way, under user control. While the reasoning ser-
vice is well-defined for any first-order KB, we have consid-
ered its computational property for two special cases. For
proper KBs, which represent incomplete knowledge without
disjunction, the reasoning service can be realized using the
efficient database procedure discussed in (Liu & Levesque
2003). For proper+KBs, which represent incomplete knowl-
edge including disjunction, we have proved that the reason-
ing service is tractable in the propositional case and decid-
able in the first-order case. Also, we have presented a sound
and complete axiomatization for propositionalSL.

There are a number of topics for future research. First of
all, the Representative Model inference rule in our axiom-
atization is obscure and unintuitive. It would be desirable
to find a more natural axiom system. Moreover, we would
like to generalize our axiomatization to the first-order case.
It would also be interesting to analyze the complexity of the
satisfiability problem of propositionalSL. Also, we would
like to explore in the first-order case, under what restric-
tions on proper+ KBs and queries, reasoning based onSL
is eventually complete. But the more pressing problem is
this: while query evaluation based onSL for proper+ KBs
is decidable, it is crucial to identify “islands of tractability”
by applying restrictions on proper+ KBs and queries. This
can be seen as an extension of the work presented in (Liu
& Levesque 2003), where a tractable case of the reasoning
procedureV was identified. We expect that the graphical
notion of tree-width will again play an important role in this
research.
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