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Abstract While both situation calculus and dynamic epistemic logics (DELs) are
concerned with reasoning about actions and their effects, historically, the emphasis
of situation calculus was on physical actions in the single-agent case, in contrast,
DELs focused on epistemic actions in the multi-agent case. In recent years, cross-
fertilization between the two areas has begun to attract attention. In this paper, we
incorporate the idea of action models from DELs into the situation calculus to de-
velop a general multi-agent extension of it. We analyze properties of beliefs in this
extension, and prove that action model logic can be embedded into the extended
situation calculus. Examples are given to illustrate the modeling of multi-agent sce-
narios in the situation calculus.
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1 Introduction

While both situation calculus [19] and dynamic epistemic logics (DELs) [10] are
concerned with reasoning about actions and their effects, historically, the emphasis
of situation calculus was on physical actions in the single-agent case, in contrast,
DELs focused on epistemic actions in the multi-agent case. In recent years, cross-
fertilization between the two areas has begun to attract attention. In particular, van
Benthem [7] proposed the idea that situation calculus and modal logic meet and
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merge. Van Ditmarsch et al. [11] embedded a propositional fragment of the situation
calculus into a DEL. Kelly and Pearce [12] incorporated ideas from DELs to handle
regression for common knowledge in the situation calculus. Baral [5] proposed to
combine results from reasoning about actions and DELs.

In a multi-agent setting, the agents in the domain may have different perspec-
tives of the actions. Baltag et al. [4] introduced a construct called an action model
to represent these differences of perspectives. An action model consists of a set of
actions, a precondition for each action, and a binary relation on the set of actions
for each agent, which represents the agent’s ability to distinguish between the ac-
tions. Moreover, they defined an operation by which an action model may be used
to update a Kripke world to obtain a successor world modeling the effects of the
action execution. They proposed a logic, called action model logic, to reason about
action models and their effects on agents’ epistemic states. Van Benthem et al. [8]
generalized the concept of action model to that of update model where each action
is also associated with a postcondition. So action models can model events which
bring about epistemic change, but update models can model events which can not
only change agents’ epistemic states but also the world state.

The situation calculus was first introduced by McCarthy and Hayes [16], and
historically, one of its major concerns was how to solve the frame problem, that is,
how to represent the effects of a world-changing action without explicitly specifying
which conditions are not affected by the action. Reiter [18] gave a solution to the
frame problem under some conditions in the form of successor state axioms. This
solution to the frame problem has proven useful as the foundation for the high-level
robot programming language Golog [15]. Scherl and Levesque [20, 21] extended
Reiter’s solution to cover epistemic actions in the single-agent case. Later, Shapiro et
al. [22] extended their work to the multi-agent case, but they only considered public
actions whose occurrence is common knowledge. In the last decade, Lakemeyer and
Levesque [13, 14] proposed a logic called ES, which is a fragment of the situation
calculus with knowledge. Recently, Belle and Lakemeyer [6] gave a multi-agent
extension of ES, but as [22], they only considered public actions. So up to now,
although there have been extensions of the situation calculus into the multi-agent
case, they are not able to account for arbitrary multi-agent scenarios.

In this paper, we incorporate action models into the situation calculus to develop
a general multi-agent extension of it. We analyze properties of beliefs in this exten-
sion, and prove that action model logic can be embedded into the extended situation
calculus. Examples are given to illustrate the modeling of multi-agent scenarios in
the situation calculus.

The rest of the paper is organized as follows. In the next section, we introduce
the situation calculus and action model logic. In Section 3, we present a multi-
agent extension of the situation calculus by incorporating action models. Section 4
analyzes properties of beliefs in the extended situation calculus, and Section 5 shows
that action model logic can be embedded into the multi-agent situation calculus. In
Section 6, we present two extended examples of modeling multi-agent scenarios in
the situation calculus. Finally, we conclude and describe some future work.
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2 Preliminaries

In this section, we introduce the situation calculus, and action model logic.

2.1 The situation calculus and Golog

The situation calculus [19] is a many-sorted first-order language suitable for de-
scribing dynamic worlds. There are three disjoint sorts: action for actions, situation
for situations, and ob ject for everything else. A situation calculus language Lsc has
the following components: a constant S0 denoting the initial situation; a binary func-
tion do(a,s) denoting the successor situation to s resulting from performing action
a; a binary predicate s < s′ meaning that situation s is a proper subhistory of situa-
tion s′; a binary predicate Poss(a,s) meaning that action a is possible in situation s;
action functions; a finite number of relational and functional fluents, i.e., predicates
and functions taking a situation term as their last argument; and a finite number of
situation-independent predicates and functions.

The situation calculus has been extended to accommodate sensing and knowl-
edge. Assume that in addition to ordinary actions that change the world, there are
sensing actions which do not change the world but tell the agent information about
the world. A special binary function SR(a,s) is used to characterize what the sensing
action tells the agent about the world. Knowledge is modeled in the possible-world
style by introducing a special fluent K(s′,s), meaning that situation s′ is accessible
from situation s. Note that the order of the arguments is reversed from the usual
convention in modal logic. Then knowing φ at situation s is represented as follows:

Knows(φ(now),s)
de f
= ∀s′.K(s′,s)⊃ φ(s′),

where now is used as a placeholder for a situation argument. For example,

Knows(∃s∗.now = do(open,s∗),s)

means knowing that the open action has just been executed. When “now” only ap-
pears as a situation argument to fluents, it is often omitted.

Scherl and Levesque [20] proposed the following successor state axiom for the
K fluent: (Throughout this paper, free variables are assumed to be universally quan-
tified from outside.)

K(s′,do(a,s))≡ ∃s∗.K(s∗,s)∧ s′ = do(a,s∗)∧SR(a,s∗) = SR(a,s).

Intuitively, situation s′ is accessible after action a is done in situation s iff it is the
result of doing a in some s∗ which is accessible from s and agrees with s on the
sensing result.
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Based on the situation calculus, a logic programming language Golog [15] has
been designed for high-level robotic control. The formal semantics of Golog is spec-
ified by an abbreviation Do(δ ,s,s′), which intuitively means that executing δ brings
us from situation s to s′. It is inductively defined on δ as follows, where we omit the
definition of procedures:

1. Primitive actions:
Do(α,s,s′)

de f
= Poss(α,s)∧ s′ = do(α,s).

2. Test actions:
Do(φ?,s,s′)

de f
= φ [s]∧ s = s′.

Here, φ is a situation-suppressed formula, i.e., a situation calculus formula with
all situation arguments suppressed, and φ [s] denotes the formula obtained from
φ by taking s as the situation arguments of all fluents mentioned in φ .

3. Sequence:

Do(δ1;δ2,s,s′)
de f
= (∃s′′).Do(δ1,s,s′′)∧Do(δ2,s′′,s′).

4. Nondeterministic choice of two actions:
Do(δ1 |δ2,s,s′)

de f
= Do(δ1,s,s′)∨Do(δ2,s,s′).

5. Nondeterministic choice of action arguments: Execute δ (x) with a nondetermin-
istically chosen argument x.

Do((π x)δ (x),s,s′)
de f
= (∃x)Do(δ (x),s,s′).

6. Nondeterministic iteration: Execute δ zero or more times.
Do(δ ∗,s,s′)

de f
= (∀P).{(∀s1)P(s1,s1)∧

(∀s1,s2,s3)[P(s1,s2)∧Do(δ ,s2,s3)⊃ P(s1,s3)]} ⊃ P(s,s′).

Conditionals and loops are defined as abbreviations:

if φ then δ1 else δ2 fi de f
= [φ?;δ1] | [¬φ?;δ2],

while φ do δ od de f
= [φ?;δ ]∗;¬φ?.

For example, the following is a Golog program which nondeterministically
moves a block onto another, so long as there are at least two blocks on the table:

while (∃x,y)[ontable(x)∧ontable(y)∧ x 6= y] do
(π u,v)move(u,v) od

2.2 Action model logic (AML)

In a nutshell, action model logic (AML) extends epistemic logic with reasoning
about epistemic actions which bring about epistemic change. We now present the
syntax and semantics of action model logic. We fix a finite set of agents A and a
countable set of propositional atoms P . We first define Kripke models.

Definition 1. A Kripke model M is a triple (S,R,V ) where

• S is a set of states;
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• For each agent i, Ri is a binary relation on S;
• For each t ∈ S, V (t) is a subset of the atoms.

A pointed Kripke model is a pair (M,s0) where M is a Kripke model and s0 is a state
of M.

Intuitively, a Kripke model represents agents’ uncertainty about the current world
state. Here, S is the set of all possible world states; p ∈V (t) means that proposition
p is true in state t; and tRit ′ means that in state t, agent i thinks that t ′ might be the
actual state.

An action model is a Kripke model of “actions”, which represents the agents’
uncertainty about the current action. The definition of action models is similar to
that of Kripke models except: a truth assignment is associated to each state in a
Kripke model, but a precondition is associated to each action in an action model.

Definition 2. An action model over a language L is a triple (A,→, pre) where

• A is a set of action points;
• For each agent i,→i is a binary relation on A;
• For each action point e, pre(e) ∈L is its precondition.

A pointed action model is a pair (N,e0) where N is an action model and e0 is an
action point of N.

Given a Kripke model and an action model, by the product update operation,
defined as follows, we obtain the new Kripke model resulting from executing the
action model in the given Kripke model.

Definition 3. Let M = (S,R,V ) be a Kripke model, and t0 ∈ S. Let N = (A,→, pre)
be an action model, and e0 ∈ A such that M, t0 |= pre(e0). The product of (M, t0)
and (N,e0), denoted by (M, t0)⊗ (N,e0), is a pointed Kripke model (M′, t ′0) where
M′ = (S′,R′,V ′), and

• S′ = {(t,e) | t ∈ S,e ∈ A, and M, t |= pre(e)};
• t ′0 = (t0,e0);
• (t,e)R′i(t

′,e′) iff tRit ′ and e→i e′;
• For each (t,e) ∈ S′, V ′((t,e)) =V (t).

Intuitively, (t,e) is the world state resulting from executing action e in state t.
Note that e is an epistemic action: it does not change the world state, thus the truth
assignment associated to (t,e) is the same as that associated to t. In state (t,e), agent
i considers (t ′,e′) as a possible state if she considers t ′ as a possible alternative of t
and e′ as a possible alternative of e.

The language of action model logic extends the language of epistemic logic with
a construct [N,e0]φ , which intuitively means that formula φ holds after the execution
of the pointed action model (N,e0).

Definition 4. The language Lam of action model logic is recursively defined as fol-
lows:
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1. Any propositional atom p ∈P is an AML formula.
2. If φ and ψ are AML formulas, so are ¬φ and (φ ∧ψ).
3. If φ is an AML formula, so are Biφ and CE φ , where i ∈A , E ⊆A .
4. If φ is an AML formula and (N,e0) is a pointed action model with a finite domain

and such that for all action points e, pre(e) is an AML formula, so is [N,e0]φ .

The following is a complexity measure of AML formulas as presented in [10]:

Definition 5. The complexity measure c : Lam → N is inductively defined as fol-
lows:

1. c(p) = 1;
2. c(¬φ) = 1+ c(φ);
3. c(φ ∧ψ) = 1+max{c(φ),c(ψ)};
4. c(Biφ) = 1+ c(φ);
5. c(CE φ) = 1+ c(φ);
6. c([N,e0]φ) = (4+max{c(pre(e)) | e is an action point of N}) · c(φ).

We now present the semantics of action model logic:

Definition 6. Let M = (S,R,V ) be a Kripke model and t0 a state of M. We interpret
the formulas by induction on their complexity as follows:

1. M, t0 |= p iff p ∈V (t0);
2. M, t0 |= ¬φ iff M, t0 6|= φ ;
3. M, t0 |= φ ∧ψ iff M, t0 |= φ and M, t0 |= ψ;
4. M, t0 |= Biφ iff for all t such that t0Rit, M, t |= φ ;
5. M, t0 |= CE φ iff for all t such that t0RE t, M, t |= φ , where RE is the reflexive

transitive closure of the union of Ri for i ∈ E ;
6. M, t0 |= [N,e0]φ iff if M, t0 |= pre(e0), then (M, t0)⊗ (N,e0) |= φ .

A formula φ is valid if it is true in any pointed Kripke model.
We end this section with an example:

Example 1. [10] Two stockbrokers Ann and Bob are having a little break in a Wall
Street bar, sitting at a table. A messenger comes in and delivers a letter to Ann.
On the envelope is written “urgently requested data on United Agents”. Let atom p
mean that “United Agents is doing well”. Consider the following scenarios:

1. Bob sees that Ann reads the letter. From Bob’s point of view, Ann could learn p
or she could learn ¬p, and he cannot distinguish between these two actions. But
Ann can certainly distinguish between them. Thus we get the following action
model: read = (A,→, pre), where A = {0,1}, pre(0) = ¬p, pre(1) = p,→a is
the identity relation, and→b is the total relation.

2. Bob leaves the table; Ann may have read the letter while Bob is away. From Bob’s
point of view, there are 3 possibilities: Ann learns p, Ann learns ¬p, and Ann
learns nothing, and he cannot distinguish between these actions. Thus the action
model is: mayread = (A,→, pre), where A = {0,1, t}, pre(0) = ¬p, pre(1) = p,
pre(t) = true,→a is the identity relation, and→b is the total relation.
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3 A multi-agent extension of the situation calculus

In this section, we present a multi-agent extension of the situation calculus by in-
corporating action models. Instead of Scherl and Levesque’s K fluent, we now use
a fluent B(i,s′,s), which means that agent i considers situation s′ accessible from
situation s. We introduce a special predicate A(i,a′,a,s), meaning that in situation
s, agent i considers action a′ as a possible alternative of action a.

We assume that there are two types of primitive actions: ordinary actions which
change the world, and epistemic actions which do not change the world but informs
the agent. We use the action precondition axiom to specify what the epistemic action
tells the agent about the current situation. For example, we may have an epistemic
action ison(i,x) which tells agent i that switch x is on. This is axiomatized as:

Poss(ison(i,x),s)≡ on(x,s).

In particular, there is a special epistemic action nil, meaning that nothing happens,
with the axiom Poss(nil,s) ≡ true. Note that a sensing action which tells the agent
whether φ holds can be treated as the nondeterministic choice of two epistemic
actions: one is possible iff φ holds, and the other is possible iff ¬φ holds.

We propose the following successor state axiom for the B fluent:

B(i,s′,do(a,s))≡ ∃s∗∃a∗.B(i,s∗,s)∧A(i,a∗,a,s)∧
(Poss(a,s)⊃ Poss(a∗,s∗))∧ s′ = do(a∗,s∗).

Intuitively, for agent i, situation s′ is accessible after action a is performed in situa-
tion s iff it is the result of doing some alternative a∗ of a in some s∗ accessible from
s, and executability of a in s implies that of a∗ in s∗. Note that when a is not possible
in s, we do not care whether a∗ is possible in s∗.

In the multi-agent case, a domain of application is specified by a basic action
theory of the form:

D = Σ ∪Dap∪Dss∪Daa∪Duna∪DS0 , where

1. Σ are the foundational axioms:

(F1) do(a1,s1) = do(a2,s2)⊃ a1 = a2∧ s1 = s2
(F2) (¬s < S0)∧ (s < do(a,s′)≡ sv s′)
(F3) ∀P.∀s[Init(s)⊃ P(s)]∧∀a,s[P(s)⊃ P(do(a,s))]⊃ (∀s)P(s), where

Init(s)
de f
= ¬(∃a,s′)s = do(a,s′).

(F4) B(i,s,s′)⊃ [Init(s)≡ Init(s′)].

Intuitively, Init(s) means s is an initial situation. A model of {F1,F2,F3} con-
sists of a forest of isomorphic trees rooted at the initial situations. F4 specifies
that initial situations can be B-related to only initial situations.
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2. Dap is a set of action precondition axioms, one for each action function C, of the
form Poss(C(x),s) ≡ ΠC(x,s). This includes the precondition axioms for epis-
temic actions.

3. Dss is a set of successor state axioms (SSAs) for fluents, one for each fluent F , of
the form F(x,do(a,s))≡ΦF(x,a,s). This includes the SSA for the B fluent. The
SSAs for ordinary fluents must satisfy the no-side-effect conditions, i.e., they are
not affected by epistemic actions.

4. Daa is a set of action alternative axioms, one for each action function C, of the
form A(i,a,C(x),s)≡ΨC(i,a,x,s).

5. Duna is the set of unique names axioms for actions:

C(x) 6=C′(y), and C(x) =C(y)⊃ x = y,

where C and C′ are distinct action functions.
6. DS0 is a set of sentences about S0.

In the rest of the paper, when we present a basic action theory, we will only
present relevant axioms from Dap∪Dss∪Daa∪DS0 .

Example 2. Consider a simple blocks world. There is a single physical action:
move(x,y), moving block x onto block y. There are two fluents: clear(x,s), block x
has no blocks on top of it; on(x,y,s), block x is on block y. The following are the
action precondition and successor state axioms:

Poss(move(x,y),s)≡ clear(x,s)∧ clear(y,s)∧ x 6= y

on(x,y,do(a,s)) ≡ a = move(x,y)∨
on(x,y,s)∧¬(∃z)a = move(x,z),

clear(x,do(a,s)) ≡ (∃y)(∃z)a = move(y,z)∧on(y,x,s)∨
clear(x,s)∧¬(∃y)a = move(y,x).

We now axiomatize in the situation calculus the letter example of Section 2.2.

Example 3.

1. Bob sees that Ann reads the letter. We introduce an epistemic action read(e),
which means that Ann senses the truth value of p with result e while Bob is
observing her. The axioms are:

Poss(read(e),s)≡ (e = 1≡ p(s)),

A(i,a,read(e),s)≡ (i = ann⊃ a = read(e))∧ (i = bob⊃ ∃e′.a = read(e′)).

So Ann can distinguish between read(1) and read(0), but Bob can’t.
2. Bob thinks Ann may have read the letter. We introduce an epistemic action

mread(e), which means that Ann senses the truth value of p with result e while
Bob is not sure about whether this happens. The axioms are:
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Poss(mread(e),s)≡ (e = 1≡ p(s)),

A(i,a,mread(e),s)≡ (i = ann⊃ a = mread(e))∧
(i = bob⊃ a = nil∨∃e′.a = mread(e′)),

A(i,a,nil,s)≡ (i = ann⊃ a = nil)∧
(i = bob⊃ a = nil∨∃e′.a = mread(e′))

So Bob can’t distinguish between the three actions mread(1), mread(0), and nil.
Finally, we introduce some notation which will be used in the rest of the paper.

Let φ(s) be a formula with a single situation variable s.

1. Agent i believes φ :

Bel(i,φ(now),s)
de f
= ∀s′.B(i,s′,s)⊃ φ(s′).

2. Agent i truly believes φ :

TBel(i,φ(now),s)
de f
= φ(s)∧Bel(i,φ(now),s).

3. Agent i believes whether φ holds:

BW(i,φ(now),s)
de f
= Bel(i,φ(now),s)∨Bel(i,¬φ(now),s).

4. Let E be a subset of the agents. We let C(E ,s′,s) denote the reflexive transitive
closure of ∃i ∈ E .B(i,s′,s), which can be defined with a second-order formula:

C(E ,s′,s)
de f
=

∀P.∀uP(u,u)∧∀i∈E ,u,v,w[P(u,v)∧B(i,v,w)⊃ P(u,w)]⊃ P(s′,s).

5. The agents commonly know φ :

CKnows(φ(now),s)
de f
= ∀s′.C(A ,s′,s)⊃ φ(s′),

where A is the set of all agents.

4 Properties of beliefs

In this section, we analyze properties of beliefs in our formalism. We begin with the
main property of beliefs. We use Ψ0(a,s) to denote the following formula:

∀i.Bel(i,∃s∗∃a∗.A(i,a∗,a,s)∧now = do(a∗,s∗)∧Poss(a∗,s∗)∧Dss[a∗,s∗],do(a,s)),

where Dss[a∗,s∗] denotes the instantiation of the SSAs for ordinary fluents wrt a∗

and s∗. This says that in the situation resulting from doing action a, each agent i
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believes that some alternative of a was possible and has happened. We useΨn+1(a,s)
to denote the following formula:

∀i.Bel(i,∃s∗∃a∗.A(i,a∗,a,s)∧now = do(a∗,s∗)∧
Poss(a∗,s∗)∧Dss[a∗,s∗]∧Ψn(a∗,s∗),do(a,s)).

Thus Ψ1(a,s) says that in the situation resulting from doing action a, each agent i
believes that some alternative a∗ of a was possible, has happened, and in the result-
ing situation, each agent believes that some alternative of a∗ was possible and has
happened. By the SSA for the B fluent, it is straightforward to prove:

Theorem 1. For all n, D |= ∀a∀s.Poss(a,s)⊃Ψn(a,s) .

Proof. We prove by induction on n.
Basis: n = 0. This directly follows from the SSA for the B fluent.
Induction step: Assume that D |= ∀a∀s.Poss(a,s)⊃Ψn(a,s). By the SSA for the

B fluent, we have

∀a∀s.Poss(a,s)⊃ ∀i.Bel(i,∃s∗∃a∗.A(i,a∗,a,s)∧now = do(a∗,s∗)∧
Poss(a∗,s∗)∧Dss[a∗,s∗],do(a,s)).

By the induction hypothesis, we have

∀a∀s.Poss(a,s)⊃ ∀i.Bel(i,∃s∗∃a∗.A(i,a∗,a,s)∧now = do(a∗,s∗)∧
Poss(a∗,s∗)∧Dss[a∗,s∗]∧Ψn(a∗,s∗),do(a,s)),

which is ∀a∀s.Poss(a,s)⊃Ψn+1(a,s).

Let φ(s) be a formula with a single situation variable s. We introduce an epis-
temic action observeφ , which tells the agent that φ holds in the current situation.
The axiom is: Poss(observeφ ,s) ≡ φ(s). It is easy to prove the following proposi-
tions. By an objective formula, we mean one which does not use the B fluent or the
A predicate.

Proposition 1. Let φ be an objective formula. Suppose that agent i is an observer
of action observeφ in situation σ , i.e., D |= ∀a.A(i,a,observeφ ,σ)≡ a = observeφ .
Then D |= φ(σ)⊃ Bel(i,φ ,do(observeφ ,σ)).

Proposition 2. Let φ be an objective formula. Suppose that agent i is a partial ob-
server of action observeφ in situation σ , i.e.,
D |= ∀a.A(i,a,observeφ ,σ)≡ a = observeφ ∨a = observe¬φ .
Then D |= φ(σ)∧¬BW(i,φ ,σ)⊃ ¬BW(i,φ ,do(observeφ ,σ)).

Proposition 3. Let φ be an objective formula. Suppose that agent i is oblivious of
action α in situation σ , i.e., D |= ∀a.A(i,a,α,σ)≡ a = nil.
Then D |= Poss(α,σ)⊃ [Bel(i,φ ,σ)≡ Bel(i,φ ,do(α,σ))].
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In the following, we show how we model some special types of actions and prove
the desired properties. We first consider public sensing and reading actions: we say
a sensing or reading action is public if its occurrence is common knowledge but only
the performer of the action gets to know the result. The axioms are as follows:

• senseφ (i,x,e) means agent i senses the truth value of φ(x) and gets result e;
• read f (i,x,y) means agent i reads the value of f (x) and gets result y.

1. Poss(read f (i,x,e),s)≡ (e = 1≡ φ(x,s))
2. A( j,a,senseφ (i,x,e),s)≡ ∃e′(a = senseφ (i,x,e′))∧ ( j = i⊃ a = senseφ (i,x,e))
3. Poss(read f (i,x,y),s)≡ f (x,s) = y
4. A( j,a,read f (i,x,y),s)≡ ∃y′(a = read f (i,x,y′))∧ ( j = i⊃ a = read f (i,x,y))

We let senseφ (i,x) denote senseφ (i,x,1) | senseφ (i,x,0), and read f (i,x) denote
(πy)read f (i,x,y). It is easy to prove:

Proposition 4. D entails the following:

1. Do(senseφ (i,x),s,s1)⊃ [B( j,s′,s1)≡
∃s∗.B( j,s∗,s)∧Do(senseφ (i,x),s∗,s′)∧ ( j = i⊃ φ(x,s)≡ φ(x,s∗))]

2. Do(read f (i,x),s,s1)⊃ [B( j,s′,s1)≡
∃s∗.B( j,s∗,s)∧Do(read f (i,x),s∗,s′)∧ ( j = i⊃ f (x,s) = f (x,s∗))]

This is the same as Shapiro et al. ’s extension of Scherl and Levesque’s SSA for the
K fluent to public sensing and reading actions in the multi-agent case [22]. So our
account of beliefs and actions subsumes theirs. As an easy corollary, we get

Proposition 5. Let φ be an objective formula. Then D entails the following:

1. Do(senseφ (i,x),s,s1)⊃ BW(i,φ(x),s1)∧
( j 6= i⊃ Bel( j,BW(i,φ(x)),s1))

2. Do(read f (i,x),s,s1)⊃ ∃yBel(i, f (x) = y,s1)∧
( j 6= i⊃ Bel( j,∃yBel(i, f (x) = y),s1))

Bacchus et al. [1] considered noisy sensors: when an agent reads the value of
f (x), she may get a value y such that | f (x,s)− y| ≤ b for some bound b. We intro-
duce an epistemic action nread f (i,x,y) for this purpose, and let nread f (i,x) denote
(πy)nread f (i,x,y). The axioms are:

1. Poss(nread f (i,x,y),a)≡ | f (x,s)− y| ≤ b
2. A( j,a,nread f (i,x,y),s)≡ (∃y′)a = nread f (i,x,y′)∧

{ j = i⊃ (∃y′).a = nread f (i,x,y′)∧|y− y′| ≤ b}

As desired, we have

Proposition 6. D |= Do(nread f (i,x),s,s′)⊃ ∃y.Bel(i, | f (x)− y| ≤ b,s′).

Delgrande and Levesque [9] considered unintended actions: an agent wants to
push button m, but she may push button n such that |m− n| ≤ b. We introduce a
physical action npush(i,m,n), meaning that agent i wants to push button m but ends
up pushing button n. We let npush(i,m) denote (πn)npush(i,m,n). The axioms are:
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1. Poss(npush(i,m,n),a)≡ |m−n| ≤ b
2. on(n,do(a,s))≡ ∃i,m.a = npush(i,m,n)
3. A( j,a,npush(i,m,n),s)≡ (∃m′,n′)a = npush(i,m′,n′)∧

{ j = i⊃ (∃n′).a = push(i,m,n′)}

Proposition 7. D |= Do(npush(i,m),s,s′)⊃ Bel(i,∃n.|n−m| ≤ b∧on(n),s′).

Dynamic epistemic logics originated with public announcement logic, which rea-
sons about the epistemic change brought about by public communications [17]. We
have the following description for the action of publicly truthfully announcing φ :

1. Poss(pubφ ,s)≡ φ(s)
2. A(i,a, pubφ ,s)≡ a = pubφ

Proposition 8. Let φ be an objective formula. Then
D |= φ(s)⊃ CKnows(φ ,do(pubφ ,s)).

5 The embedding theorem

In this section, we prove that action model logic can be embedded into the extended
situation calculus. We first define two functions: B, which maps a formula φ in
AML into a basic action theory encoding the action models involved in φ , and F ,
which maps a formula in AML and a situation term into a formula in the situation
calculus. We then prove that for any formula φ in AML, φ is valid in AML iff
B(φ) |= F (φ ,S0).

Definition 7. Let φ be a formula in AML. We define two sets AM(φ) and Prop(φ)
recursively as follows:

1. AM(φ) is the set of action models N such that N appears in φ or there exist
an action model N′ which occurs in φ and an action point e of N′ such that
N ∈ AM(pre(e));

2. Prop(φ) is the set of propositions p such that p appears in φ or there exist an
action model N′ which occurs in φ and an action point e of N′ such that p ∈
Prop(pre(e)).

We define the vocabulary of our situation calculus language associated to φ as fol-
lows. For each N ∈ AM(φ), we introduce an action cN(x), where x ranges over the
action points of N. For each p ∈ Prop(φ), we introduce a unary fluent p(s).

Definition 8. Let φ be a formula in AML, and s a situation term. We define a situa-
tion calculus formula F (φ ,s) by induction on the complexity of φ as follows:

1. F (p,s) = p(s);
2. F (¬ψ,s) = ¬F (ψ,s);
3. F (ψ ∧η ,s) = F (ψ,s)∧F (η ,s);
4. F (Biψ,s) = ∀s′.B(i,s′,s)⊃F (ψ,s′);
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5. F (CE ψ,s) = ∀s′.C(E ,s′,s)⊃F (ψ,s′);
6. F ([N,e0]ψ,s) = F (pre(e0),s)⊃F (ψ,do(cN(e0),s)).

Note that we model the execution of a pointed action model (N,e0) with the
execution of the action cN(e0) in the situation calculus.

Definition 9. Let φ be a formula in AML. Let AM(φ) = {N1, . . . ,Nm}, where Nk =
(Ak,→, pre), k = 1, . . . ,m. Without loss of generality, we assume that the Ak’s are
pairwise disjoint. We construct a basic action theory B(φ) as follows.

(A0) e 6= e′, where e and e′ are distinct action points;
(A1) Poss(cNk(x),s)≡

∨
e∈Ak

[x = e∧F (pre(e),s)];
(A2) p(do(a,s))≡ p(s);
(A3) A( j,a,cNk(x),s)≡ ∃y.a = cNk(y)∧

∨
(e,e′)∈→ j

x = e∧ y = e′;

Note that the reason we have A2 is that in action models, actions do not change
the world. A3 specifies that the value of the A predicate is set according to the
accessibility relations of the action models.

The following is the embedding theorem:

Theorem 2. For any formula φ in AML, φ is valid in AML iff B(φ) |= F (φ ,S0).

To prove the embedding theorem, we first introduce a method to induce a Kripke
model from a structure of the situation calculus. For a structure L and a syntactic
object o, we let oL stand for the denotation of o in L. We say that a situation is at
level k if it results from performing a sequence of k actions in an initial situation.
Let L be a structure of the situation calculus, τ a situation of L, and φ(s) a situation
calculus formula with a free situation variable s. We use L,τ |= φ(s) to denote that
when s is interpreted as τ , L satisfies φ(s).

Definition 10. Let L be a structure of the situation calculus. Let τ be a level k situa-
tion of L. We define a Kripke model Mτ

L = (S,R,V ) as follows:

• S consists of all level k situations of L;
• For any t1, t2 ∈ S, t1Rit2 iff (i, t2, t1) ∈ BL;
• For each t ∈ S, V (t) is the set of fluents p which are true at t in L.

We call Mτ
L the Kripke projection of L onto τ . Note that if τ1 and τ2 are at the same

level, then Mτ1
L = Mτ2

L .

The proof of the embedding theorem is involved. We now explain the general
idea of the proof. First, suppose B(φ) 6|= F (φ ,S0). Let L be a model of B(φ)∪
{¬F (φ ,S0)}. We show that the pointed Kripke model (Mτ0

L ,τ0) satisfies ¬φ , where
τ0 = SL

0 , and Mτ0
L is the Kripke projection of L onto τ0. The other direction is more

complicated, and the reason is that for an action point e of an action model N, pre(e)
may involve action models. The precondition axiom for action CN is defined with
F (pre(e),s). When pre(e) involves action models, F (pre(e),s) refers to future
situations of s.
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Now suppose φ is not valid. Let (M, t0) be a model of ¬φ . We construct a model
L of D = B(φ) as follows. First, let L |= Duna ∪{A0}. The initial situations of L
are the states of M, and L interprets S0 as t0. The situations of L form a forest of
isomorphic trees rooted at the initial situations, where the children of each situa-
tion one-to-one correspond to the actions. We interpret the A predicate according
to A3. We interpret Poss and the fluents by induction on the level of situations.
For initial situations, we interpret the B and the p fluents according to M. Let τ

be an initial situation. For each action model N and action point e of it, we let
L,τ |= Poss(cN(e),s) iff M,τ |= pre(e). Assume we have interpreted Poss and all
the fluents at level k situations. We interpret the fluents at level k+1 situations ac-
cording to Dss. Let τ be a level k+1 situation. For each action model N and action
point e of it, we let L,τ |= Poss(cN(e),s) iff Mτ

L ,τ |= pre(e). We show that L is a
model of B(φ)∪{¬F (φ ,S0)}.

In the above outline of proof, for the Lsc-structure L we construct, we have that
the Kripke projection of L onto the initial situations – Mt0

L , is isomorphic to M. The
isomorphism of Kripke models will play an important role in our proof. However,
instead of requiring that two pointed Kripke models (M1, t1) and (M2, t2) be isomor-
phic, we only require that their reductions be isomorphic, i.e., the resulting pointed
Kripke models are isomorphic after we remove the states of Mi not reachable from ti
for i = 1,2. In the following, we define the concepts of isomorphism and reduction
of Kripke models and study their basic properties.

Let (M1, t1) and (M2, t2) be two pointed Kripke models. We let h : (M1, t1) ∼=
(M2, t2) denote that h is an isomorphism from (M1, t1) to (M2, t2), i.e.,

• h is a bijection from the states of M1 to those of M2, and h(t1) = t2;
• h preserves the accessibility relation, i.e., for any agent i and any two states t and

t ′ of M1, tRit ′ iff h(t)Rih(t ′);
• h preserves the atoms, that is, for any atom p and state t of M1, p holds at t iff p

holds at h(t).

Let (M, t0) be a pointed Kripke model, we use R(M, t0) to denote the pointed Kripke
model (M′, t0), where M′ is obtained from M by removing those states not reachable
from t0. It is easy to prove the following properties:

Proposition 9. Let h : R(M1, t1)∼=R(M2, t2), and t a state of M1 reachable from t1.
Then R(M1, t)∼= R(M2,h(t)).

Proof. Since t is reachable from t1, the states of R(M1, t) are contained in those of
R(M1, t1). It suffices to prove that for any state t ′ of M1 reachable from t, h(t ′) is
reachable from h(t), which holds because h preserves the accessibility relation.

Proposition 10. Let h : R(M1, t1) ∼= R(M2, t2). Then for any AML formula φ ,
M1, t1 |= φ iff M2, t2 |= φ .

Proof. See Appendix.

In the above outline of proof, the Lsc-structure L we construct is a model of
D−Dap and it has a property defined as follows:
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Definition 11. We say that an Lsc-structure L has property C1 if for any situation τ ,
action model N and action point e of N, L,τ |= Poss(cN(e),s) iff Mτ

L ,τ |= pre(e).

In the following, we study properties of models of D −Dap with C1. We first
prove a proposition which shows that the execution of a pointed action model (N,e0)
can be modeled in the situation calculus with the execution of the action cN(e0).

Proposition 11. Let L be a model of D −Dap with C1, and τ0 a situation of L. Let
(M, t0) be a pointed Kripke model, and (N,e0) a pointed action model. Suppose
that h : R(M, t0) ∼= R(Mτ0

L ,τ0) and M, t0 |= pre(e0). Then R((M, t0)⊗ (N,e0)) ∼=
R(Mτ1

L ,τ1) where τ1 is doL(cN(e0)
L,τ0).

Proof. See Appendix.

Next, we prove a lemma which shows that an AML formula φ can be modeled
by the situation calculus formula F (φ ,s):

Lemma 1. Let L be a model of D −Dap with C1, and τ0 a situation of L. Suppose
h : R(M, t0)∼= R(Mτ0

L ,τ0). Then M, t0 |= φ iff L,τ0 |= F (φ ,s).

Proof. We prove by induction on the complexity of φ .

1. φ is p. Then M, t0 |= p iff p is true at t0 in M iff p is true at τ0 in L (since
R(M, t0)∼= R(Mτ0

L ,τ0)) iff L,τ0 |= p(s).
2. φ is ¬ψ . Then M, t0 |= ¬ψ iff M, t0 6|= ψ iff L,τ0 6|= F (ψ,s) (by induction hy-

pothesis) iff L,τ0 |= ¬F (ψ,s), i.e., L,τ0 |= F (¬ψ,s).
3. φ is ψ ∧ψ ′. Similar to the above case.
4. φ is Biψ . Let t be a state of M such that t0Rit. By Proposition 9, R(M, t) ∼=

R(Mτ0
L ,h(t)). By induction hypothesis, M, t |= ψ iff L,h(t) |= F (ψ,s′). So

M, t0 |= Biψ iff for every t such that t0Rit, M, t |= ψ iff for every τ such
that (i,τ,τ0) ∈ BL, L,τ |= F (ψ,s′) iff L,τ0 |= ∀s′.B(i,s′,s) ⊃ F (ψ,s′), i.e.,
L,τ0 |= F (Biψ,s).

5. φ is CE ψ . Similar to the above case.
6. φ is [N,e0]ψ . By induction hypothesis, M, t0 |= pre(e0) iff L,τ0 |=F (pre(e0),s).

By Proposition 11, if M, t0 |= pre(e0), then (M, t0)⊗ (N,e0) ∼= Mτ1
L ,τ1, where

τ1 = do(cN(e0)
L,τ0). By induction hypothesis, (M, t0)⊗ (N,e0) |= ψ iff L,τ1 |=

F (ψ,s). Thus M, t0 |= [N,e0]ψ iff if M, t0 |= pre(e0) then (M, t0)⊗ (N,e0) |= ψ

iff if L,τ0 |= F (pre(e0),s) then L,τ1 |= F (ψ,s) iff L,τ0 |= F (pre(e0),s) ⊃
F (ψ,do(cN(e0),s)), which is F ([N,e0]ψ,s).

The above lemma requires that L be a model of D −Dap with C1. The lemma
below shows that we can replace this requirement with the one that L is a model of
D .

Lemma 2. Let L be a model of D , and τ0 a situation of L. Suppose h : R(M, t0) ∼=
R(Mτ0

L ,τ0). Then M, t0 |= φ iff L,τ0 |= F (φ ,s).
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Proof. We prove by induction on the complexity of φ . Assume that the statemen-
t holds for all formulas less complex than φ . Then for any situation τ and action
point e of action model N, since pre(e) is less complex than φ and R(Mτ

L ,τ)
∼=

R(Mτ
L ,τ), we have that Mτ

L ,τ |= pre(e) iff L,τ |= F (pre(e),s). By Dap, L,τ |=
Poss(cN(e),s) ≡ F (pre(e),s). Thus we have L,τ |= Poss(cN(e),s) iff Mτ

L ,τ |=
pre(e). So L satisfies C1. By applying Lemma 1, we have M, t0 |= φ iff L,τ0 |=
F (φ ,s).

Finally, we are ready to prove the embedding theorem:

Proof. First, suppose B(φ) 6|=F (φ ,S0). Let L be a model of B(φ)∪{¬F (φ ,S0)}.
Let τ0 = SL

0 . Since R(Mτ0
L ,τ0) ∼= R(Mτ0

L ,τ0), by Lemma 2, Mτ0
L ,τ0 |= φ iff L |=

F (φ ,S0). Thus Mτ0
L ,τ0 |= ¬φ . So φ is not valid.

Now suppose φ is not valid. Let (M, t0) be a model of ¬φ . We construct a model
L of D = B(φ) as follows. First, let L |= Duna ∪{A0}. The initial situations of L
are the states of M, and L interprets S0 as t0. The situations of L form a forest of
isomorphic trees rooted at the initial situations, where the children of each situation
one-to-one correspond to the actions. Thus L satisfies the foundational axioms F1,
F2, and F3. We interpret the A predicate according to A3. We now interpret Poss
and the fluents by induction on the level of situations:

1. τ is an initial situation. The B fluent restricted to the initial situations is exactly
the same as the accessibility relation of M. For each unary fluent p, L interprets
p at τ as M does. For each action model N and action point e of it, we let L,τ |=
Poss(cN(e),s) iff M,τ |= pre(e).

2. Assume we have interpreted Poss and all the fluents at level k situations. We
interpret the fluents at level k + 1 situations according to Dss. Let τ be a level
k+ 1 situation. For each action model N and action point e of it, we let L,τ |=
Poss(cN(e),s) iff Mτ

L ,τ |= pre(e). Recall that the Kripke model Mτ
L = (S,R,V ) is

defined as follows:

• S consists of all level k+1 situations of L;
• For any t1, t2 ∈ S, t1Rit2 iff (i, t2, t1) ∈ BL;
• For each t ∈ S, V (t) is the set of fluents p which are true at t in L.

By the SSA for B, it is easy to see that L satisfies F4: B(i,s,s′) ⊃ [Init(s) ≡
Init(s′)]. Also, L has property C1: for any situation τ , action model N and action
point e of N, L,τ |= Poss(cN(e),s) iff Mτ

L ,τ |= pre(e). So L is a model of D −Dap
with C1. We now prove that L |= Dap. Since R(Mτ

L ,τ)
∼= R(Mτ

L ,τ), by Lemma
1, Mτ

L ,τ |= pre(e) iff L,τ |= F (pre(e),s). Thus L,τ |= Poss(cN(e),s) iff L,τ |=
F (pre(e),s). So L,τ |= Poss(cN(e),s)≡F (pre(e),s).

So we have proved that L is a model of B(φ). Obviously, we have R(M, t0) ∼=
R(Mt0

L , t0). By Lemma 2, M, t0 |= φ iff L |=F (φ ,S0). Recall that (M, t0) is a model
of ¬φ . So L is a model of B(φ)∪{¬F (φ ,S0)}. Thus B(φ) 6|= F (φ ,S0).
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6 Extended examples

In this section, we present two extended examples of modeling multi-agent sce-
narios in the situation calculus. In the first example, the role of each agent is not
common knowledge. The second one involves both physical and sensing actions.

Example 4. Ann senses the truth value of p. Bob and Carol are observing Ann. But
Ann doesn’t know the role of Bob or Carol. Bob and Carol do not know the role
of each other. We introduce an epistemic action obs(e,b,c), which means that Ann
senses the truth value of p with result e, and b = 1 (resp. c=1) iff Bob (resp. Carol)
is observing Ann. The axioms are as follows:

1. Poss(obs(e,b,c),s)≡ (e = 1≡ p(s))
2. A(i,a,obs(e,b,c),s)≡

[i = ann⊃ (∃b′,c′)a = obs(e,b′,c′)]∧
[i = bob⊃ (b = 0⊃ a = nil)∧ (b = 1⊃ (∃e′,c′)a = obs(e′,b,c′))]∧
[i = carol ⊃ (c = 0⊃ a = nil)∧ (c = 1⊃ (∃e′,b′)a = obs(e′,b′,c))]

3. A(i,a,nil,s)≡ a = nil

The reason we have [i = ann ⊃ (∃b′,c′)a = obs(e,b′,c′)] is that Ann knows the
sensing result but she doesn’t know the role of Bob or Carol. The reason we have
[i = bob∧ b = 1 ⊃ (∃e′,c′)a = obs(e′,b,c′)] is that Bob is observing Ann but he
does not know the role of Carol.

Assume that DS0 contains p(S0)∧CKnows(∀i¬BW(i, p),S0). Then D entails
the following, where S1 = do(obs(1,1,1),S0).

1. BW(ann, p,S1);
2. ¬BW(bob, p,S1);
3. Bel(bob,BW(ann, p),S1);
4. ¬Bel(ann,Bel(bob,BW(ann, p)),S1);
5. ¬Bel(carol,Bel(bob,BW(ann, p)),S1).

Example 5. We use a simplified and adapted version of Levesque’s Squirrel World.
Squirrels and acorns live in a one-dimensional world unbounded on both sides. Each
acorn and squirrel is located at some point, and each point can contain any number of
squirrels and acorns. Acorns are completely passive. Squirrels can do the following
actions:

1. le f t(i): Squirrel i moves left a unit;
2. right(i): Squirrel i moves right a unit;
3. pick(i): Squirrel i picks up an acorn, which is possible when he is not holding an

acorn and there is at least one acorn at his location;
4. drop(i): Squirrel i drops the acorn he is holding;
5. learn(i,n): Squirrel i learns that there are n acorns at his location. We use smell(i)

to denote (πn)learn(i,n).
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A squirrel can observe the action of another squirrel within a distance of 4, but if the
action is a sensing action, the result is not observable. Initially, there are two acorns
at each point. There are three squirrels: Nutty, Edgy, and Wally. Initially, they are
all at point 0, holding no acorns, and have no knowledge of the number of acorns at
each point, and the above is common knowledge. There are 3 ordinary fluents:

1. hold(i,s): Squirrel i is holding an acorn in situation s;
2. loc(i, p,s): Squirrel i is at location p in situation s;
3. acorn(p,n,s): There are n acorns at location p in situation s.

For illustration, we only present some axioms of D :

1. Poss(pick(i),s)≡ ¬hold(i,s)∧∃p,n(loc(i, p,s)∧acorn(p,n,s)∧n > 0)
2. loc(i, p,do(a,s))≡ a = le f t(i)∧ loc(i, p+1,s)∨

a = right(i)∧ loc(i, p−1,s)∨ loc(i, p,s)∧a 6= le f t(i)∧a 6= right(i)
3. A( j,a, pick(i),s)≡ ∃p, p′[loc(i, p,s)∧ loc( j, p′,s)∧

(|p− p′|> 4⊃ a = nil)∧ (|p− p′| ≤ 4⊃ a = pick(i))]
4. A( j,a, learn(i,n),s)≡ ∃p, p′[loc(i, p,s)∧ loc( j, p′,s)∧

(|p− p′|> 4⊃ a = nil)∧ ( j = i⊃ a = learn(i,n))
(|p− p′| ≤ 4∧ j 6= i⊃ (∃n′)a = learn(i,n′))]

5. CKnows(∀i.loc(i,0)∧¬hold(i)∧∀p,n¬Bel(i,¬acorn(p,n)),S0)
6. ∀p.acorn(p,2,S0)

Let φ(s,s′) be a formula. We introduce the following abbreviation:

Bel(i,φ(now, prev),s)
de f
= ∀s′.B(i,s′,s)⊃ ∃s∗∃a∗.s′ = do(a∗,s∗)∧φ(s′,s∗).

We abbreviate Nutty, Edgy, and Wally with N, E, and W, respectively. Let
δ1 = smell(N); pick(N), δ2 = right(N);drop(N), δ3 = le f t(W )2;right(E)3, and
δ4 = smell(W ); pick(W ); le f t(W ); le f t(E). Then D entails the following:

1. Do(δ1,S0,s)⊃ TBel(N,acorn(0,1),s)∧
CKnows(hold(N)∧∃nTBel(N,acorn(0,n)),s).

2. Do(δ1;δ2,S0,s)⊃ CKnows(∃n(acorn(1,n, prev)∧acorn(1,n+1,now)),s).
This says that the squirrels commonly know that there is one more acorn at point
1 now than previously.

3. Do(δ1;δ2;δ3,S0,s)⊃ CKnows(loc(W,−2)∧ loc(N,1)∧ loc(E,3),s).
4. Do(δ1;δ2;δ3;δ4,S0,s)⊃ TBel(N,hold(W )∧ loc(W,−3)∧ loc(E,2),s)∧

Bel(E,¬hold(W )∧loc(W,−2),s)∧Bel(W, loc(E,3),s).
Note that now Edgy and Wally have incorrect beliefs about each other.

7 Conclusions

In this paper, by incorporating the idea of action models from DELs, we have devel-
oped a general multi-agent extension of the situation calculus. We analyzed proper-
ties of multi-agent beliefs in the situation calculus, and showed that we can provide
a uniform treatment of special types of actions, such as public sensing and read-
ing actions, noisy sensors and unintended actions, and public announcements. We
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showed that action model logic can be embedded into the situation calculus, and
hence any multi-agent scenario which can be modeled in action model logic can be
modeled in the situation calculus. Since DELs are propositional, an advantage of
our work is the gain of more expressiveness and compactness in representation. We
gave two extended examples to illustrate modeling of multi-agent scenarios in the
situation calculus.

There are a number of topics for future research. First of all, as mentioned in
the introduction, van Benthem et al. [8] generalized the concept of action model
to that of update model which can be used to model both epistemic and physical
actions. They proposed a logic, called logic of communication and change (LCC),
to reason about update models. It would be interesting to explore if we can embed
LCC into the situation calculus. Secondly, as shown in the Squirrel World example,
because of unreliable sources of information, at certain points, agents may have
incorrect beliefs about the world and other agents. When incorrect beliefs lead to
inconsistent beliefs, belief revision is necessary for the agents to keep functioning
in the world. The DEL community has done extensive work on multi-agent belief
revision, and a good reference is [3]. The general idea is this: The semantic model
is a plausibility model, where for each agent, there is a plausibility order on the
set of states or actions. An agent believes φ if φ holds in the most plausible states.
When we update a plausibility model by an action plausibility model, give priority
to the action plausibility order. In the future, we would like to incorporate this line
of work into the situation calculus. Thirdly, while the focus of the current paper
is on the representation side, in the future, we would like to investigate reasoning
in the multi-agent situation calculus. Finally, we would like to explore multi-agent
high-level program execution and develop interesting applications of it.
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Appendix

Proposition 10. Let h : R(M1, t1) ∼= R(M2, t2). Then for any AML formula φ ,
M1, t1 |= φ iff M2, t2 |= φ .

Proof. We prove by induction on the complexity of φ . The cases that φ is p, ¬ψ , or
ψ ∧ψ ′ are easy. We prove the remaining cases:

1. φ is Biψ . Let t be a state of M such that t1Rit. By Proposition 9, R(M1, t) ∼=
R(M2,h(t)). By induction hypothesis, M1, t |= ψ iff M2,h(t) |= ψ . So M1, t1 |=
Biψ iff for every t such that t1Rit, M1, t |= ψ iff for every t ′ such that t2Rit ′,
M2, t ′ |= ψ iff M2, t2 |= Biψ .

2. φ is CE ψ . Similar to the above case.
3. φ is [N,e0]ψ . Let t be a state of M reachable from t1. By Proposition 9,

R(M1, t) ∼= R(M2,h(t)). Let e be an action point of N. By induction hy-
pothesis, M1, t |= pre(e) iff M2,h(t) |= pre(e). Now suppose M1, t1 |= pre(e0).
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We show that R((M1, t1)⊗ (N,e0)) ∼= R((M2, t2)⊗ (N,e0)). Let (t,e) be a s-
tate of R((M1, t1)⊗ (N,e0)). Then M1, t |= pre(e) and (t,e) is reachable from
(t1,e0). So M2,h(t) |= pre(e), and (h(t),e) is reachable from (t2,e0) (since
t2 = h(t1) and h preserves the accessibility relation). Hence (h(t),e) is a state of
R((M2, t2)⊗ (N,e0)). Let g((t,e)) = (h(t),e). It is easy to show that g is a bijec-
tion from the states of R((M1, t1)⊗ (N,e0)) to those of R((M2, t2)⊗ (N,e0)),
g preserves the accessibility relation and the atoms. So if M1, t1 |= pre(e0),
then R((M1, t1)⊗ (N,e0)) ∼= R((M2, t2)⊗ (N,e0)). By induction hypothesis,
(M1, t1)⊗ (N,e0) |= ψ iff (M2, t2)⊗ (N,e0) |= ψ . Thus M1, t1 |= [N,e0]ψ if-
f if M1, t1 |= pre(e0) then (M1, t1)⊗ (N,e0) |= ψ iff if M2, t2 |= pre(e0) then
(M2, t2)⊗ (N,e0) |= ψ iff M2, t2 |= [N,e0]ψ .

Proposition 11. Let L be a model of D −Dap with C1, and τ0 a situation of L. Let
(M, t0) be a pointed Kripke model, and (N,e0) a pointed action model. Suppose
that h : R(M, t0) ∼= R(Mτ0

L ,τ0) and M, t0 |= pre(e0). Then R((M, t0)⊗ (N,e0)) ∼=
R(Mτ1

L ,τ1) where τ1 is doL(cN(e0)
L,τ0).

Proof. To begin with, we show that for any state t of M reachable from t0 and for any
action point e of N, M, t |= pre(e) iff L,h(t) |= Poss(cN(e),s). Since h : R(M, t0)∼=
R(Mτ0

L ,τ0), by Proposition 9, R(M, t) ∼= R(Mτ0
L ,h(t)). By Proposition 10, M, t |=

pre(e) iff Mτ0
L ,h(t) |= pre(e). By C1, L,h(t) |=Poss(cN(e),s) iff Mτ0

L ,h(t) |= pre(e).
Thus M, t |= pre(e) iff L,h(t) |= Poss(cN(e),s).

We define a function g from the states of R((M, t0)⊗ (N,e0)) to the situations of
L as follows: g((t,e)) = doL(cN(e)L,h(t)). We first show that g is an injection. Sup-
pose that doL(cN(e1)

L,h(t1)) = doL(cN(e2)
L,h(t2)). Then by F1, cN(e1)

L = cN(e2)
L

and h(t1) = h(t2). By Duna, eL
1 = eL

2 . By A0, e1 = e2. Since h is an injection, t1 = t2.
We now show that g preserves the accessibility relation. Let (t1,e1) and (t2,e2)

be two states of R((M, t0)⊗ (N,e0)). Then M, ti |= pre(ei), i = 1,2. So L,h(ti) |=
Poss(cN(ei),s). Thus (t1,e1)R′i (t2,e2) iff t1 Ri t2 and e1→i e2 iff (i,h(t2),h(t1))∈ BL

and L,h(t1) |= A(i,cN(e2),cN(e1),s) (by A3) iff (i,g((t2,e2)),g((t1,e1))) ∈ BL (by
the SSA for B). Next, we show that g preserves the fluents. For any state (t,e) of
R((M, t0)⊗ (N,e0)), for any fluent p, p is true at (t,e) iff p is true at t iff p is true
at h(t) iff p is true at doL(cN(e)L,h(t)), which is g((t,e)), by the SSA for p.

We now show that g is a function from the states of R((M, t0)⊗ (N,e0)) to those
of R(Mτ1

L ,τ1). Let (t,e) be a state of R((M, t0)⊗ (N,e0)). Then (t,e) is reachable
from (t0,e0). Since g preserves the accessibility relation, g(t,e) is reachable from
g(t0,e0), which is τ1. Thus g(t,e) is a state of R(Mτ1

L ,τ1).
Finally, we show that g is a surjection. Let ω1 be a situation of L that is reachable

from τ1 by a B-path. Since M, t0 |= pre(e0), L,τ0 |= Poss(cN(e0),s). By A3 and the
SSA for the B fluent, there exist an action point e of N reachable from e0 and a
situation ω0 of L reachable from τ0, such that ω1 = doL(cN(e)L,ω0) and L,ω0 |=
Poss(cN(e),s). Since h : R(M, t0)∼=R(Mτ0

L ,τ0), there exists a state t of M reachable
from t0 such that h(t) = ω0. Thus M, t |= pre(e), (t,e) is reachable from (t0,e0), and
ω1 = g((t,e)).
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